3,985 research outputs found

    On a family of test statistics for discretely observed diffusion processes

    Full text link
    We consider parametric hypotheses testing for multidimensional ergodic diffusion processes observed at discrete time. We propose a family of test statistics, related to the so called Ï•\phi-divergence measures. By taking into account the quasi-likelihood approach developed for studying the stochastic differential equations, it is proved that the tests in this family are all asymptotically distribution free. In other words, our test statistics weakly converge to the chi squared distribution. Furthermore, our test statistic is compared with the quasi likelihood ratio test. In the case of contiguous alternatives, it is also possible to study in detail the power function of the tests. Although all the tests in this family are asymptotically equivalent, we show by Monte Carlo analysis that, in the small sample case, the performance of the test strictly depends on the choice of the function Ï•\phi. Furthermore, in this framework, the simulations show that there are not uniformly most powerful tests

    Divergences Test Statistics for Discretely Observed Diffusion Processes

    Full text link
    In this paper we propose the use of ϕ\phi-divergences as test statistics to verify simple hypotheses about a one-dimensional parametric diffusion process \de X_t = b(X_t, \theta)\de t + \sigma(X_t, \theta)\de W_t, from discrete observations {Xti,i=0,...,n}\{X_{t_i}, i=0, ..., n\} with ti=iΔnt_i = i\Delta_n, i=0,1,>...,ni=0, 1, >..., n, under the asymptotic scheme Δn→0\Delta_n\to0, nΔn→∞n\Delta_n\to\infty and nΔn2→0n\Delta_n^2\to 0. The class of ϕ\phi-divergences is wide and includes several special members like Kullback-Leibler, R\'enyi, power and α\alpha-divergences. We derive the asymptotic distribution of the test statistics based on ϕ\phi-divergences. The limiting law takes different forms depending on the regularity of ϕ\phi. These convergence differ from the classical results for independent and identically distributed random variables. Numerical analysis is used to show the small sample properties of the test statistics in terms of estimated level and power of the test

    Empirical L2L^2-distance test statistics for ergodic diffusions

    Get PDF
    The aim of this paper is to introduce a new type of test statistic for simple null hypothesis on one-dimensional ergodic diffusion processes sampled at discrete times. We deal with a quasi-likelihood approach for stochastic differential equations (i.e. local gaussian approximation of the transition functions) and define a test statistic by means of the empirical L2L^2-distance between quasi-likelihoods. We prove that the introduced test statistic is asymptotically distribution free; namely it weakly converges to a χ2\chi^2 random variable. Furthermore, we study the power under local alternatives of the parametric test. We show by the Monte Carlo analysis that, in the small sample case, the introduced test seems to perform better than other tests proposed in literature

    Fitting Effective Diffusion Models to Data Associated with a "Glassy Potential": Estimation, Classical Inference Procedures and Some Heuristics

    Full text link
    A variety of researchers have successfully obtained the parameters of low dimensional diffusion models using the data that comes out of atomistic simulations. This naturally raises a variety of questions about efficient estimation, goodness-of-fit tests, and confidence interval estimation. The first part of this article uses maximum likelihood estimation to obtain the parameters of a diffusion model from a scalar time series. I address numerical issues associated with attempting to realize asymptotic statistics results with moderate sample sizes in the presence of exact and approximated transition densities. Approximate transition densities are used because the analytic solution of a transition density associated with a parametric diffusion model is often unknown.I am primarily interested in how well the deterministic transition density expansions of Ait-Sahalia capture the curvature of the transition density in (idealized) situations that occur when one carries out simulations in the presence of a "glassy" interaction potential. Accurate approximation of the curvature of the transition density is desirable because it can be used to quantify the goodness-of-fit of the model and to calculate asymptotic confidence intervals of the estimated parameters. The second part of this paper contributes a heuristic estimation technique for approximating a nonlinear diffusion model. A "global" nonlinear model is obtained by taking a batch of time series and applying simple local models to portions of the data. I demonstrate the technique on a diffusion model with a known transition density and on data generated by the Stochastic Simulation Algorithm.Comment: 30 pages 10 figures Submitted to SIAM MMS (typos removed and slightly shortened

    A selective overview of nonparametric methods in financial econometrics

    Full text link
    This paper gives a brief overview on the nonparametric techniques that are useful for financial econometric problems. The problems include estimation and inferences of instantaneous returns and volatility functions of time-homogeneous and time-dependent diffusion processes, and estimation of transition densities and state price densities. We first briefly describe the problems and then outline main techniques and main results. Some useful probabilistic aspects of diffusion processes are also briefly summarized to facilitate our presentation and applications.Comment: 32 pages include 7 figure

    Simulation of multivariate diffusion bridge

    Full text link
    We propose simple methods for multivariate diffusion bridge simulation, which plays a fundamental role in simulation-based likelihood and Bayesian inference for stochastic differential equations. By a novel application of classical coupling methods, the new approach generalizes a previously proposed simulation method for one-dimensional bridges to the multi-variate setting. First a method of simulating approximate, but often very accurate, diffusion bridges is proposed. These approximate bridges are used as proposal for easily implementable MCMC algorithms that produce exact diffusion bridges. The new method is much more generally applicable than previous methods. Another advantage is that the new method works well for diffusion bridges in long intervals because the computational complexity of the method is linear in the length of the interval. In a simulation study the new method performs well, and its usefulness is illustrated by an application to Bayesian estimation for the multivariate hyperbolic diffusion model.Comment: arXiv admin note: text overlap with arXiv:1403.176

    Markov chain Monte Carlo for exact inference for diffusions

    Get PDF
    We develop exact Markov chain Monte Carlo methods for discretely-sampled, directly and indirectly observed diffusions. The qualification "exact" refers to the fact that the invariant and limiting distribution of the Markov chains is the posterior distribution of the parameters free of any discretisation error. The class of processes to which our methods directly apply are those which can be simulated using the most general to date exact simulation algorithm. The article introduces various methods to boost the performance of the basic scheme, including reparametrisations and auxiliary Poisson sampling. We contrast both theoretically and empirically how this new approach compares to irreducible high frequency imputation, which is the state-of-the-art alternative for the class of processes we consider, and we uncover intriguing connections. All methods discussed in the article are tested on typical examples.Comment: 23 pages, 6 Figures, 3 Table
    • …
    corecore