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Markov chain Monte Carlo for exact inference foffdsions

Sermaidis, G.Papaspiliopoulos, ORoberts, G.G.Beskos, Aand Fearnhead,P.

Abstract

We develop exact Markov chain Monte Carlo methods for distyesampled, directly and indirectly ob-
served difusions. The qualification "exact” refers to the fact that itneriant and limiting distribution of the
Markov chains is the posterior distribution of the paramsefeee of any discretisation error. The class of pro-
cesses to which our methods directly apply are those whicteaimulated using the most general to date exact
simulation algorithm. The article introduces various neelhto boost the performance of the basic scheme, in-
cluding reparametrisations and auxiliary Poisson sargpMide contrast both theoretically and empirically how
this new approach compares to irreducible high frequengytation, which is the state-of-the-art alternative for
the class of processes we consider, and we uncover intggainnections. All methods discussed in the article
are tested on typical examples.

Keywords: Exact inference; Exact simulation; Markov chain Monte GaBtochastic dferential equation;
Transition density

1 Introduction

Diffusion processes provide a flexible framework for modellihgmpmena which evolve randomly and continu-
ously in time and are extensively used throughout Sciengeirefinance (Ait-Sahalia and Kimmel, 2007), biology
(Golightly and Wilkinson, 2006), molecular kinetics (Hat® and Schiitte, 2008), pharmacokingfitsarmaco-
dynamics (Picchinet al., 2010) and spatio-temporal modelling (Broemnal., 2000).

A time-homogeneous flusion proces¥ € RY is a Markov process defined as the solution to a stochastic
differential equation (SDE):

whereW is ad-dimensional standard Brownian motion. The functin® x ®; — R ando : RY x @, — R
are known as thdrift anddiffusion cogicientrespectively, and are allowed to depend on an unknown paeame
0 = (61,02) € ® c RP. The assumption of distinct parameters for each functimlay no means restrictive and
is adopted here for ease of presentation. We assume tisabvertible and make the usual set of assumptions on
B ando to ensure that (1) has a unique weak non-explosive solug@nfor example Theorem 5.2.1 of @ksendal
(2003); see also Section 2.

Even though the process is defined in continuous time, thabledata consist of observations recorded at a
set of discrete time points,

YZZ{VtO,th,...,th}, O<ty<ti<...<tp

Statistical inference is pursued in a Bayesian framewor&re/lprior beliefs about the parameters, encoded via a
prior densityr (), are updated on the basis of the available data throughisheste-time likelihood to yield the
posterior beliefs, encoded via the posterior density:
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whereAt; = tj — tji_1 is the time increment between consecutive observations and
p(v,w; 6) = P(V; e dw| Vo = V)/dw,  t>0,v,weRY,

is the transition density of the process.

Bayesian and generally likelihood-based inference in toistext is hindered by the unavailability of the
transition density and skiciently accurate approximations to the density exist onfyemt is suficiently small.
One strand of the literature approaches the inference @mobly resorting to Monte Carlo data augmentation
(DA), according to the following principle. First, a DA sahe is constructed by identifying auxiliary variables
such that the joint density of those and the observatiormsykras complete likelihood, is analytically available.
Subsequently, inference is performed by employing a Markoain Monte Carlo (MCMC) algorithm which
targets the posterior density of parameters and auxiliarigbles. Early DA schemes were based on imputation
of a finite number of points, sayl, of the latent dfusion bridge$Vs, s € (ti_1, )}, see for example Eraker (2001);
Elerianet al.(2001). The complete likelihood is still intractable buhdze reasonably approximated using an Euler
scheme which now operates on smaller time increments. Hsetiroduced in this approximation is eliminated
by increasingM. There are three serious challenges with this approacst, Hie simulation of the latent bridges
conditionally on the parameters; this simulation is regdim the "Imputation” step of a DA algorithm. This
problem has been intensively studied, see for example péipgsulos and Roberts (2012) for a recent account.
Second, the choice dfl, at least in practice. A good approximation usually requadarge value oM which is
typically found by repeated runs of the algorithm until tséimated posterior distributions show no change. This
adds a substantial computational burden. Third, Robedssaramer (2001) showed that whenis unknown the
mixing time of the MCMC algorithm i®)(M). This is due to the quadratic variation identity, accogdio which
any continuous-time path contains infinite informationati®s. Thus, in these early DA schemes reduction in bias
comes with unbounded increase in the Monte Carlo varianckeRs and Stramer (2001) constructed appropriate
path-parameter transformations in order to yield a workidgscheme which is valid even in the limil — oo,
unlike those of the previous generation. We refer to thetimgicaseM — co as path augmentation (PA). An
MCMC algorithm based on PA is not implementable in practiece it involves infinite amount of computation.
For finite M, we refer to the DA scheme as high frequency augmentatiol)tdRd to the MCMC algorithm
which targets it as approximate MCMC (AMCMC), the term refileg the fact that bias is introduced due to the
discretisation of the paths. More details on these schenegg\aen in Section 3.1.

A new generation of Monte Carlo schemes foffaions was initiated with the introduction of the exact
algorithm (EA) for the exact simulation of non-lineaftdisions. The potential of using the EA to build an MCMC
algorithm for parameter estimation was sketched in Besltaal. (2006b) for a restrictive class of univariate
diffusions.

In this paper we present a novel augmentation scheme, aikect data augmentation (EDA), and develop
MCMC algorithms for all difusions which can be simulated under the broader framewottkeo$o-called EA3
(Beskoset al., 2008). This generation of MCMC algorithms based on EDA femred to as exact MCMC (EM-
CMC), and is such that their equilibrium distribution is #eact posterior distribution of the parameters, i.e., free
of any discretisation error. We enhance algorithmic penfamce by designing noncentred reparametrisations and
extend our methods to the case of indirect observationsenihtgrest lies in estimating both parameters and the
latent difusion process. A further contribution of this work is a thet@al investigation of the connection between
EDA and PA. First, it is shown that EDA augments more infoiiorathan PA. This is rather surprising since the
former appears to augment only a small finite-dimensiorsdtidution of the missing paths whereas the latter in
principle augments continuous paths and in practice hightfency approximations thereof. The key is that the
extra augmentation in EDA creates conditional indepeneeelationships which are exploited to apply an algo-
rithm which targets an infinite-dimensional state usingdicomputation. This result also suggests that AMCMC
for the same amount of computation is expected to mix faban EMCMC,; this is ffectively another instance
of the bias-variance trad&oThis connection motivates a further observation whickdithe two approaches and
suggests a way to improve the convergence rate of EMCMC @siridjary Poisson sampling.

A comment on the applicability of the methods proposed herdue. The methods rely on a variance-
stabilising transformation after which thefiision has constant filision matrix and drift which is of gradient
form, see Section 2.1 for details. The transformation pbiskeslimitations for univariate processes, but might not
even exist for general multivariate SDEs with coupling ia tfffusion. On the other hand, multivariate processes
with gradient drift structure and no coupling in théfdsion are rather standard in the framework of physical sys-
tems. Note that the variance-stabilising transformatioondcessary for the HFA approach as well. In summary,
the technology we develop here is not directly applicablgdneral stochastic volatility models, say, although



exploiting particular structures can push considerabgséhlimitations, see for example Kalogeropougosl.
(2010). Additionally, advances in the exact simulation idficsions, as for example itoré and Martinez (2011);
Goncalves and Roberts (2012) woeld ipsolead to exact MCMC methods following the framework of this-ar
cle. Irreducible DA schemes avoiding this transformatiomalso currently under investigation, see for example
Golightly and Wilkinson (2008).

The article is structured as follows. Section 2 containshekground on assumptions, notations and recalls
the EA. Section 3 presents formally the EDA and contrasts IRA. Section 4 describes noncentred reparametri-
sations of the EDA and auxiliary Poisson sampling from invorg algorithmic performance. Section 5 discusses
extensions to indirect observations. Section 6 carrieamatreful and extensive numerical comparison of several
schemes. Section 7 closes with a discussion and the Appeonigins the proofs of main results.

2 Preliminaries

In this section we collect some necessary background. insterf notationx!! or xi! denote théth or (, j)th
element of a vector or matrix, det[x], x andx* denote the determinant, transpose and inverse of a matrix
where appropriate, and denotes thel x d identity matrix. For two vectorg andy, we define vectorg andy
such tha™ = x Ayl andy™ = x vy, The Euclidean norm is denoted fpy. V, andA, denote the Jacobian
matrix and Laplacian operators respectively, that iséfRY, then for functiond; : R — R™andf, : RY - R

lj) d
(X) 9 12(X)
9| } o O 200y

We defineD : RYx ©, — R asD = |detfr]|* andy : R x @, —» R™ asy = go", whereo is the difusion
codficient. For functionf : RY — R twice continuously dferentiable on its domain, we denote the generator of
(1) by

, ot 1<, ) 21
Af(v) = Zﬁ”( R vind EIZ Y05 i

Finally, V; (u) denotes the density of a Gaussian random variable with meeton0 and covariance matrikg
evaluated atl € RY.

