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Abstract. In this paper we study the flow of an inviscid fluid composed by three
different phases. The model is a simple hyperbolic system of three conservation laws,
in Lagrangian coordinates, where the phase interfaces are stationary. Our main result

concerns the global existence of weak entropic solutions to the initial-value problem for
large initial data.
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1. Introduction

The theory of hyperbolic systems of conservation laws in one spatial dimension has

reached in the last years a rather satisfactory level of completeness, as the reference

book of Dafermos [12] witnesses. Among the several important results that have

been proved, probably the greatest achievement concerns the global existence in

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Archivio istituzionale della ricerca - Università degli Studi di Udine

https://core.ac.uk/display/53359888?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


January 14, 2016 8:52 WSPC/INSTRUCTION FILE Amadori-Baiti-Corli-
DalSanto

2 D. Amadori, P. Baiti, A. Corli and E. Dal Santo

time of weak solutions to the initial-value problem, as well as their uniqueness,

continuity with respect to the data and viscous approximations. However, such

results hold, in general, only for small initial data: the case of large data has been

given no general and satisfactory answer. This paper focuses precisely on this issue

in the case of a simple but physically meaningful system of three equations, for

which we provide explicit conditions on the initial data in order to have global

solutions.

The system under consideration arises in the modeling of phase transitions for

an inviscid fluid and is deduced by [13]. If we denote by v > 0 the specific volume

of the fluid, u the velocity, p the pressure and λ the mass-density fraction of the

vapor, the system is written as
vt − ux = 0 ,

ut + p(v, λ)x = 0 ,

λt = 0 .

(1.1)

As usual, here t > 0 denotes the time and x ∈ R. The phase states of the fluid are

modeled by the variable λ, which ranges from 0 (pure liquid) to 1 (pure vapor) and

allows for intermediate values in the interval ]0, 1[ representing mixtures of the two

pure phases. The model incorporates the state variable λ in the pressure, which is

defined by

p(v, λ) =
a2(λ)

v
, (1.2)

where a(λ) > 0 and is a C1 function on [0, 1]. We denote by U = (v, u, λ) the state

variables and by Ω =]0,+∞[×R × [0, 1] the state space. System (1.1) is strictly

hyperbolic in Ω with eigenvalues e1 = −√−pv, e2 = 0, e3 =
√−pv; the first and

the third characteristic fields are genuinely nonlinear, while the second one is linearly

degenerate.

The first result on the existence of global solutions to system (1.1), provided

with suitably large initial data, is given in [4]; a different proof is given in [7]. In

particular, in the case where λ is constant, the classical result by Nishida [16] is

recovered.

The analysis of [4] is pursued and refined in [1] for initial data with λ of Riemann

type: λ(x, 0) is constant for x 6= 0 with a jump at 0. In this case system (1.1)

decouples for any t > 0 into two p-systems connected by a phase interface at x = 0,

because the discontinuities of λ do not propagate. The special form of λ allowed us

to analyze in detail the effect of the nonlinear interaction of pressure waves through

the phase interface, leading to refined sufficient conditions on the initial data for

which solutions exist globally in time.

A survey on couplings of two systems of conservation laws, with a focus on

numerical approximations, is given in [14]; however, we emphasize that the above

coupling for system (1.1) is the physical coupling, where the interface is a contact

discontinuity. We refer to [4,1] for further references on related results.
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In this paper we continue the analysis of system (1.1) by considering the case

where the initial datum for λ is piecewise constant with two jumps. Let the initial

data be of the form

Uo(x) = (vo(x), uo(x), λo(x)) , for λo(x) =


λ` if x < a ,
λm if a < x < b ,
λr if x > b ,

(1.3)

where x ∈ R and λ`, λm, λr ∈ [0, 1] are constant. We define a` = a(λ`), am = a(λm),

ar = a(λr) and focus on the case

am < min{a`, ar} . (1.4)

To give a flavor of the physical meaning of the problem, assume that a(λ) is

increasing (which is the physically meaningful case) so that (1.4) implies λm <

min {λ`, λr}. Here, we are dealing with a one-dimensional fluid consisting of three

homogeneous mixtures of liquid and vapor; the mixture in the region ]a, b[ is more

liquid than in the surrounding ones. This includes the case of a liquid drop in a

gaseous environment. The other cases am > max{a`, ar} (a bubble surrounded by

liquid) and a` < am < ar (or a` > am > ar) are considered in [2].

