45 research outputs found

    Among graphs, groups, and latin squares

    Get PDF
    A latin square of order n is an n × n array in which each row and each column contains each of the numbers {1, 2, . . . , n}. A k-plex in a latin square is a collection of entries which intersects each row and column k times and contains k copies of each symbol. This thesis studies the existence of k-plexes and approximations of k-plexes in latin squares, paying particular attention to latin squares which correspond to multiplication tables of groups. The most commonly studied class of k-plex is the 1-plex, better known as a transversal. Although many latin squares do not have transversals, Brualdi conjectured that every latin square has a near transversal—i.e. a collection of entries with distinct symbols which in- tersects all but one row and all but one column. Our first main result confirms Brualdi’s conjecture in the special case of group-based latin squares. Then, using a well-known equivalence between edge-colorings of complete bipartite graphs and latin squares, we introduce Hamilton 2-plexes. We conjecture that every latin square of order n ≥ 5 has a Hamilton 2-plex and provide a range of evidence for this conjecture. In particular, we confirm our conjecture computationally for n ≤ 8 and show that a suitable analogue of Hamilton 2-plexes always occur in n × n arrays with no symbol appearing more than n/√96 times. To study Hamilton 2-plexes in group-based latin squares, we generalize the notion of harmonious groups to what we call H2-harmonious groups. Our second main result classifies all H2-harmonious abelian groups. The last part of the thesis formalizes an idea which first appeared in a paper of Cameron and Wanless: a (k,l)-plex is a collection of entries which intersects each row and column k times and contains at most l copies of each symbol. We demonstrate the existence of (k, 4k)-plexes in all latin squares and (k, k + 1)-plexes in sufficiently large latin squares. We also find analogues of these theorems for Hamilton 2-plexes, including our third main result: every sufficiently large latin square has a Hamilton (2,3)-plex

    Index

    Get PDF

    Realizing degree sequences with graphs having nowhere-zero 3-flows

    Get PDF
    The following open problem was proposed by Archdeacon: Characterize all graphical sequences π such that some realization of π admits a nowhere-zero 3-flow. The purpose of this paper is to resolve this problem and present a complete characterization: A graphical sequence π = (d I,d2,...,dn) with minimum degree at least two has a realization that admits a nowhere-zero 3-flow if and only if π ≠ (34,2), (k,3k), (k2,3k-1), where k is an odd integer. © 2008 Society for Industrial and Applied Mathematics.published_or_final_versio

    Totally balanced combinatorial optimization games

    Get PDF
    Combinatorial optimization games deal with cooperative games for which the value of every subset of players is obtained by solving a combinatorial optimization problem on the resources collectively owned by this subset. A solution of the game is in the core if no subset of players is able to gain advantage by breaking away from this collective decision of all players. The game is totally balanced if and only if the core is non-empty for every induced subgame of it. We study the total balancedness of several combinatorial optimization games in this paper. For a class of the partition game [5], we have a complete characterization for the total balancedness. For the packing and covering games [3], we completely clarify the relationship between the related primal/dual linear programs for the corresponding games to be totally balanced. Our work opens up the question of fully characterizing the combinatorial structures of totally balanced packing and covering games, for which we present some interesting examples: the totally balanced matching, vertex cover, and minimum coloring games.link_to_subscribed_fulltex

    Realizing Degree Sequences with Graphs Having Nowhere-Zero 3-Flows

    Get PDF
    The following open problem was proposed by Archdeacon: Characterize all graphical sequences π such that some realization of π admits a nowhere-zero 3-flow. The purpose of this paper is to resolve this problem and present a complete characterization: A graphical sequence π = (d1, d2, ., dn) with minimum degree at least two has a realization that admits a nowhere-zero 3-flow if and only if π ≠ (34, 2), (k, 3k), (k2, 3k―1), where k is an odd integer