2.1 Reducible dffusions of gradient type

The methods in this paper rely on the existence of a transftiom;, known as Lamperti transformation, such
thatn(Vs; 62) solves an SDE with constantfflision matrix. This transformation can be obtained for uriate
diffusions rather trivially. For multivariate processes itseence is a subtle matter. In the elliptic case isient
condition is

[LAM] : [Vyn(v; 62)]7 = o 1(v; 62),

which can be simplified to yield explicit conditions on themlents otr—1; see for example Ait-Sahalia (2008).
In the rest of the article we will assume the existence of tt@asformation and denote its inverse #py. If
Xs := n(Vsg; 62) is the transformed dliusion, then by 1td’s formulX solves

dXs = a(Xg; 0)ds+dWs,  Xo = x=1(v;62), s> 0, 3)
wherea : R x ® — RY, with
o¥(u;0) =A™ (u; 62620, k=1,....d.
If Pe(x, Z6), x,ze RYis the transition density of, then the transition density & can be expressed as
Pe(V> W; 0) = D(W; 62) Pr {n(V; 62), n(W; 62); 6} 4)

The methodology also requires certain conditions on thHe @ief the transformed process. The following set
of assumptions should hold for atiy ©:



[SMOOTH]: !®(-; 6) is continuously dferentiable fok = 1,...,d.
[GRAD]: There existH : RY x ® — R such thaW,H(x; 6) = a(x; 6).
[LBOUND] : There existd(f) > —co, such that(6) < infucz 3 {llec(u; 6)I17 + AxH(u; 6)}.

The first is a very weak condition and the third is rather mdd.t The second identifie¥ as a difusion of
gradient-type, wherél is called the potential function. When theffdision is ergodic, its invariant log-density
can be expressed directly in termstdf This condition is trivially satisfied for univariate prases but is more
restrictive for multivariate ones. Finally, we require thais such that the probability law generated by the
solution of (3) is absolutely continuous with respect to Wiiener measure. A particularly useful and weak set
of conditions are given in Rydberg (1997); in the case off(3)is locally bounded the conditions simply require
that the SDE be not explosive.

2.2 Exact simulation of difusions

The EA is a rejection sampling algorithm on the space @idion paths, which uses Brownian path proposals
and delivers the dliusion path revealed at a finite collection of random pointe fath can be filled in later with
no further reference to the target process. The main atirect the algorithm is that the draws are from the exact
finite-dimensional distribution. Here we focus on exdiglusion bridgesimulation, i.e., obtain samples from (1)
conditionally on the originVp = v and terminal poin¥/; = w. It turns out that this conditional simulation is really
the key to DA methods for parameter estimation.

The target process (1) is transformed into one of utiitidion matrix as described in Section 2.1. The problem
is therefore reduced to the simulation of (3) conditionaltythe originx = x(62) := n(v; 62) and terminal point
y = y(62) := n(w; 62). An X-bridge yields av-bridge by applying the inverse transformation. @;tx’y) denote
the law of theX-bridge starting aix and terminating ay at timet, andwg’x’y) the law of a Brownian bridge
conditioned on the same endpoints. The following lemmagctvig a restatement of Lemma 1 in Beslaisal.
(2006b), derives the density of the target law with respethée Brownian bridge law.

Lemma 1. The lawQ"* is absolutely continuous with respect®d"™" with density

dop™’ - My - ) _ N T .
= Gy P00~ HOs 5 [[flatxs o s amoccojes @
o exp{— f0t¢(xs; 6) ds} <1, (6)

whereg : RY x ® — R, is defined by
1
¢(u60) = 5 {lla(u; )1 + AH(u; 6)f = 1(6).

The EA is based on recognising (6) as the probability of aifipesvent from an inhomogeneous Poisson
process of intensity (Xs; 8) on [0,t]. Such processes can be simulated by constructing an uppedidor the
variable intensity and using Poisson thinning. Assume thette exists a finite-dimensional random variable
L := L(X) and a positive function such that

r(L;6) > sup ¢ (Xs; 6),
se[0,t]

and letd = {¥, T} be a homogeneous Poisson process of intemfityd) on [0,t] x [0, 1], with uniformly dis-
tributed points¥ = {1, ...,¥,} on [0, 1] and marksy = {ug,..., U} on [0, 1], wherex ~ Po[r(L; §)t]. If N is the
number of points ofb below the grapts — ¢ (Xs; 6) /r(L; 6), then

P(IN=0]|X) = exp{—ftcp(xs;e)ds}.
0

This implies a rejection sampler where a proposed P{athWS’x’y) is accepted as a path fro@ﬁj’x’y) according to
the indicator

K

[(L, X, D, V, W, 6) := l_[I[[gb(ij;Q)/r(L;H) <uj. @)

i=1



The EA output is the collectiofi.(X), ®, S(X)}, where

S(X) = {(07 XO)? (l//lv Xlﬂl)v ) (l//m XWK)v (t’ xt)}

is a skeleton of the accepted path. The algorithm is predém#gorithm 1. The technical diculty that underlies
the implementation of the EA is the simulationlgfX), and primarily the conditional simulation of a Brownian
bridge givenL(X) for the evaluation of (7). This has led to the constructibthoee EAs that share the rejection
sampling principle, but have aftitrent range of applicability.

Algorithm 1 EA for di ffusion bridges

1: simulate L = L(X), where X ~ W((;‘x‘y),

2: simulate «x ~Po[r(L;0)t] and ® = {(¢j,v)}j, 1 < <« uniformly on [0,t] x[0,1],

3: conditionally on L sample Brownian bridge )Q,,j,

4: evaluate | =I(L,X,®,v,w,0) as in (7); if | =1 then return {L,®,S(X)}, otherwise go to 1.

2.2.1 The family of EAs

Each EA exploits the specific structure of the drift to constl(X). The EA1 (Beskost al, 2006a) is the
simplest EA type and its framework is restricted by

Conditionl. ¢ (-; ) is bounded above.

This condition ensures theflL; ) = r (), implying there is no need for constructib¢X). As a consequence, step
3 of Algorithm 1 merely requires simulation of a Browniandge at time instancef, . .., .. The EA2 (Beskos
et al, 2006a) is applicable only wheh= 1 and relaxes Condition 1 to a more mild one:

Condition2. Eitherlimsup,_ ¢ (U; 6) < oo or limsup,_,_., ¢ (U; 6) < .

For simplicity consider only the first case. The algorithnmstoucts the proposed path by first simulating its
minimum, saym, and subsequently the remainder of the path conditioned.dn this settingL(X) is defined as
the two-dimensional random varialléX) = {m, 7}, wherer is the time instance the minimum is attained. Then,
the required upper bound is foundk; 6) = sup,{¢ (u; 6) ; u = m}. Simulating a Brownian bridge conditionally
on its minimum is based on a path transformation of two indepat Bessel bridges, see Beskbsl. (2006b)
for more details.

The EA3 (Besko®t al, 2008) poses no upper boundedness conditions. For the ni@ssimel = 1 and
consider a patiX with initial point x and terminal poiny at timet. The algorithm is based on creating a partition
on the path space using a series of lower and upper bounds. WE&r-specified constait- /t/3 the partition
consists of the setS(e, X, y), € € N*, defined by

Ae, X, Y) = {sust ely+(e-1)5y+ e&)} N {OinftXS > X— 56},
<S<

O<s<t

B(e, X, y) = {0i<nsf<t Xs € (X—€b, X — (€ — 1)6]} N {Sup Xs<y+ 66} ,

O<s<t

C(e, X, y) = Ale, X, ¥) U B(e, X, Y),

wherex, y as defined in the beginning of Section 2.

In the multidimensional case, s@g(e) := C(e, X, y) are constructed for each coordinm‘s@, k=1,...,d,
andL(X) is defined as thd-dimensional discrete random variahlgx) = (LY, ..., L'¥) whereL™ = ¢, g € N*,
if X e N, Ci(e). Hence LM < &, k=1,....d} = (X -6 < XU <y + g6, 0< s<t, k=1,...,d}. Figure
la illustrates the construction for an arbitrary coordénat

The random variable is referred to as thBrownian bridge layeand a Brownian bridge path conditioned on
this layer as théayered Brownian bridgeConditioned orL, and using the continuity af (-; 8), the Poisson rate
can be found as

r(L;6) = sup{cp (u; 0) ;U e (x9 — LWg, v 4+ LKs), k=1,.. d}

The exact mathematical and implementation details of sagal layered Brownian bridge can be found in the
original paper.