A similar model is studied in [10]. There, the basic system (in Eulerian coor-

dinates) has only two equations but is augmented with kinetic conditions deduced

by the mass and momentum conservation at the interfaces, which make that model

essentially equivalent to (1.1). However, the results of [10] concern a general pres-

sure law but small initial data. We refer also to [11] where an analogous system (in

Lagrangian coordinates) is studied, in which the pressure in the region [a, b] is a

linear function of v.

Notice also that (1.1), (1.3) can be interpreted as a perturbation problem of the

steady solution given by the two parallel contact discontinuities located at x = a
and x = b, respectively. We refer to [15,17] for the analysis of the perturbation of a

single contact discontinuity.

The main result of this paper is Theorem 2.1, that provides a wide class of

large initial data for which the solution to the initial-value problem (1.1), (1.3)

exists globally in time. Roughly speaking, the conditions on the data require that

the total variations of po = p(vo, λo) and uo do not exceed a certain threshold

depending on the sizes of the interfaces, see (2.3): the larger are the interfaces, the

smaller must be the variations and conversely. Also, if the variations are sufficiently

small then any size of the interfaces is allowed, provided that the stability condition

(2.1) (that was missing in [1]) holds. Such a result was proved, to the best of our

knowledge, in no related paper. Moreover, we point out that our conditions on the

initial data are sufficiently flexible to allow the control of the variations in either of

the three phases.

For the proof of Theorem 2.1, two novel ideas are employed. The first one is a

simplification in the definition of the functional F used to control the total variation

of the solutions (see (5.1) and Remark 5.1), in which some nonlinear terms are
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dropped, thanks to a more careful use of nonlinear interactions involving phase

waves.

The second one is an original variant of the front-tracking algorithm [9], that is

needed in order to ensure that the functional F is decreasing. Indeed, the classical

front-tracking scheme prescribes two ways of solving the Riemann problem arising

at an interaction: either by means of an Accurate solver or by a Simplified solver

that exploits non-physical waves, which are used to prevent the possible blow-up

in finite time of the number of fronts and interactions. Here we provide an origi-

nal definition of the Simplified solver, suitably designed for this problem. At any

interaction of a small wave with an interface, the Simplified solver introduces sta-

tionary, non-entropic waves (associated to the integral curves of (1.1)), which are

formally computed as reflected waves. These waves “travel” with zero speed and

then remain attached to the phase wave, thus forming a “composite wave”. Such

a Riemann solver somewhat reminds of the famous Osher solver frequently used

in Numerical Analysis, see [18, §12]. The idea of introducing stationary composite

waves for the Simplified solver is also exploited in [1] where, however, the jump

across non-physical waves is defined as in [9].

Notice that when λ is constant, system (1.1) reduces to a 2× 2 system and one

can avoid the use of the Simplified solver (see [6,8]). We point out that non-physical

waves are also avoided in [10,11], but for different reasons: in [10], due to a particular

solver and to the smallness of the data, while in [11] because of the assumption of

linear pressure in the region [a, b].

The paper is organized as follows. The main result is stated in Section 2. In

Section 3 we first introduce four pre-Riemann solvers: one of them is used to define

the composite wave, the other three are exploited either in the Accurate or in the

Simplified solver. Proposition 3.7 gives a unified approach to both the Accurate and

the Simplified solver. Approximate solutions are defined in Section 4. In Section 5

we introduce the main functional F and show that it is decreasing in time. Sec-

tion 6 deals with the convergence and consistency of the algorithm, together with a

decay property of the reflected waves; we provide also a comparison with [4] which

shows how the preceding result is improved. Finally, in Appendix A it is proved an

alternative estimate concerning certain interactions solved by the Simplified solver.

2. Main Result

Throughout this paper we assume (1.4) and call η, ζ the strengths of the two 2-

waves, as in [3]:

η = 2
am − a`
am + a`

, ζ = 2
ar − am
ar + am

.