    Embedding rainbow trees with applications to graph labelling and decomposition

    Get PDF
    A subgraph of an edge-coloured graph is called rainbow if all its edges have distinct colours. The study of rainbow subgraphs goes back more than two hundred years to the work of Euler on Latin squares. Since then rainbow structures have been the focus of extensive research and have found applications in the areas of graph labelling and decomposition. An edge-colouring is locally k-bounded if each vertex is contained in at most k edges of the same colour. In this paper we prove that any such edge-colouring of the complete graph Kn contains a rainbow copy of every tree with at most (1−o(1))n/k vertices. As a locally k-bounded edge-colouring of Kn may have only (n−1)/k distinct colours, this is essentially tight. As a corollary of this result we obtain asymptotic versions of two long-standing conjectures in graph theory. Firstly, we prove an asymptotic version of Ringel's conjecture from 1963, showing that any n-edge tree packs into the complete graph K(2n+o(n)) to cover all but o(n^2) of its edges. Secondly, we show that all trees have an almost-harmonious labelling. The existence of such a labelling was conjectured by Graham and Sloane in 1980. We also discuss some additional applications

    Minimal Ramsey graphs, orthogonal Latin squares, and hyperplane coverings

    Get PDF
    This thesis consists of three independent parts. The first part of the thesis is concerned with Ramsey theory. Given an integer q≥2q\geq 2, a graph GG is said to be \emph{qq-Ramsey} for another graph HH if in any qq-edge-coloring of GG there exists a monochromatic copy of HH. The central line of research in this area investigates the smallest number of vertices in a qq-Ramsey graph for a given HH. In this thesis, we explore two different directions. First, we will be interested in the smallest possible minimum degree of a minimal (with respect to subgraph inclusion) qq-Ramsey graph for a given HH. This line of research was initiated by Burr, Erdős, and Lovász in the 1970s. We study the minimum degree of a minimal Ramsey graph for a random graph and investigate how many vertices of small degree a minimal Ramsey graph for a given HH can contain. We also consider the minimum degree problem in a more general asymmetric setting. Second, it is interesting to ask how small modifications to the graph HH affect the corresponding collection of qq-Ramsey graphs. Building upon the work of Fox, Grinshpun, Liebenau, Person, and Szabó and Rödl and Siggers, we prove that adding even a single pendent edge to the complete graph KtK_t changes the collection of 2-Ramsey graphs significantly. The second part of the thesis deals with orthogonal Latin squares. A {\em Latin square of order nn} is an n×nn\times n array with entries in [n][n] such that each integer appears exactly once in every row and every column. Two Latin squares LL and L′L' are said to be {\em orthogonal} if, for all x,y∈[n]x,y\in [n], there is a unique pair (i,j)∈[n]2(i,j)\in [n]^2 such that L(i,j)=xL(i,j) = x and L′(i,j)=yL'(i,j) = y; a system of {\em kk mutually orthogonal Latin squares}, or a {\em kk-MOLS}, is a set of kk pairwise orthogonal Latin squares. Motivated by a well-known result determining the number of different Latin squares of order nn log-asymptotically, we study the number of kk-MOLS of order nn. Earlier results on this problem were obtained by Donovan and Grannell and Keevash and Luria. We establish new upper bounds for a wide range of values of k=k(n)k = k(n). We also prove a new, log-asymptotically tight, bound on the maximum number of other squares a single Latin square can be orthogonal to. The third part of the thesis is concerned with grid coverings with multiplicities. In particular, we study the minimum number of hyperplanes necessary to cover all points but one of a given finite grid at least kk times, while covering the remaining point fewer times. We study this problem for the