2.2.2 Computational considerations

The computational performance of EA depends on its acceptarobability. For any two fixed pointsandy,
expression (6) implies that the probability of accepting@ppsed path is

t
a(x,y,t,0) ;= Ewg)t.x.y) [exp{— j; ¢ (Xs; 6) ds}}, (8)

thus suggesting that the acceptance probability decaymexpially to O agl ort increase.

Finally, we note that although EA3 has the widest framewdrapplicability, EA1 and EA2 should still be
preferred whenever possible; simulating a layered Browhiédge is a non-trivial task and is achieved by means
of rejection sampling, thus adding to EA3 an extra level ahpatational complexity. In particular, an extensive
empirical study by Peluchetti and Roberts (2008) suggestsrale of thumb that EA3 is approximately 10 times
slower than EAL.

3 Data augmentation for discretely observed dfusions

In this section we describe irreducible DA approaches foapeter estimation and present formally our EDA
scheme. The auxiliary variables involved in EDA are intiehatrelated to the EA output for flusion bridges
and lead to MCMC algorithms which involve no approximatioritie statistical model of interest. At first, EDA
appears totally dierent from the PA paradigm of Roberts and Stramer (2001). édew there are close but
subtle links and the presentation in this section has beantsted to naturally bring those outffEctively, the

PA scheme, which is recalled below, leads to two possiditiOne is its approximation by an HFA with some
finite M, which leads to bias. The other is to consider an EA for thaiktion of the auxiliary process identified
by Roberts and Stramer (2001) and identify finite-dimensi@uxiliary variables which then lead to the EDA
scheme. Section 3.2 identifies those variables and SectBogivas a theorem which establishes the connection
between PA and EDA.

3.1 Irreducible path imputation and finite-dimensional approximations

We first outline the PA approach of Roberts and Stramer (200kjs scheme corresponds to the limiting case
M = oo, and leads to an idealised, yet impossible to implement, NICAlgorithm which involves imputing
continuous path trajectories. The auxiliary processehbtained after two path-parameter transformations of
the original latent bridges. We then review the HFA scheméchwviis constructed by approximating the PA
scheme with some finit®l. The HFA scheme requires only conditiidM] , whereas EDA additionally requires
[SMOOTH], [GRAD] and[LBOUND] for being able to employ EA. However, HFA can be considerabnlyroved
when[SMOOTH] and[GRAD] are also satisfied.

Consider for the moment only two observations from th&udion processyp = v andV; = w. The process
is first transformed a¥s — X = n(Vs; 62) as in Section 2.1X-paths over bounded time increments only contain
finite information forg, since all parameters now relate with the drift, see (3). fféwesformed path starts a{o,)
and terminates aft(#,), which are both deterministic functions@fand the observations. This suggests that a DA
scheme based ofwill not work whené, is unknown, since a realisation ¥fdetermine#, through its endpoints.
An alternative way to see the problem is to note that the ctiie of dominating measur6§§v XY g e O} are
mutually singular, and therefore a Gibbs algorithm basethizaugmentation would be trapped in the support of
one of these measures. This necessitates a further regasatien fromXs — Xs, Where

K= Xs= (1= 7)x02) - @), se 0., ©

which forces the path to start and finish at 0 and essentralhsforms the dlstrlbuno@(t Y 50 that the dominating
measure, now given b9, is independent of.

The PA is based on |mput|n§ Accounting for all observations, let(6,) := n(Vy; 62) and denote by =
{X.,S, se [0,At]}, i =1,...,nthe imputed paths. We introduce

t t
6106 0) = exp| [ "0k 5 [ HaaRds), s = (1= 5 xa0) + (0,



and note that the inverse transformation of #@)— X; is given byX s + uis(f). Then the joint posterior density
of  and imputed pathspa(8, {Xi,1 <i < n}|Y), is proportional to

7(0) | | D(Vi: 62)Nav, 1(62) = % -1(62)} G, (0i(%:; 0); 6) (10)
i=1

with respect to Leb®i”=1 W(A6.00), Wheregi()?i; 0) = {)N(i,S + pis(0), s € [0, At;]}. For a detailed derivation, the
reader is referred to Section 3 of Roberts and Stramer (2001)

The joint posterior density is not be computable since thggranted paths cannot be represented by a finite
number of variables, hence the integrals cannot be compuristead, the paths are approximated by vectors of
sizeM + 2, {)N(i,,-Ati/(Mﬂ), j=0,...,M+ 1}, and the integrals are approximated numerically, typydayl Riemann
sums, to yie|d7rH|:A,M(9,{)~(i,1 < i < n}|Y), where by an abuse of notation we Mtdenote the path and its
discretisation. This introduces a bias in the inferenc&fdrhe approximated posterior is targeted by an MCMC
algorithm which updates in tursandX;, i = 1,...,n according to their conditional densities. Crucially for
the eficiency of the algorithm, the auxiliary processésare independent ovérconditionally ong andY, and
thus can be updated sequentially. Each update is typicalfippned by proposing Brownian bridge skeletons
and accepting them according to (10). Algorithm 2 is a typdddCMC implementation, where updates @fre
obtained from a Metropolis-Hastings step with proposahkég.

Algorithm 2 AMCMC

1: Choose 6%, set 6 = At/(M +1) and )~(i0:{)~(i0j5i]j, 0<j<M+1, 1<i<n. Set t=0.
2: For 1<i<n, 0<j<M+1

3: simulate X' = {X;ijﬁi]j from W00 = and sample U ~ Un(0,1),

4 if

B THEAM (X [ 64,Y)
mrram (X! 6L Y)
then set )~(it+1 =X, else set )~(it+1 = )~(|t
5: Sample 6" ~ q(¢',-) and U ~ Un(0Q, 1),
6: if
B THEAM (0 XL 1 <i < n} | Y) qg*,6)
muram @ (XFL1<i<n) 1Y) g, 67)

then set 61 =¢*, else set #*1=¢t.

7: Set t=t+1 and go to 2.

An alternative approximation topa exists if condition§SMOOTH], [GRAD] and[LBOUND)] are satisfied. In
particular, by using integration by parts we can transfdiendtochastic integrals i, into time integrals, and
rewrite (10) as

m(0) exp [H{Xn(62); 0} — H{Xo(62); 0} — 1(6)(tn — to)]

: At
X l:l[ D(Vy; 02)Nay {Xi(62) — xi—1(62)} exp{—j; 0] ()~(i,s + 1i.5(6); 9) ds} . (11)

The finite-dimensional approximation to (11), denotedrhya v, Will typically be less biased thamyram, as
illustrated in Section 6. The relative AMCMC algorithm folvs along the lines of Algorithm 2 by replacing

THEAM With THFA M.

3.2 Exact Data Augmentation and MCMC

The main contribution of this section is to demonstrate #maéxact rejection sampling algorithm for simulating
diffusion bridges implies appropriate auxiliary variablesaih¢an be used to design EMCMC algorithms for
exact inference for diusions. We describe the data augmentation and the EMCMGithigowhich corresponds
to the EAS case, and later comment on the simplificationsahiaé when a more basic EA is applicable to the
model of interest.
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Figure 1: (a) Thekth coordinate of a Brownian bridge pakhstarting and terminating at 0. In this example the e@(2) has occurred. (b)
The transformed proceséX’ + (1 — s/t) x¥(6,) + sy (62)/t starts at® (6,) and terminates at* (62), with x¥ (62) < yK/(62). The dashed
lines provide a lower and upper bound for the coordinate etitinsformed path.

The augmentation is first identified for a pair of consecutibeervationsyy = v andV; = w, and is then
extended to an arbitrary number of observations by usindvthkkov property. This is achieved using the two
main tools developed so far. First, the two path-paramegastormations for irreducible DA, recall that these are
V — X andX — X, which can be written in one step as

%o = (Vs 02) — (1 2 ) n(vi60) - Tn(wicz). s 0.1 (12)

Second, the EA for simulating ax-bridge according t@g‘x‘y), with x = x(6,) andy = y(6,) as in Section
2.2 Leth) denote the measure induced by the linearly transformegéXdwhenX is drawn frong‘X‘y). In
passing, recall that whexiis drawn fromw ¥ X is distributed according 6700,

We first sketch an EA for simulating fro@t) using proposals frori 99, This is a minor modification of the
EA for X, since a proposed path~ W99 is accepted as a path frc@t) if and only if Xs+ (1— s/t)x+ sy/t, s€
[0,1], is accepted as a path fro@gxy) Let L denote the layer of a Brownian bridge that starts and tert@na
at 0, and denote byl® the joint law of (, X); hence if (,X) ~ M®, marginallyX ~ W20, The pairL, X

imply realisations for the corresponding variables inXaspace. These are easy to obtain, since conditionally on
a givenL, {X¥, s € [0, 1]} moves within ¢L®s, [5), and thus

X¥9(02) — L¥6 < KU+ (1= 2) x9(02) + 256 < §#9(02) + £,

where we recall that®(6,) = x¥(6,) A y(6,) andy™(6,) = x¥(6,) v y¥(6,). The above construction and the
derivation of the bounds are illustrated in Figure 1.