By (1.4) and for a`, am, ar in R+ = ]0,+∞[, one easily finds that

η < 0 , ζ > 0 , |η|, |ζ| ∈ [0, 2[ .
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In what follows, we need that η and ζ satisfy the stability condition

max

{(
1 +
|ζ|
2

) |η|
2
,
(
1 +
|η|
2

) |ζ|
2

}
< 1 . (2.1)

When one of the two waves η or ζ vanishes, for example ζ = 0, then (2.1) reduces

to |η| < 2, which is always satisfied. The inequality (2.1) identifies a set D ⊂
[0, 2[×[0, 2[ (see Fig. 1), where we define a non-negative and continuous function H
by

H(|η|, |ζ|) = max

{ |ζ|
1− (1 + |ζ|/2)|η|/2 ,

|η|
1− (1 + |η|/2)|ζ|/2

}
. (2.2)

Notice that H = 0 only when η = ζ = 0; it holds H(|η|, 0) = |η| and H(0, |ζ|) =

|ζ|. Moreover, we have that H(|η|, |ζ|) tends to +∞ when (|η|, |ζ|) tends to the

curved edges of D.

0.0 0.5 1.0 1.5 2.0

0.0

0.5

1.0

1.5

2.0

|η|

|ζ|

Fig. 1. The domain D in the (|η|, |ζ|)-plane.

Following the notation in Fig. 2, we set

L = {(x, t) : x < a} , M = {(x, t) : a < x < b} , R = {(x, t) : x > b} .

At last, we denote po(x) = p (vo(x), λo(x)) and TV(f, g) = TV f + TV g, for any

f = f(x), g = g(x).

Theorem 2.1. Assume (1.2) and consider initial data (1.3) with vo(x) ≥ v > 0,

for some constant v. Assume also (1.4) and (2.1). There exists a strictly decreasing

function K defined for r > 0, with

lim
r→0+

K(r) = +∞ , lim
r→+∞

K(r) = 0 ,
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such that if it holds

TV
x<a

(
log(po),

uo
a`

)
+

1

1 +H(|η|, |ζ|) TV
a<x<b

(
log(po),

uo
am

)
+ TV
x>b

(
log(po),

uo
ar

)
< K (H(|η|, |ζ|)) , (2.3)

then the Cauchy problem (1.1), (1.3) has a weak entropic solution (v, u, λ) defined

for t ∈ [0,+∞[. If η = ζ = 0 the same conclusion holds with K (H(|η|, |ζ|)) replaced

by +∞ in (2.3).

Moreover, the solution is valued in a compact set and (v(·, t), u(·, t)) ∈
L∞([0,∞[; BV(R)).

The definition of the threshold function K is given in (6.18) and is the same as

[1, (6.20)]. Hypothesis (2.3) can be interpreted as follows: the larger |η|, |ζ| can be

taken, the smaller the total variation of po, uo must be; vice versa, the smaller are

|η|, |ζ|, the larger can be the total variation of po, uo.

ζη

x = a x = b

M RL

Fig. 2. The regions L, M, R in the (x, t)-plane.

Consider, now, the case when one of the two phase-waves tends to zero, say

|η| → 0. Then H(|η|, |ζ|)→ H(0, |ζ|) = |ζ| and (2.3) becomes formally

TV
x<a

(
log(po),

uo
a`

)
+

1

1 + |ζ| TV
a<x<b

(
log(po),

uo
am

)
+ TV
x>b

(
log(po),

uo
ar

)
< K(|ζ|) ,

(2.4)

which improves [1, (2.3)] by allowing to take larger total variation of the data for

x ∈ ]a, b[. Indeed, when |η| = 0, we will see in Remark 6.4 that hypothesis (2.4) can

be improved by

1

1 + |ζ| TV
x<b

(
log(po),

uo
am

)
+ TV
x>b

(
log(po),

uo
ar

)
< K(|ζ|) , (2.5)

by which the total variation can be taken larger on the entire interval ]−∞, b[.

