11 research outputs found

    On the classgroups of imaginary abelian fields

    Full text link

    Leading terms of Artin L-series at negative integers and annihilation of higher K-groups

    Get PDF
    Let L/K be a finite Galois extension of number fields with Galois group G. We use leading terms of Artin L-series at strictly negative integers to construct elements which we conjecture to lie in the annihilator ideal associated to the Galois action on the higher dimensional algebraic K-groups of the ring of integers in L. For abelian G our conjecture coincides with a conjecture of Snaith and thus generalizes also the well known Coates-Sinnott conjecture. We show that our conjecture is implied by the appropriate special case of the equivariant Tamagawa number conjecture (ETNC) provided that the Quillen-Lichtenbaum conjecture holds. Moreover, we prove induction results for the ETNC in the case of Tate motives h0(Spec(L))(r), where r is a strictly negative integer. In particular, this implies the ETNC for the pair (h0(Spec(L))(r),M), where L is totally real, r < 0 is odd and M is a maximal order containing Z[ 1/2 ]G, and will also provide some evidence for our conjecture

    Class groups of abelian fields, and the main conjecture

    Full text link

    On the Shortness of Vectors to be found by the Ideal-SVP Quantum Algorithm

    Get PDF
    The hardness of finding short vectors in ideals of cyclotomic number fields (hereafter, Ideal-SVP) can serve as a worst-case assumption for numerous efficient cryptosystems, via the average-case problems Ring-SIS and Ring-LWE. For a while, it could be assumed the Ideal-SVP problem was as hard as the analog problem for general lattices (SVP), even when considering quantum algorithms. But in the last few years, a series of works has lead to a quantum algorithm for Ideal-SVP that outperforms what can be done for general SVP in certain regimes. More precisely, it was demonstrated (under certain hypotheses) that one can find in quantum polynomial time a vector longer by a factor at most α=exp(O~(n1/2))\alpha = \exp({\tilde O(n^{1/2})}) than the shortest non-zero vector in a cyclotomic ideal lattice, where nn is the dimension. In this work, we explore the constants hidden behind this asymptotic claim. While these algorithms have quantum steps, the steps that impact the approximation factor α\alpha are entirely classical, which allows us to estimate it experimentally using only classical computing. Moreover, we design heuristic improvements for those steps that significantly decrease the hidden factors in practice. Finally, we derive new provable effective lower bounds based on volumetric arguments. This study allows to predict the crossover point with classical lattice reduction algorithms, and thereby determine the relevance of this quantum algorithm in any cryptanalytic context. For example we predict that this quantum algorithm provides shorter vectors than BKZ-300 (roughly the weakest security level of NIST lattice-based candidates) for cyclotomic rings of rank larger than about 2400024000
    corecore