An EA which samples fron@“) follows easily. If® = {¥, T} is a homogeneous Poisson process of intensity
r(L;6) on [0,1] x [0, 1], where¥ is the projection of the points on [} and Y the projection on [01], and

r(L; 6) = supfg (u; 6) ;u" € (XM(02) - L6,y (0,) + [¥o), k= 1,....d}, (13)
then the algorithm accepts the proposedX, ®) according to
P . : Wl) ¥i . } }
I(L, X,D,v,w, 8) := X(8 6,). 6 uil, 14
( ) ];[[r(w) 0%+ (1- 2 xta + Lytegiol < (14)

which is the familiar indicator function (7), reformulatadterms of (, X, ®).

The EDA scheme for a pair of observations V; is now defined by the random variablés f( ¥). Note that
we can avoid augmentirig and still obtain a tractable density. The density of the laryi variables is derived in
the following lemma proved in the Appendix.

Lemma 2. Let (L, X) ~ M® and¥ be a homogeneous Poisson process of intgn@'ﬁ;ﬁ) on|[0,t]. If I is the
acceptance indicator in (14), then the conditional densitfL, X, ¥) given 1= 1, 7(L, X, ¥ | u, v, ), is

r(L; 0)« - £ o i i . -
PR exp(t[1-r(L; 0)]) H [1 —¢ {ij + (1 - —) X(62) + —Y(62); 9} /r(L; e)] : (15)



with respect to the product measuv? x PO, whereP® is the measure of a homogeneous Poisson process on
[0, t] with unit intensity, and &, Y, t, ) is the acceptance probability of the EA.

Extending the augmentation scheme to account for all obtiens is straightforward. Specifically, recall that
%i(62) = n(Vy; 62) and letl;, Wi, X = (Xi.s, S € [0, At;]} denote the accepted elements of EA applied to the interval
[ti-1,t], for 1 < i < n. The Markov property of the @usion process implies that the bridges conditionally on the
observations are independent, and uﬂus.,x.,\}'., 1<i<n|Y,0)=TIL l7r(L.,X.,‘I‘. | Vi, Vi, 0).

We complete the development of EDA with the following theorerhich specifies the joint density of data,
auxiliary variables and parameters. This has a simple ctabpriform and it admits the target posterigé | Y)
as a marginal with respect to the auxiliary variables andlitmmal with respect to the data. The key observation
is that the joint density is only a function of the finite-dinsgonal{S(X;), Li, 1 < i < n}, which are delivered by
the EA. Additionally, the intractable normalising congtahave been cancelled out. The proof of the theorem is
given in the Appendix.

Theorem 1. The joint density of data Y, the p-dimensional parameteaad auxiliary variableq Ci, X, ¥i,1 <
i < n}, is given below with respect to tifeindependent dominating measiired™? &' | (M(A“) X IP(A“)):

n n
(Y 0,18(%), L 1 < i <) = 7(0) [ | oo (Vo1 Vi O) [ [ (@ %6 Wi 1 Vi, Vi, 6) =
i=1 i=1

n(6) eXp(H{Xn(92); 6} — H{xo(62); 6} — [1(6) — 1] (tn — to) — Z r(Ci; 9)Ati]

i=1

<[] {D(Vti  62) N, (%i(62) = %i-1(62)) r(Li; )" l_ll |2 (K + i, 0); 6} /(L 9)]}, (16)

i=1 j=1
and it admits (2) as a marginal whéh;, X;, ¥;, 1 < i < n} is integrated out and Y conditioned upon.

This density can be targeted by MCMC methods; actually atdtséige we are only interested in the conditional
density giveny, i.e., the joint posterior of parameters and auxiliary &aies. We advocate a Gibbs sampler
variant since conditionally olY and# the auxiliary variable$S(X;),Li,1 < i < n} are independent ovérand
can be generated using the EA. The conditional densityi@omputable and if it cannot be directly sampled, a
Metropolis-Hastings step can by employed. Depending oE#atype used to construct the augmentation scheme,
we distinguish between EMCMC1, 2 and 3. A typical implemé&ateof EMCMC3 is given in Algorithm 3.

Algorithm 3 EMCMC3

1: Choose 6° and set t=0.

2: For 1<i<n, set lj=0 and repeat the following until I; =1,

3 sample layer I:i of Brownian bridge path )~(i ~ WAL00)

4 sample ki ~ Po[r(L;;#Y)At] and ®; = {(¥ijUij)}j, 1< j <«i, uniformly on [0, At] x[0,1],

5: conditionally on I:i, sample Brownian bridge )N(, Wi

6 set lj = I(Di, X, @i, Vi ;. Vg, 6Y) as in (14); if lj =1, then set [l =0, ¥l =g, X1 =K.
7: Sample 6* ~q(¢',-) and U ~ Un[0,1],

8: if

(Y. {S(XY), [ 1 < i < n)) q(6.6)
(Y. 0 {S(XY), [ 1 < i < nj) (6, 67)

then set 61 =¢*, else set Ol =¢t.

9: Set t=t+1 and go to 2.

Special cases: EMCMC1 and EMCMC2

Certain simplifications are feasible when a simpler EA caajigied to the process of interest. The EDA based
on EAL requires less imputation than that of EA3, since esaaetilation fromQH no longer requires the variable
L. Thus, the augmentation scheme involves qm.y‘{'., 1 <i < n}. The joint density analogous to (16) can be
easily obtained and amounts to simply repladiig 6) by r(6). The conditional of trivially follows; originally

it was given in Theorem 3 of Beskes$ al. (2006b).



A DA scheme can be built using the auxiliary variables useBA2. We do not present the details of this,
since it is not a direct modification of the general schemé,isaghe case with EAL, but instead involves &eient
construction of bridges. Details can be found in Chapter Sevmaidis (2010).

3.3 Interpreting EDA in terms of PA

The following result provides the connection between EDA BA. It efectively shows that the PA scheme is a
collapsedversion of EDA, i.e., when we integrate out a subset of thenlavariables we obtain the distribution
which is targeted by PA.

Theorem 2. Letn(6, {X,1<i<n}|Y)bethe density obtained from (16) by conditioning on Y, angymalising
with respect to[Lj, ¥;,1 < i < n}, andnzpa(6,{X,1 < i < n} | Y) the density targeted by the irreducible path
imputation algorithm defined in (11). Then, the two densitiee equal a.s.

The resultis insightful towards the comparison of the cotaponal éficiency of EMCMC to that of AMCMC,
as it suggests that the mixing time of the former might gdhgba larger due to its higher degree of augmentation;
a price one has to pay in order to eliminate the discretisaticor. Nonetheless, Section 4 shows a variety of ways
with which one can increase the performance of EMCMC anceaetgood mixing rates. A numerical comparison
of EMCMC and AMCMC is investigated in Section 6 in concretamyles.

3.4 Qualitative characteristics of EMCMC and AMCMC

We can make some qualitative remarks about tfieiency of the MCMC schemes based on HFA and EDA.
These remarks are based on general properties of DA metimtty,example discussed in Papaspiliopoelcs.
(2007); Yu and Meng (2011) but also the particular strucafrthe models at hand. These qualitative statements
are backed up by numerical evidence in Section 6, and thelyat@the three approaches we propose in the next
section to boost the algorithmidheiency.

To fix terminology, we will identify DA with a Gibbs-type sargy which updates auxiliary variables and
parameters according to their conditional distributioimsgeneral, DA works well when the fraction of missing
information is not too large relative to the observed oree, when the augmented dataset is not considerably more
informative than the observed regarding the parameters.

In that respect, both EMCMC and AMCMC become mofigcéent when the time incremehbetween a pair
of observations decreases. In the context of AMCMC, thisis t the fact that aisdecreases, the latent bridges
increasingly look like Brownian bridges, hence they do rasty information about the drift over and above the
one contained in the observed endpoints and the augmerftedhation converges to the observed one. The
efficiency of EMCMC improves as the Poisson ratd,; 6)t, decreases. In the limiting case when the rate is 0,
the missing data and parameters are independent, sinckdletos is empty, and EMCMC achieves maximal
efficiency.

On the other hand, dasincreases, the augmented paths contain increasing ambimnfibionation about the
parameters relative to the information content in the oleskidata, therefore any algorithm which iteratively
simulates from the conditional distributions of parametand missing data will degrade in this sparse-data limit,
even if the conditional distributions can be simulated #yaand dficiently. EDA has a further weakness over
HFA because the number of points in a EA skeleton is infoveaboutr (L; 6), and thus abowt. However, we
can deal with this dependence, which increases tylilf means of a reparametrisation that is described in Sectio
4.