Theorem 2.1 improves also the main result in [4] when restricted to the case of

two contact discontinuities, not only because K is sharper than H of [5, Theorem

3.1] (see Section 6.2 below), but also because the total variation of the initial data

(thanks to the coefficient of the middle term in (2.3)) can be larger in M. Recall

thatM is the more liquid region if a(λ) is increasing. The asymmetrical character of
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(2.3) is due to the particular choice of the decreasing functional F used to estimate

the total variation of the approximate solutions, see Section 5.

We also notice that a slight improvement of condition (2.3) in Theorem 2.1

would follow from the use of the Riemann coordinates, see Remark 6.3.

We conclude this section by extracting some more information from (2.3); with

this aim we introduce the sub-level sets of H,

Dc = {(|η|, |ζ|) ∈ D : H (|η|, |ζ|) < c} , c > 0 ,

see Fig. 3. Since K is decreasing, then for every (|η|, |ζ|) ∈ Dc condition (2.3) holds

if

TV
x<a

(
log(po),

uo
a`

)
+ TV

a<x<b

(
log(po),

uo
am

)
+ TV
x>b

(
log(po),

uo
ar

)
< K(c) .

In particular, we have K(2) = 2 log(2 +
√

3)/3 and the domain D2 includes the

segments [0, 2[ on each axis. Therefore, for η = 0 or ζ = 0 we recover a slightly

better condition than [1, (2.5)]. We notice that the 2-level set of H has a particular

simple expression: it is the graph of the function ζ(|η|) = 2(2− |η|)/(2 + |η|).

|!|

|"
|

1

2

3

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Fig. 3. Sets of level c of the function H: cases c = 1, 2, 3.

3. The Riemann Problem

In this section we collect some basic facts about system (1.1); we refer to [1,3,4]

for more details and to [9,12] for generalities on Riemann problems. As anticipated

in the Introduction, in addition to the usual Lax waves used in the theory of con-

servation laws, we introduce suitable composite waves which sum up the effects of

each contact discontinuity and of certain reflected waves. Finally, we present two

Riemann solvers that use such composite waves.
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For i = 1, 3, the i-th right shock-rarefaction curves Φi through the point Uo =

(vo, uo, λo) ∈ Ω for (1.1) are as in [4]

v 7→ Φi(εi)(Uo) = (v, uo + 2a(λo)h(εi), λo) , v > 0 , i = 1, 3 , (3.1)

where the strength εi of an i-wave is defined as

ε1 =
1

2
log

(
v

vo

)
=

1

2
log

(
po
p

)
, ε3 =

1

2
log
(vo
v

)
=

1

2
log

(
p

po

)
(3.2)

and the function h is defined by

h(ε) =

{
ε if ε ≥ 0 ,

sinh ε if ε < 0 .
(3.3)

Rarefaction waves have positive strengths and shock waves have negative strengths.

The i-th integral curve through Uo ∈ Ω is denoted by Ii(ε)(Uo), for ε ∈ R and

i = 1, 3; two states U and Ii(ε)(U) are connected by an i-rarefaction wave iff ε > 0.

The wave curve corresponding to the second characteristic field through Uo ∈ Ω is

given by

λ 7→
(
vo
a2(λ)

a2(λo)
, uo, λ

)
, λ ∈ [0, 1],

and the strength of a 2-wave is

ε2 = 2
a(λ)− a(λo)

a(λ) + a(λo)
.

For starters, we prove a result similar to [4, Proposition 3.2]. For λ± ∈ [0, 1], we

use the notation a± = a(λ±), p± = p(v±, λ±).

Proposition 3.1. Fix two functions θ1, θ3 that can be either the identity Id or

the function h defined in (3.3). For any pair of states U− = (v−, u−, λ−), U+ =

(v+, u+, λ+) ∈ Ω, there exist unique ε1, ε3 ∈ R such that:

ε3 − ε1 =
1

2
log

(
p+
p−

)
, a−θ1(ε1) + a+θ3(ε3) =

u+ − u−
2

. (3.4)

Proof. Let us call log(p+/p−)/2 =: A and (u+ − u−)/2 =: B, since they are two

constant quantities once we fixed U− and U+. Thus, we have four possible cases to

examine: {
ε3 − ε1 = A ,

a−h(ε1) + a+h(ε3) = B ,

{
ε3 − ε1 = A ,

a−ε1 + a+ε3 = B ,
(3.5){

ε3 − ε1 = A ,

a−h(ε1) + a+ε3 = B ,

{
ε3 − ε1 = A ,

a−ε1 + a+h(ε3) = B .
(3.6)