grid F2n\mathbb{F}_2^n, determining the number exactly when one of the parameters nn and kk is much larger than the other and asymptotically in all other cases. This generalizes a classic result of Jamison for k=1k=1. Additionally, motivated by the recent work of Clifton and Huang and Sauermann and Wigderson for the hypercube { 0,1 }n⊆Rn\set{0,1}^n\subseteq\mathbb{R}^n, we study hyperplane coverings for different grids over R\mathbb{R}, under the stricter condition that the remaining point is omitted completely. We focus on two-dimensional real grids, showing a variety of results and demonstrating that already this setting offers a range of possible behaviors.Diese Dissertation besteht aus drei unabh\"angigen Teilen. Der erste Teil beschäftigt sich mit Ramseytheorie. Für eine ganze Zahl q≥2q\geq 2 nennt man einen Graphen \emph{qq-Ramsey} f\"ur einen anderen Graphen HH, wenn jede Kantenf\"arbung mit qq Farben einen einfarbigen Teilgraphen enthält, der isomorph zu HH ist. Das zentrale Problem in diesem Gebiet ist die minimale Anzahl von Knoten in einem solchen Graphen zu bestimmen. In dieser Dissertation betrachten wir zwei verschiedene Varianten. Als erstes, beschäftigen wir uns mit dem kleinstm\"oglichen Minimalgrad eines minimalen (bezüglich Teilgraphen) qq-Ramsey-Graphen f\"ur einen gegebenen Graphen HH. Diese Frage wurde zuerst von Burr, Erd\H{o}s und Lov\'asz in den 1970er-Jahren studiert. Wir betrachten dieses Problem f\"ur einen Zufallsgraphen und untersuchen, wie viele Knoten kleinen Grades ein Ramsey-Graph f\"ur gegebenes HH enthalten kann. Wir untersuchen auch eine asymmetrische Verallgemeinerung des Minimalgradproblems. Als zweites betrachten wir die Frage, wie sich die Menge aller qq-Ramsey-Graphen f\"ur HH verändert, wenn wir den Graphen HH modifizieren. Aufbauend auf den Arbeiten von Fox, Grinshpun, Liebenau, Person und Szabó und Rödl und Siggers beweisen wir, dass bereits der Graph, der aus KtK_t mit einer h\"angenden Kante besteht, eine sehr unterschiedliche Menge von 2-Ramsey-Graphen besitzt im Vergleich zu KtK_t. Im zweiten Teil geht es um orthogonale lateinische Quadrate. Ein \emph{lateinisches Quadrat der Ordnung nn} ist eine n×nn\times n-Matrix, gef\"ullt mit den Zahlen aus [n][n], in der jede Zahl genau einmal pro Zeile und einmal pro Spalte auftritt. Zwei lateinische Quadrate sind \emph{orthogonal} zueinander, wenn f\"ur alle x,y∈[n]x,y\in[n] genau ein Paar (i,j)∈[n]2(i,j)\in [n]^2 existiert, sodass es L(i,j)=xL(i,j) = x und L′(i,j)=yL'(i,j) = y gilt. Ein \emph{k-MOLS der Ordnung nn} ist eine Menge von kk lateinischen Quadraten, die paarweise orthogonal sind. Motiviert von einem bekannten Resultat, welches die Anzahl von lateinischen Quadraten der Ordnung nn log-asymptotisch bestimmt, untersuchen wir die Frage, wie viele kk-MOLS der Ordnung nn es gibt. Dies wurde bereits von Donovan und Grannell und Keevash und Luria studiert. Wir verbessern die beste obere Schranke f\"ur einen breiten Bereich von Parametern k=k(n)k=k(n). Zusätzlich bestimmen wir log-asymptotisch zu wie viele anderen lateinischen Quadraten ein lateinisches Quadrat orthogonal sein kann. Im dritten Teil studieren wir, wie viele Hyperebenen notwendig sind, um die Punkte eines endlichen Gitters zu überdecken, sodass ein bestimmter Punkt maximal (k−1)(k-1)-mal bedeckt ist und alle andere mindestens kk-mal. Wir untersuchen diese Anzahl f\"ur das Gitter F2n\mathbb{F}_2^n asymptotisch und sogar genau, wenn eins von nn und kk viel größer als das andere ist. Dies verallgemeinert ein Ergebnis von Jamison für den Fall k=1k=1. Au{\ss}erdem betrachten wir dieses Problem f\"ur Gitter im reellen Vektorraum, wenn der spezielle Punkt überhaupt nicht bedeckt ist. Dies ist durch die Arbeiten von Clifton und Huang und Sauermann und Wigderson motiviert, die den Hyperwürfel { 0,1 }n⊆Rn\set{0,1}^n\subseteq \mathbb{R}^n untersucht haben. Wir konzentrieren uns auf zwei-dimensionale Gitter und zeigen, dass schon diese sich sehr unterschiedlich verhalten können
    corecore