Additionally, both EMCMC and AMCMC sfiier at the step of updating missing data given parametets as
increases. In EMCMC the acceptance rate of EA decays to (nexytially witht, implying that the algorithm can
spend a large amount of time by simulating proposed patlisagoeptance. Similarly in AMCMC the acceptance
rate of the independent Metropolis-Hastings step deca@satiothe same rate (expression (11)), suggesting that
the algorithm will be rarely updating the last accepted pidtirs leading to a slower exploration of the state space.
However, this problem can be improved by resorting to a#téve update schemes for the imputation step. One
option for AMCMC is to use local algorithms, see for exampl&t€ret al. (2012). An other alternative, which
can apply to both algorithms, is to update the paths in sméfilee segments by imputing(t) additional points
between pairs of observations. This can turn the complédty exponential to linear ih
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4 Boosting EMCMC efficiency

4.1 Noncentred reparametrisation

One general approach for improvinffieiency of data augmentation in hierarchical models andianxivariable
models is to adopt a reparametrisation. Indeed, we havadlrdone so in HFA and in EDA by transforming
V — X as in (12). Following Papaspiliopoul@s al. (2007), for a generic random variabfeand dataY, a
reparametrisation of an augmentation schédtrie defined by any random paiE(6) together with a functiom
such thaE = h(E, 4, Y), whereh need not be 1-1. A reparametrisation is calieshcentredvhen the distribution
of E is independent of. Intuitively, in cases wher¥ is not strongly informative abou, a noncentred scheme
can perform well due to the prior independencé=adndd. We will attempt to reduce the dependence between
the Poisson process afdby resorting to a noncentred reparametrisation.

Noncentred reparametrisations for decoupling the depw@leetween Poisson processes and their intensity
were originally proposed in Robergs al. (2004). Applying their idea in this context, for two obsefgasVy =
v, V; = w, if ¥ is a Poisson process of ratél;6) on [0,t] and ¥ is a Poisson process of unit intensity on
[0, ] x [0, c0) with point-coordinate§(y};, ;)} then

¥ =h(¥.L.60) = {0 & <o) (17)

Although ¥ includes an infinite number of point¥ only depends on those for which the second coordinate is
belowr(L; 6). Accounting for all the observations, the noncentred repetrisation isd, {L;, X;, ¥i,1 < i < n}) —»
0,{Li, X, ¥, 1 < i <n}), whereW; = h(¥;, L;, ). The theorem below derives the conditional density gfven

the latent variables and observations, and is proved in gpeAdix.

Theorem 3. The conditional density afgiven the auxiliary variablegl;, Xi, ¥, 1 < i < n}, mne(@ | {Li, X, ¥i,1 <
i <n},Y) is proportional to

7(0) exp [H{xn(0); 6} — H{xo(6); 8} — 1(0)(tn — t0)] X ]_[ D(Vy; 02)Nay {Xi(62) — Xi—1(62)}
i=1

n 0o
<[] ][2-1[&s < r@io)|e{%, +ma, ©:6) /r(Ti6)]. (18)
i=1 j=1
Notice that evaluation of (18) for any value ®fequires only finite computation and therefore discratisatare
avoided.

The MCMC algorithm based on this reparametrisation is jpralty a small modification of that based on the
original scheme (Algorithm 3). First, we wish to draw frone iistribution of{;, X, ¥, 1<i<n} glvenY and the
current parameter value, sély It is clear from (17) tha®; need only be revealed on,[8t] x [0, r(L;; 6")], which
involves a finite number of points ~ Po[r(L., Ht)At.] and is stficient for the implementation of the EA. Thid
output consists of; partially observed ayi. ,,f, i), 1 < j <k} and the paifL;, X;} discretely observed at times
i, j- However, sampling from the distribution éfgiven the latent variables andis more tricky. Specifically,
if the proposed value, s&y, is such thar(L., 6*) > r(L;; 6", then evaluating (18) at' requires revealing; at
additional time point$y;. i r(L., ) < {-‘., < r(Li; 6)}, which have not been revealed in the EA output. Notice that
this does not occur wherfL;; ¢*) < r(L;; 6.

We propose two ways to overcome this. The first is based orppotisely revealing?; at any additional
time instances by simply simulating exta Gniform random variates on [At] x [r(Ci; Y, r(Li; )], where
% ~ Pof[r(L;;0) - r(L;; 6)| At }. The pathX; is then filled in at the additional points by Brownian bridgesi-
polations. The second is closest in spirit to the retrospeciature of the EA. In particulag; can be simulated
prior to the application of the EA and therefar@;; 6') andr(L;; 6*) are known before the simulation of the la-
tent path. Consequently, we can simuldtedirectly on [Q At;] x [0, r(L;; 6*)] and revealX; at all required time
instances during the implementation of the EA.

In this paper, we adopt the retrospective approach bectaae be applied in a similar fashion to all three
EAs. The prospective approach is simple in the EAL1 case dwartple Brownian bridge interpolations, but
becomes more involved in the EA2 and EA3 cases.

Again, a simplification can be achieved when EAL is appliealvhere the transformation in that case becomes
(X, ¥i,1<i<n}— (X, ¥,1<i<n), where¥, = h(¥;,6) = (i ; &, < r(6)}. The full conditional density of
is essentially given by expression (18) replaaifig; 6) with r(6). Noncentred reparametrisations for EMCMC2
also exist; details can be found in Section 7.4.3 of Sermmgit0i10).
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Algorithm 4 Noncentred EMCMC3

1: Choose 6° and set t=0.

2: Sample 6* ~ q(¢',-) and U ~ Un[0,1].

3: For 1<i<n, set |lj=0 and repeat the following until |; =1,
4

5

sample layer [ of Brownian bridge path Xi ~ WAi:00)  and set rmay=r(Li;6") v r(Li; 6%,
sample ki ~ Po[rmaxAti] and {(l;i’j,ai’j,éiyj)}j, 1< j <k uniformly on [0,At] x[0,1] X [0, rmay,
set W = ((Fi). &), Vi = (@, &)Y

set @ = (¥, j}, where ¥ = h(¥;,L;,6") and T; = h(Y;, L, 6" as in (17),

conditionally on I:i, sample Brownian bridge )~(i’¢;i_j,

set |j = (i, X, @1, Vg, Vg, 6) as in (14); if |y =1, then set (=10, ¥ =F and X=X

© 0 N O

If o s _
Tne(0* [{EFL XL P 1 < <n),Y) q(er.6")

< ~ > = N
(@ | (L XL P 1 < i <nLY) g6, 6%)

then set 61 =¢*, else set #*1=4¢".

10: Set t=t+1 and go to 2.

An interweaving strategy

When a noncentred transformation is available, it is noéssary to choose between that and the original parametri-
sation. Yu and Meng (2011) propose insteadhterweavethe two, by creating a single algorithm which mixes
steps of both algorithms. This requires practically no @xinding work, but as it is demonstrated in the arti-
cle, in certain cases the interweaved algorithm outperatmparent algorithms even when taking the added
computational cost into account.

Inthe EMCMC context, it and{L!, X!, ¥!,1 < i < n} denote the current state of the chain, then the algorithm
can dfectively be described in four steps. The first two are idahtic sampling from the noncentred algorithm,
i.e., the latent variables are updatedli{)‘l, )N(i”l, ‘i’}*l, 1 <i < n}using the EA and then the parameter is updated

by drawinge”% conditionally on these latent data and observations. Suiesgly, the latent data are transformed
to their original parametrisation using = h(ki’i”l, 9”%); notice that this step does not impose any computational
difficulties, since it merely involves a deterministic transfation. Finally, the parameter is re-drawn under the
original parametrisatiors!** ~ x(- | {S(X'*1), L, 1 < i < n}, V).

4.2 Auxiliary Poisson sampling

An alternative way to improve the mixing time by increasihg tomputational cost is to exploit the connec-
tion between EDA and PA. For simplicity we present the refaltEMCMC1, and then discuss extensions to
EMCMCS3.

Note that ifr (0) is the Poisson rate, then it is valid to apply EA1 with anyd8on sampling ratB(d) > r(6);
the acceptance probability is invariant to that choice.rdasing the value oR() leads to an increase in the
computational cost since the number of points at which thé maevaluated gets larger. Thus, in terms of
computing time it is optimal to implement the algorithm witihe smallest possiblB(6). This is not the case
though for EMCMCL that iterates between imputation anchegion. As it turns out, the dependence between
missing data and parameters decreases R(th and optimal implementation in terms of execution time and
Monte Carlo error can be achieved i) > r(6). Thus, we consider data augmentation where the auxiliary
variables are chosen according to the output of EAL, as ibestin Section 3.2, but where the Poisson rate is
R(6).