System (3.5)1 (θ1 = θ3 = h) has already been solved in [4, Proposition 3.2], while

system (3.5)2 is linear. As for (3.6), it suffices to study just one of the two systems,
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for example (3.6)1 (the other one is analogous). In this case, setting k = a+/a−, it

holds h(ε1) + kε1 = B/(a−) − kA. Thus, if G(x) := kx + h(x), we have G(ε1) =

B/(a−)− kA. Since G is invertible and onto, this gives ε1 = G−1(B/(a−)− kA).

Remark 3.2. Notice that only system (3.5)1 always gives an actual Lax solution

to the Riemann problem for (1.1) with initial data

U(x, 0) =

{
U− if x < 0 ,

U+ if x > 0 ,
(3.7)

as the juxtaposition of a 1-wave of strength ε1, a 2-wave δ = 2(a+− a−)/(a+ + a−)

and a 3-wave of strength ε3, see [4, Proposition 3.2]. In general, this is not true for

the other three cases.

When solving an interaction with a 2-wave δ, we sometimes make use of a Rie-

mann solver that attaches certain reflected waves to δ; the outcome is a stationary

composite wave, which is made of the composition of a wave related to an integral

curve for the first characteristic field, the 2-wave δ, and, finally, a wave related to

an integral curve for the third characteristic field.

We use the symbols ‘L’ to refer to the Lax curves Φi and ‘I’ to refer to the

Integral curves Ii, i = 1, 3. Then, Proposition 3.1 allows us to give the following

important definition.

Definition 3.3 (Pre-Riemann solver). For any choice of θ1, θ3 as in Proposi-

tion 3.1, the Pre-Riemann solver Rθ1θ3 : Ω×Ω→ R×]− 2, 2[×R is the map defined

by

Rθ1θ3(U−, U+) = (ε1, δ, ε3) , (3.8)

where ε1, ε3 are as in (3.4) and δ = 2(a+ − a−)/(a+ + a−). The two subscripts in

θ1, θ3 stand for the choice of 1, 3-wave curves (L or I) along which ε1, ε3 are taken.

More precisely, it holds θi = h for εi along Lax curves, while θi = Id for εi along

integral curves. Then, by Proposition 3.1 we get four Pre-Riemann solvers that we

denote by RLL, RII , RLI and RIL, respectively.

Notice that RLL is an actual Riemann solver by Remark 3.2 and RIL, RLI are

used in connection with the Simplified Riemann Solver, see Proposition 3.7. We

do not assign any speed to ε1, ε3 when they are taken along integral curves I;

indeed, these waves shall be sticked to the phase wave and can be thought as being

stationary. In particular, RII is used to define composite waves as in the following

definition.

Definition 3.4 (Composite wave). A composite wave δ0 = (δ10 , δ, δ
3
0) associated

to a 2-wave δ and connecting two states U− = (v−, u−, λ−) and U+ = (v+, u+, λ+)

of Ω, with λ− 6= λ+, is the wave with zero speed defined by δ0 = RII(U−, U+). We

write |δ0| = |δ10 |+ |δ30 |.
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η10 η η
3
0

︸ ︷︷ ︸
η0

ζ10 ζ ζ
3
0
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ζ0

L M R

(a)

�
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�
��

B
B
B
B
B
BB

η10 η η30

�
�
�
�
�
��

B
B
B
B
B
BB

ζ10 ζ ζ30

L M R

(b)

Fig. 4. The composite waves in the (x, t) plane: in (a) η0 and ζ0 are drawn as three parallel close
lines, while (b) is the auxiliary picture that is used to determine the states in the interactions, see

Fig. 6.

Notice that δ0 reduces to a 2-wave as long as δ10 = δ30 = 0. We denote by η0 and

ζ0 the two composite waves associated to η and ζ, respectively; see Fig. 4.

Remark that in Fig. 4 (b) the ηi0, ζ
i
0 components, i = 1, 3, may be non-entropic

waves: they are depicted as fronts with negative speed (i = 1) and positive speed

(i = 3) in order to easily understand how to handle the interactions.

