5 research outputs found

    Global existence of solutions for a multi-phase flow: a bubble in a liquid tube and related cases

    Get PDF
    In this paper we study the problem of the global existence (in time) of weak, entropic solutions to a system of three hyperbolic conservation laws, in one space dimension, for large initial data. The system models the dynamics of phase transitions in an isothermal fluid; in Lagrangian coordinates, the phase interfaces are represented as stationary contact discontinuities. We focus on the persistence of solutions consisting in three bulk phases separated by two interfaces. Under some stability conditions on the phase configuration and by a suitable front tracking algorithm we show that, if the BV-norm of the initial data is less than an explicit (large) threshold, then the Cauchy problem has global solutions

    Global weak solutions for a model of two-phase flow with a single interface

    Get PDF
    We consider a simple nonlinear hyperbolic system modeling the flow of an inviscid fluid. The model includes as state variable the mass density fraction of the vapor in the fluid and then phase transitions can be taken into consideration; moreover, phase interfaces are contact discontinuities for the system. We focus on the special case of initial data consisting of two different phases separated by an interface. We find explicit bounds on the (possibly large) initial data in order that weak entropic solutions exist for all times. The proof exploits a carefully tailored version of the front tracking scheme

    Global existence of solutions for a multi-phase flow: a drop in a gas-tube

    Get PDF
    In this paper we study the flow of an inviscid fluid composed by three different phases. The model is a simple hyperbolic system of three conservation laws, in Lagrangian coordinates, where the phase interfaces are stationary. Our main result concerns the global existence of weak entropic solutions to the initial-value problem for large initial data

    On a model of multiphase flow

    Full text link
    We consider a hyperbolic system of three conservation laws in one space variable. The system is a model for fluid flow allowing phase transitions; in this case the state variables are the specific volume, the velocity and the mass density fraction of the vapor in the fluid. For a class of initial data having large total variation we prove the global existence of solutions to the Cauchy problem.Comment: 32 pages. Revised and corrected versio

    Global existence of weak solutions for a viscous two-phase model

    Get PDF
    AbstractThe purpose of this paper is to explore a viscous two-phase liquid–gas model relevant for well and pipe flow. Our approach relies on applying suitable modifications of techniques previously used for studying the single-phase isothermal Navier–Stokes equations. A main issue is the introduction of a novel two-phase variant of the potential energy function needed for obtaining fundamental a priori estimates. We derive an existence result for weak solutions in a setting where transition to single-phase flow is guaranteed not to occur when the initial state is a true mixture of both phases. Some numerical examples are also included in order to demonstrate characteristic behavior of solutions. In particular, we illustrate how two-phase flow is genuinely different compared to single-phase flow concerning the behavior of an initial mass discontinuity
    corecore