A theoretical result (not included here) goes along theofaithg lines. LetR(0) = r(0) + 4, whered > 0 is a
user-specified constant independent.oFhen, the joint law ofg, {X;, ¥;, 1 < i < n}) after a step of the EMCMC1
algorithm with parametet, converges to the law of one step of PA wherss co. An argument for proving this is
based on properties of series expansions for exponentictifunals, as discussed for example in Papaspiliopoulos
(2011).

Hence, in a sense the auxiliary variab¥gsare dfectively integrated out by increasing computation and an
improvement in the convergence of EMCMC is expected ascreases. Similar arguments are valid for the
noncentred algorithm since it merely involves a reparaisation of ;. A similar property is enjoyed by a
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generic EMCMC3. In fact, the limiting algorithm alsincreases is a PA which also imputes the layer, although
the latter is immaterial in the limit since it does not contadditional information about the parameters.

5 Diffusion observed with error

The methodology described so far can be easily extendedctuatfor cases where thefidision is not directly
observed. We assume that the observations inform onlydatijr about the value of the process (1) at discrete
timest;,i = 0,1,...,n, according to the following observation equation

Zti ~ q( | Vti,T),

whereZ = {Z,,Z,,...,Z,} are conditionally independent givéh= {Vi,, V4, ..., V4, }, andqis a known density
function parametrised by an unknown parameter

The EDA described in Section 3.2 is not appropriate anyniooeghe end pointg;, are not directly observed.
On the other hand, Theorem 1 can be used to design an augioersetieme where apart from the auxiliary
variables involved in EDA, the latent pointsare imputed as well. A direct application of Bayes' theoraeids
that the joint posterio(Y, 6, 7, {S(X), Li, 1 < i < n} | Z) is proportional to

(0, 7) (% 1S(X), i, 1 <i < np 1 0) (Vs 16) [ [ ¥y 1 Vi), (19)
i=0

where the second term is obtained directly from Theorem(-1}, §) is a prior density for the initial point of the
diffusion process, and(d, r) is a prior density of the parameters. As before, a direcpéfivation is available
when the EA1 can be applied to simulate frémn

A simple scheme for simulating from (19) is by a componergenipdating algorithm{S(X), [i,1 < i <
n} and g are simulated conditionally o andr, using any of the EMCMC schemes we have proposed, and
subsequently andr conditionally on{S(X;), L;, 1 < i < n} andd according to the conditional derived from (19).
Whenn(6, 7) = n(6)x(7), T is conditionally independent frofS(X), L, 1 < i < n} andé givenY, and may have
a conditional density which can be easily simulated. Sitrteof the latent point¥ can be done with various
ways. The simplest is to update them one-at-a-time acogtditheir conditional density, an approach often called
single-site updating. Such schemes for time series are kowe in general problematic, especially when the
latent process exhibits high persistence and the obsengadire not very informative about the latent points, see
for instance Pitt and Shephard (1999); Papaspiliopoeticd. (2007). In the example we consider in the next
section we adopt this simplistic approach since it worksegwiell. In applications where the proceéexhibits
very high persistence a joint update of the endpoints camhe dsing a Metropolis-adjusted Langevin algorithm,
or more general version of such algorithms, as discusseek@mple in Girolami and Calderhead (2011). Other
possibility is to resort to an overlapping block scheme gagkample in Pitt and Shephard (1999); Golightly and
Wilkinson (2008).

6 Numerical investigation of MCMC algorithms

We investigate the numerical performance of the severatilgns we have presented on some standard examples.
One is a ditusion which belongs in the Pearson family, see for exampten&n and Sgrensen (2008), and it is
an example of a process that can be simulated using the EA4 sd@¢ond is a univariate double well potential
model, typical of models that are used to describe proceggesnetastable behaviour, see for example Metzner
et al.(2006). This is an example of a process that can only be stetdllgsing the EA3. The third is a double well
potential model in two dimensions.

We compare several algorithms. The plain-vanilla EMCMGCetbgr which its elaborations: using noncentred
reparametrisation, the interweaved strategy and auxiRaisson sampling. Additionally, we compare against
both versions of AMCMC described in Section 3.1. The firshisplain one as introduced in Roberts and Stramer
(2001) and is based on (10); we refer to this basic versioplgias AMCMC. The second eliminates the stochastic
integrals by integration by parts as in (11) and will be deddh the text by “AMCMC (int-by-parts)”. This is
expected to enhance algorithmic performance, hence weateathe &ect of this approach. For both versions,
we add the sffix -M to indicate the number of imputed points. In general, thdijuaf each MCMC output
is assessed with an adjustefteetive sample size, defined as the ratio of tiieaive sample size (ESS) to the
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computational (CPU) time to run each algorithm. The adpi€&S is essentially the number of independent
draws per second generated by the Markov chain. The ES<cigla&d with the R (R Development Core Team,
2010) packageoda (Plummeret al,, 2010).

The existence of EMCMC allows us to have a realistic evatumadif the performance of the biased approaches.
We carry out bootstrap Kolmogorov-Smirnov tests (Sekh@®@,72 for checking whether the marginal posterior
distributions on the parameters obtained Wyedent levels of imputation are significantlyfigirent from the exact
samples. These evaluations are based on thinning the alrigiarkov chain output so that to obtain practically
independent draws from the corresponding distributions.

6.1 A Pearson dffusion

Consider the univariate filision process specified by

whereo > 0, p > 0 is a mean reverting parameter ané R is the stationary mean. The parameter vectors are
identified asty = (o, )" and@, = o. This model belongs to a rich class offdision processes, known as the
Pearson dfusions, and admits a stationary distribution with skewressheavy tails that decay at the same rate
as those of &distribution.

The unit volatility process is obtained Xs := sinh(Vs)/o-, with drift given by

a(x 0) = - (g + %)tanh((rx) + 7000‘;%(7)().

This is a process which belongs in the EA1 class, and exaatante can be performed with

2 2
10 (p+ 74 @), [6) = = {p(eﬂ +8)+30%+ L (2 1)}. (20)
2 2 2 8 o2

We test the methods on a simulated data set from this prdeassd om = 1000 (excluding the initial point)
equidistant points with\t; = 1, Vo = 1 and parameter valueg, {1, o) = (1/2,1,1/2) (Figure 2a). We have used
improper prior densities for the parameter§) « 1, n(u) « 1, andn(o) « 1/o. For all algorithms, sampling
from the conditional density of the parameters was perfdrasing a block Metropolis-Hastings step. The chains
were run for 18 iterations.

Figure 3 shows the autocorrelation plots along with postedensity estimates derived from the Markov
chains. Starting from EMCMCL1 under the original paramati@s, notice that for = 0 the chain exhibits strong
serial dependence even at large lags, particularly fdris is due to strong a priori dependence between the pa-
rameter and the number of Poisson points, as shown in (2@hwiémains significant in the posterior distribution.
In particular, the posterior correlation betwegf; andp was estimated equal todB, thus suggesting that non-
centring the Poisson process can result in better mixirggrais Figure 3d confirms. To improve the performance
of the exact methods, we consider various valuedfer{2, 5, 10}, thus revealing the path at additionally?2and
10 points between consecutive observations respectiVal/increase in performance is reflected in the autocor-
relation function, which now decays to 0 more quickly. As esied, the chains of the AMCMC algorithms mix
more rapidly than the exact ones due to the less amount of entgtion. The posterior distributions estimated
from the HFA algorithms provide evidence of bias evenNbe 30 (Figures 3g to 3i).

Table 1 presents posterior summary statistics. Noticeahan forM = 30, the AMCMC algorithm fails
to pass the Kolmogorov-Smirnov tests at a 5% significancel |evhereas less amount of imputatidvl & 10)
combined with the integration by parts yields less biasqur@pmations, clearly illustrating the importance of
eliminating the stochastic integrals as in (11). In termsahputational performance, the interweaved algorithm
with 1 = 2 outperforms the rest and exhibits adjusted ES& famdo- which are respectively 36% and 23% larger
than that of the dticiently accurate AMCMC methods.

The algorithms were also run using proper priors, an expadatistribution forp, a Gaussian for and an
inverse Gamma far?, yielding no significant dferences from the results presented above.

