182,702 research outputs found

    Minimum cycle and homology bases of surface embedded graphs

    Get PDF
    We study the problems of finding a minimum cycle basis (a minimum weight set of cycles that form a basis for the cycle space) and a minimum homology basis (a minimum weight set of cycles that generates the 11-dimensional (Z2\mathbb{Z}_2)-homology classes) of an undirected graph embedded on a surface. The problems are closely related, because the minimum cycle basis of a graph contains its minimum homology basis, and the minimum homology basis of the 11-skeleton of any graph is exactly its minimum cycle basis. For the minimum cycle basis problem, we give a deterministic O(nω+22gn2+m)O(n^\omega+2^{2g}n^2+m)-time algorithm for graphs embedded on an orientable surface of genus gg. The best known existing algorithms for surface embedded graphs are those for general graphs: an O(mω)O(m^\omega) time Monte Carlo algorithm and a deterministic O(nm2/logn+n2m)O(nm^2/\log n + n^2 m) time algorithm. For the minimum homology basis problem, we give a deterministic O((g+b)3nlogn+m)O((g+b)^3 n \log n + m)-time algorithm for graphs embedded on an orientable or non-orientable surface of genus gg with bb boundary components, assuming shortest paths are unique, improving on existing algorithms for many values of gg and nn. The assumption of unique shortest paths can be avoided with high probability using randomization or deterministically by increasing the running time of the homology basis algorithm by a factor of O(logn)O(\log n).Comment: A preliminary version of this work was presented at the 32nd Annual International Symposium on Computational Geometr

    On prisms, M\"obius ladders and the cycle space of dense graphs

    Full text link
    For a graph X, let f_0(X) denote its number of vertices, d(X) its minimum degree and Z_1(X;Z/2) its cycle space in the standard graph-theoretical sense (i.e. 1-dimensional cycle group in the sense of simplicial homology theory with Z/2-coefficients). Call a graph Hamilton-generated if and only if the set of all Hamilton circuits is a Z/2-generating system for Z_1(X;Z/2). The main purpose of this paper is to prove the following: for every s > 0 there exists n_0 such that for every graph X with f_0(X) >= n_0 vertices, (1) if d(X) >= (1/2 + s) f_0(X) and f_0(X) is odd, then X is Hamilton-generated, (2) if d(X) >= (1/2 + s) f_0(X) and f_0(X) is even, then the set of all Hamilton circuits of X generates a codimension-one subspace of Z_1(X;Z/2), and the set of all circuits of X having length either f_0(X)-1 or f_0(X) generates all of Z_1(X;Z/2), (3) if d(X) >= (1/4 + s) f_0(X) and X is square bipartite, then X is Hamilton-generated. All these degree-conditions are essentially best-possible. The implications in (1) and (2) give an asymptotic affirmative answer to a special case of an open conjecture which according to [European J. Combin. 4 (1983), no. 3, p. 246] originates with A. Bondy.Comment: 33 pages; 5 figure

    Minimal instances for toric code ground states

    Full text link
    A decade ago Kitaev's toric code model established the new paradigm of topological quantum computation. Due to remarkable theoretical and experimental progress, the quantum simulation of such complex many-body systems is now within the realms of possibility. Here we consider the question, to which extent the ground states of small toric code systems differ from LU-equivalent graph states. We argue that simplistic (though experimentally attractive) setups obliterate the differences between the toric code and equivalent graph states; hence we search for the smallest setups on the square- and triangular lattice, such that the quasi-locality of the toric code hamiltonian becomes a distinctive feature. To this end, a purely geometric procedure to transform a given toric code setup into an LC-equivalent graph state is derived. In combination with an algorithmic computation of LC-equivalent graph states, we find the smallest non-trivial setup on the square lattice to contain 5 plaquettes and 16 qubits; on the triangular lattice the number of plaquettes and qubits is reduced to 4 and 9, respectively.Comment: 14 pages, 11 figure
    corecore