In this way, we are left to deal with waves of family 1, 3 and two distinct com-

posite waves belonging to a fictitious 0-family. Notice also that, once we fix U−,

the set of states U+ that can be connected to U− by a composite wave does not

describe a curve in the (v, u) plane, but the whole half-plane v > 0.

Before proceeding with the detailed description of the two new Riemann solvers,

we insert here the following useful lemma. Now and then we will make an inappro-

priate use of the term ‘waves’ to indicate both actual physical waves (i.e. connecting

states that lie on a Lax curve) and not (i.e. when referring to states that lie on a

general integral curve or on a combination of Lax curves and integral curves).

Lemma 3.5 (Commutation of i-waves). Let i = 1, 3 and αi, βi ∈ R. If two

states U−, U+ ∈ Ω in the same phase (λ− = λ+) are connected by an i-wave of

strength αi followed by an i-wave of strength βi, then they can be connected also by

an i-wave βi followed by an i-wave αi.

Proof. Assume i = 3 (the other case is analogous) and fix θα3
3 , θβ3

3 to be either h

or Id, see Fig. 5. If U∗ = (v∗, u∗, λ∗) is the final state reached starting from U− and

moving first along β3 and then along α3, then trivially it holds λ∗ = λ+ and

v∗ = v− exp(−2β3 − 2α3) = v+ , u∗ = u− + 2a−
(
θβ3

3 (β3) + θα3
3 (α3)

)
= u+ ,

that means U∗ = U+.

Remark 3.6. When θαii = θβii = h, Lemma 3.5 is a consequence of the invariance

by translation of Lax curves for the p-system with γ = 1; see [16].
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U−

Um

Uq

U+ = U ∗

v

u

U−

Um

Uq

U+ = U∗

v

u

Fig. 5. The commutation of i-waves: case i = 3, α3, β3 < 0, θα3
3 = h and θβ33 = Id. Here Um

and Uq are the states connected to U− along the 3-Lax curve by α3 and, respectively, along the

3-integral curve by β3.

Now, we are ready to describe the two Riemann solvers that will be needed in

case of interactions with η0 and ζ0 at positive times: we use an Accurate solver

when the interacting wave has size bigger than a threshold ρ to be determined and

a Simplified solver otherwise.

We denote by δi (and εi) the interacting waves (the waves produced by the

interaction, respectively), for i = 1, 3; note that, taking for simplicity δ to be equal

either to η or to ζ, we use the same notation δ0 = (δ10 , δ, δ
3
0) (and ε0 = (ε10, δ, ε

3
0)) to

denote both η0 and ζ0 as interacting waves (and as outgoing waves, respectively).

Proposition 3.7. Let i = 1, 3 and consider the interaction at a time t > 0 of a

composite wave δ0 = (δ10 , δ, δ
3
0) with an i-wave of strength δi; we refer to Fig. 6.

Then, the emerging Riemann problem with initial states U−, U+ can be solved by

means of Rθ1θ3 in one of the two following ways. Denote Ũ− = I1(δ10)(U−) and

Ũ+ = I3(−δ30)(U+).

(1) Accurate Riemann solver. The solution is formed by waves ε1, ε0, ε3, where

(ε1, δ, ε3) = RLL(Ũ−, Ũ+) and ε0 = δ0.

(2) Simplified Riemann solver. We distinguish case i = 1 and i = 3:

i) for i = 1, the solution is formed by waves ε1, ε0 such that (ε1, δ, ε3) =

RLI(Ũ−, Ũ+) and ε0 = (δ10 , δ, δ
3
0 + ε3);

ii) for i = 3, the solution is formed by waves ε0, ε3 such that (ε1, δ, ε3) =

RIL(Ũ−, Ũ+) and ε0 = (δ10 + ε1, δ, δ
3
0).

In general, it holds θi = h in all cases; for any θj, j = 1, 3, j 6= i, chosen between

Id and h, the following relations are verified:

ε3 − ε1 =

{
−δ1 if i = 1 ,

δ3 if i = 3 ,
a−θ1(ε1) + a+θ3(ε3) =

{
a+θ1(δ1) if i = 1 ,

a−θ3(δ3) if i = 3 .