6.2 A double well potential model
We consider the solution process to

dVs = —pVs (V3 - ) ds+ odW,
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Figure 2: Simulated datasets from (a) the Pearson model, (b) the elauidl potential model, (c) the double well observed witroerand
(d),(e) the two-dimensional double well model.
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Figure 3: The Pearson élusion model withn = 1000 simulated data points. True values argi(c) = (1/2,1,1/2). Autocorrelations are
reported after a burn in of 5000 iterations. Posterior dgrsitimates using EMCMCL (interweaved) and AMCMC alganighfor (g)p, (h)

and (i)o.
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Method Par. 2 M Mean SD ESgj ESS KS Time Correlation matrix

EMCMC1 (noncentred) g 0 2.316 0.505 0.048 6.599 16.789 2544 1000 -0.447 0.539
u 0.995 0.050 12.432 31.629 1.000 0.008
o 0.499 0.015 12.117 30.829 1.000
EMCMC1 (interweaved) P 0 2.314 0.506 0.049 6.686 22.170 3.316 1.000 -0.438 0.540
u 0.994 0.050 15.035 49.859 1.000 0.021
o 0.499 0.015 14.408 47.779 1.000
EMCMC1 (interweaved) P 2 4346 0.504 0.048 11.094 53.153 4791 1.000 -0.416 0.537
U 0.995 0.050 18.951 90.792 1.000 0.026
o 0.499 0.015 17.022 81.554 1.000
AMCMC-30 P 30.000 0.501 0.048 4916 80.518 0.005 16.380 1.000 -0.43%190.
U 0.993 0.050 5.160 84.516 0.017 1.000 0.021
o 0.495 0.014 5.329 87.293 < 0.001 1.000
AMCMC-10 (int-by-parts) p 10.000 0.504 0.049 12.898 81.865 0.286 6.347 1.000 -0.425370.
U 0.995 0.050 13.878 88.087 0.749 1.000 0.020
o 0.499 0.015 13.793 87.545 0.583 1.000

Table 1: The Pearson €tusion model withn = 1000 simulated data points. True values arg:(c) = (1/2,1,1/2). Statistics are reported
after a burn-in period of 5000 iterations. Thecolumn shows the average number of imputed points betwessecative observations. The
SD column shows the standard deviation. The ESS column staeffective sample size per 1000 iterations. The Time column shibes
time in seconds required for 1000 iterations of each chalre ddjusted fective sample size is shown in column E§S The KS column
shows thep-value for the Kolmogorov-Smirnov test with null hypotheghat draws from the exact and approximate marginals coone the
same distribution.

wherep > 0,1 > 0,0 > 0. The parameter vectors are identifiedas: (o, )" andé, = o. The process is known
as the double well potential process (denoted by DWELL HergaWe simulatech = 1000 (excluding the initial
point) equidistant observations witkt; = 1 for parameter settingo(u, o) = (0.1,2,1/2) andVy ~ N(2,1/4)
(Figure 2b). Reduction to a unit volatility process is gaaithieved usings := Vs/o, which solves the SDE

dXs = —pXs(0?XE - ) ds+ dWs,
Simple calculations reveal that the functiofu; 6) := |la(u; 8)||2 + AxH(u; 6)/2 is given by
f(u6) = g {p0'4u6 - 2ppc?ut + (pyz - 30-2) u? + ,u},
and that the algorithms are applicable wii#) = f (u;; 6), where

2 _ 2o+ Nplop? +907)

4 3002

Finally, for a given realisation of the layérthe upper bound (13) is easy found by noticing that
f(u;6) < g (p0'4u6 + ppPu? +y) =:g(u; §),
which is convex and has a minimumuwat 0, implying that

r(L;6) = [g{X(02) - L5 6} v g{y62) + Lo; 6] - 1(6). (21)

We assign improper prior densities to the parametersa{ithe 1, 7(u) < 1, andr (o) « 1/0, and run the chains
for 1C° iterations. The performance of the algorithms and postelémsity estimates are shown in Figure 4.
Notice that the performance of EMCMC3 under the originabpaetrisation is very poor, due to strong posterior
correlation between Poisson points and parameters; atfebuged to the sensitivity of(L; 6) to the parameters
(see expression (21)). On the other hand, the noncentredtaly exhibits a much stronger performance with
low serial correlation for each parameter even after 50.lags

Posterior summaries from the output of the chains and caatipngl performance are gathered in Table 2.
In contrast to the EA1 example presented earlier, the irdewed strategy, after accounting for the additional
computational cost, does noffer any significant improvement over the noncentred algaritRinally, we found
that AMCMC with M = 40 paired with integration by parts provides a reasonalpecimation to the posterior
marginal densities and exhibits slightly larger adjust&$SEhan the noncentred algorithm withk= 2. The results
were robust in changes in parameter prior distributions.
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Figure 4: The DWELL diffusion model withn = 1000 simulated data points. True values are:(c) = (0.1,2,1/2). Autocorrelations are
reported after a burn in of 5000 iterations. Posterior dgresitimates using EMCMC3 (noncentred) and AMCMC algorthor (d)p, (e) u

and (f)o.
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Figure 5: The DWELL difusion model observed with error with = 1000 simulated data points.
(1/2,1,1/2,1/2). The outputs of the MCMC chains are subsampled every t8tites. Autocorrelations are reported after a burn in of
5000 iterations. Posterior density estimates using EMCNt@8centred) and AMCMC algorithms for (o) (d) 1, (€) o, and (f)7. In (c)-(e)

we superimpose the posterior density obtained when the pesoess is directly observed.

6.3 Noisy observations

T T T
0.50 0.55 0.60

True values goeufo,7) =

We now illustrate the performance of EMCMC by adding to theaslations of the previous example a Gaussian
error with mean 0 and varianaé = 1/4 (Figure 2c). We have assigned the same priors for tfasivon pa-
rameters as before, and an improper prior proportionaftddr . We employ EMCMC3 under the noncentred
parametrisation and the HFA scheme with increasing val@ied e {5, 10, 20,40}. The algorithms are run for

10° iterations and the MCMC outputs are thinned every 10 itenati Figure 5 presents autocorrelation plots for
the parameters along with the marginal posterior denstignages. It is interesting to notice that the presence of
noise in the observations seems to aid the approximatiomeoAMCMC methods, since the posterior densities
do not change significantly &4 increases, and seem to provide a reasonable approximatioa &xact ones.
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Method Par. 2 M Mean SD ESgj ESS KS Time Correlation matrix

EMCMC3 (noncentred) g 2 8.466 0.089 0.010 2.820 52.718 18.695 1.000 0.464 0.370
u 2.026 0.161 3.130 58.521 1.000 -0.004
o 0.495 0.012 3.510 65.616 1.000
EMCMCS3 (interweaved) P 2 8.313 0.089 0.010 2.769 54.197 19.574 1.000 0.465 0.384
u 2.027 0.160 3.189 62.422 1.000 0.012
o 0.495 0.012 3.655 71.534 1.000
AMCMC-40 P 40.000 0.090 0.011 3.337 73.816 0.059 22.123 1.000 0.472 860.3
u 2.029 0.161 3.631 80.322 0.162 1.000 0.026
o 0.494 0.012 3.594 79.502 < 0.001 1.000
AMCMC-40 (int-by-parts) p 40.000 0.089 0.010 3.409 74.472 0.082 21.848 1.000 0.467 760.3
U 2.023 0.160 3.916 85.557 0.704 1.000 0.006
o 0.495 0.012 3.796 82.930 0.293 1.000

Table 2: The DWELL diffusion model withn = 1000 simulated data points. True values arg(c) = (0.1,2,1/2). Statistics are reported
after a burn-in period of 5000 iterations. Column detailinaable 1.

6.4 A bivariate double well potential

We consider a double well potential process in two dimerss{denote by MVWELL hereafter), solution to
o? (21)? 2 2) 112
dVs = - Z-V,G(Vo)ds + rdWs, whereG() = ps [(v ) - m] + 02 (V= )’ 22)

andps, p2, 1, 2, o > 0. The parameter vectors are identifieddas: (o1, u1, p2, 12)" andé, = o. The invariant
density of the process is proportional to éxfS(v)} and has two modes, ft/1/u2. viiz) and(— via /w2, - via)-

This model belongs in the EA3 class and reduction to a undtility process is achieved a& := Vs/o. The
lower bound(6) and Poisson intensii(L; 6) are given in the Appendix.

We simulaten = 1000 equidistant observations witlh = 1, Vo = (0,0)" and parameterpq, u1, p2, 2, o) =
(1/2,2,1/2,1,1/2). The simulated dataset is shown in Figures 2d and 2e. \Ngnassproper priors to the
parameters withr(o)) o« 1, 7(u;) « 1,7(c) o« 1/o, i = 1,2. Al MCMC chains were run for 1Diterations
and the performance of the algorithms is shown in Figure 6t e 5, the EMCMC3 algorithm under the
original parametrisation performs poorly, whereas theceotred exhibits a much more rapid mixing. On the
other hand, the interweaved strategy with= 2 shows a comparable performance to that of the noncentred.
Posterior summary statistics from the algorithms are shavlable 3. From the approximate methods, we found
that AMCMC-60 paired with integration by parts was the mdBteent algorithm which provided a ficiently
accurate approximation to the posterior marginal distidns.

Finally, as we pointed out in Section 2.2.2, the EA3 is inflitby an additional computational cost due to the
rejection sampler for the layered Brownian bridge, whicbléarly reflected in the CPU time of the interweaved
algorithm. In particular, a computational profiling of thig@rithm showed that approximately 91% of the total
time was used by EA3, out of which 85% was due to the simulaifdayered Brownian bridges. This suggests
that an alternative moredfecient design of the layered Brownian bridge simulation widubost substantially the
performance of EMCMC3.

7 Discussion

We have developed exact data augmentation methods foetigcdirectly and indirectly observedftiisions.
We have established the precise connection between tladigar and the best existing alternative method when
the variance-stabilising transformation can be perforrtteelHFA. The empirical comparison of the two methods
showed that in univariate processes EMCMC can perform at &sawell as a dficiently accurate AMCMC, even
when ignoring the additional computational cost neededhieylatter to determine a good value Mf through
experimentation. For the considered bivariate exampleCEIZ is outperformed by AMCMC since the cost
of the former is dominated by the simulation of the layeredvrian bridges, and thus could be improved by
considering alternative designs for this simulation.

We have also pointed out an intriguing connection betweeatteand approximate methods: the degree of
freedom rendered by the Poisson sampling rate. On going imwdktves the rigorous proof of theffect of the
auxiliary Poisson sampling. The auxiliary sampling can eensas a variance reduction scheme. In general,
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Figure 6: The MVWELL diffusion model withn = 1000 simulated data points. True values arg g1, 02,12, 0) = (1/2,2,1/2,1,1/2).
Autocorrelations are reported after a burn in of 5000 iterst Posterior density estimates using EMCMC3 (intengdfpvand AMCMC

algorithms for (€)1, (f) 1, (9) p2, (h) w2 and (i)o-.

Method Par. A M Mean SD ES&; ESS KS Time Correlation matrix

EMCMC3 (noncentred) p; 5 10.455 0.468 0.032 0.482 29.326 60.819 1.000 0.208 0.056320 -0.069
i 1.980 0.072 0.547 33.281 1.000 0.492 -0.591 0.016
02 0.494 0.079 0.558 33.947 1.000 -0.814 -0.032
U2 1.065 0.090 0.584 35.517 1.000 0.019
o 0.503 0.009 0.579 35.224 1.000

EMCMC3 (interweaved) p; 2 7.233 0.467 0.032 0.674 31.721 47.057 1.000 0.192 0.018190.-0.062
u1 1.980 0.073 0.751 35.345 1.000 0.482 -0.582 0.020
02 0.492 0.078 0.872 41.032 1.000 -0.816 -0.018
U2 1.068 0.089 0.936 44.029 1.000 -0.001
o 0.503 0.009 0.843 39.673 1.000

AMCMC-60 (int-by-parts) p1 60.000 0.467 0.032 1.447 44949 0.100 31.065 1.000 0.18420.60.008 -0.053
ui 1.979 0.072 1.518 47.154 0.831 1.000 0.490 -0.594 -0.008
02 0.494 0.079 1.594 49515 0.361 1.000 -0.819 -0.031
U2 1.066 0.090 1.734 53.862 0.268 1.000 0.027
o 0.503 0.009 1.621 50.371 0.932 1.000

Table 3: The MVWELL diffusion model withn = 1000 simulated data points. True values arg g1, 2, u2,0) = (1/2,2,1/2,1,1/2).
Statistics are reported after a burn-in period of 5000 i@na. Column details as in Table 1.

there is a large scope for investigating other such schewtbsftr EDA and HFA. In this article we have already
demonstrated thefect of performing integration by parts where possible todtieiency of the algorithms.

The extension of these methods outside the class of pracpssscribed by the current version of EA3 is
definitely an exciting direction. Another direction of inést for future research is to explore further the connactio
between unbiased estimation of transition density and MCNI@re is a large and growing literature which
develops MCMC algorithms for models with intractable likelods using unbiased estimators thereof; see for
example Andrieu and Roberts (2009); Andrial. (2010). The class of ffusions where such estimators can be
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obtained is much larger than that simulated by EA3, see famgte Section 4.6 of Papaspiliopoulos (2011).
There exists available software for implementing all thehuods in this paper, which is available on request
by the authors.
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8 Appendix

Proof of Lemma 2

Proof. Expression (15) is derived by writing the density of the ated random variabled (X, ®) with respect
to the law of the proposed

A X0 v, 6) = a(x’y,te)]‘[ g (1 e + Hlyeriol <.

and by invoking a change of measure from the law of a Poissooegs of intensity(L; 6) to the law of one
of unit intensity, thus ensuring a parameter-independentidating measure. Finally, integrating out the marks
T = {u;, 1 < j < «}, we obtain expression (15). O

Proof of Theorem 1
Proof. The factorisation of the density in the three terms is elelargn ForVy = v, Vi = wandx = n(v; 6,),
y = n(w; 62), taking expectations on both sides of (5) with respe(Wtbxy we derive the fundamental identity

f)t(xv Y, 0) = M (y - X) eXp{H(y, 0) - H(X, 0) - |(9)t} a.(X, Y, t’ 9):

which combined with (4) givea(x,y,t,6) as a function ofp:(v, w; §). Combining this with Lemma 2 yields the
expression.

It remains to show that (2) can be obtained by integratingleiauxiliary variables and conditioning on the
data. However, this is trivial since by taking expectatiaith respect to the dominating measste, (M(A‘i) X P(A‘i))
we obtain the marginad(6) [T/, pat (Vs ., Vs ; 6) from which (2) follows as a conditional. O

Proof of Theorem 2
Proof. For notational simplicity, we defin&(Y, 8) to be the following deterministic function of observatsori
ando:

exp{H{Xn(62); 6} — H{x0(62); 6} — 1(0)(tn — to)} l_[ D(Vy;; 02)Nay, (Xi(62) — Xi-1(62)} -
i-1

The joint posterior density af and imputed datél;, Xi, ¥i,1 < i < n} is given (up to a constant) in expression
(16). Integrating out the Poisson processes is easily dgrfadh integrating out the coordinates and then the
number of Poisson points. Therefore, integratingBut {yij,1 < j < «}, 1 <i < n, we obtain

n n At ~ B Ki
n(e)K(v,e)exp[—Z[r(Ei;e)—l]Ati][_]{Aiti fo [r(Li;e)—¢{>q,s+m,s(e>;e}]ds} .

i=1 i=1

Integrating out the Poisson points yields the posteriosifenf 6 and{L;, Xi, 1 < i < n} with respect to Leba! |
M(Ati)’ as

n(B)K(Y.6) exp[— Z [r(E:0) - 1] Ati] 1_1[ exp{Ati [% fo ) [r(5:6) = ¢ {¥is + wis(0): 6f | ds 1}}

i=1 ) N
= n(6)K(Y, 6) exp{ Z f {Xi.s + 1i.s(6); 6] ds}.

Given the construction aff®%), by integrating out the layers we obtain the joint density ahd{X;,1 < i < n}
with respect to Leb®!" , W99 which coincides with the posterior density (11) targetedBy o
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Proof of Theorem 3
Proof. For a pair of observation¥/_,, Vi), the joint density of the accepted elements of EA3 X, ¥) condi-
tionally onV; ,, V;, 6 is given by
M {1-1[& < v 0)| 6 {Xig,, + g, (0); 0} /r(Li; 0))
a(xi-1(62), xi(62), At;, 0)

bl

with respect to the product measuv®) x LA% whereL® is the measure of a unit rate Poisson process on
[0,1] x (0, ). Using the conditional independence of the latent datarg¥andé,

n
moo{D X B 1< <np1Y00) = [ [ rnelCis % W1 Va4 Ve ),
i=1

and the proof follows along the same lines as Theorem 1. O

Functions related to the MVWELL model

Applying the Lamperti transformation to (22), we obtain thét of the transformed process as

a(x; 0) = VxH(x; 6), whereH(x; 0) = —%G(o-x).

Using second partial derivative tests it is straightforvéw verify that the functionf (u;0) := |le(u;0)|* +
AxH(u; 6)/2 has a global minimum
PL+ P2
[(0) = ——————-,
54u3(1+ 123)

where
pr = 220 201 {9+ 3 (9 + 20u)|”" . P2 1= 30? {Bpapus (1 + 123) — 8024y + 27pa(1 + 432}
The functionf (u; 6) has no local maxima, implying that for a given realisationhef layeri the Poisson rate is
r(E0) = [visf (us0)] - 100),
where
u = (RV(02) - [96,%%(02) - L) . up = (XM(62) - LV6,52(6) + LP)"

- o AT - PN
us = (YH(62) + LV6,X2(0,) - L%6) ,  ug = (Y(62) + [V6,57(62) + [P5) .
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