(3.9)
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Moreover, in all cases the signs of ε1, ε3 satisfy:

sgn εi = sgn δi , sgn εj =

{
sgn δ · sgn δi if i = 1 ,

−sgn δ · sgn δi if i = 3 .
(3.10)

Proof. In the interaction of an i-wave δi with a composite wave δ0, we look at the

interaction of δi with the δ component of δ0. Indeed, δi crosses δj0, j = 1, 3, j 6= i,

without changing strength; the proof is analogous to that in [1, Lemma 5.4]. Then,

we solve the Riemann problem with initial states Ũ−, Ũ+ by means of Rθ1θ3 , with

θ1, θ3 either Id or h. We proceed as follows.

(1) Accurate Riemann solver. After computing RLL(Ũ−, Ũ+) = (ε1, δ, ε3), we let

ε1 and ε3 commute with δ10 and δ30 respectively, in the sense of Lemma 3.5.

In this way, they are free to propagate as outgoing waves of family 1, 3; see

Fig. 6 (a), (b) for a picture of case i = 3. Then, the resulting composite wave

connects Up to Uq, where Up = Φ1(ε1)(U−) and Uq = Φ3(−ε3)(U+). Hence,

ε0 = RII(Up, Uq) = (δ10 , δ, δ
3
0) = δ0.

(2) Simplified Riemann solver. We have to distinguish between case i = 1 and

i = 3. Once the triple (ε1, δ, ε3) has been determined by RLI or RIL, the idea

is to ‘project’ the reflected wave along the associated integral curve; see Fig. 6

(c), (d) for a picture of case i = 3.

i) For i = 1, we compute RLI(Ũ−, Ũ+) = (ε1, δ, ε3) and let ε1 commute with

δ10 by Lemma 3.5. The outgoing composite wave connects Up to U+, where

I1(δ10)(Up) = Φ1(ε1)(Ũ−) and U+ = I3(δ30+ε3)◦Φ2(δ)◦Φ1(ε1)(Ũ−). Hence,

ε0 = RII(Up, U+) = (δ10 , δ, δ
3
0 + ε3).

ii) For i = 3, we compute RIL(Ũ−, Ũ+) = (ε1, δ, ε3) and let ε3 commute

with δ30 by Lemma 3.5. The outgoing composite wave connects U− to Uq,

where Uq = I3(δ30) ◦ Φ2(δ) ◦ I1(δ10 + ε1)(U−). Hence, ε0 = RII(U−, Uq) =

(δ10 + ε1, δ, δ
3
0).

To prove (3.9), notice that for i = 1 we use RLL or RLI (i.e. θ1 = h), while for

i = 3 we use RLL or RIL (i.e θ3 = h). Hence, (3.9)2 is equivalent to

a−θ1(ε1) + a+θ3(ε3) =

{
a+h(δ1) if i = 1 ,

a−h(δ3) if i = 3 .

By (3.1) and (3.2) we have that for i = 1, 3

1

2
log

(
p̃+
p̃−

)
=

{
−δ1 if i = 1 ,

δ3 if i = 3 ,

ũ+ − ũ−
2

=

{
a+h(δ1) if i = 1 ,

a−h(δ3) if i = 3 .

Now, by Proposition 3.1 it suffices to notice that

ε3 − ε1 =
1

2
log

(
p̃+
p̃−

)
, a−θ1(ε1) + a+θ3(ε3) =

ũ+ − ũ−
2

.

Hence, (3.9) holds.
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Fig. 6. Interaction of a 3-wave δ3 with a composite wave δ0. (a), (c): the actual Riemann solvers,

the Accurate case (a) and the Simplified one (c); (b), (d): the auxiliary pictures, the Accurate case
(b) and the Simplified one (d).

Finally, we verify the relations on the signs of the outgoing waves ε1, ε3. We

prove only case δ > 0, since the other one is symmetric by replacing i = 1 with

i = 3. Notice that for RLL the results collected in (3.10) have already been proved

in [3] and we obtain the same interaction patterns of [1, (5.5)].

When the Simplified solver is used and i = 3, by (3.9) ε1, ε3 solve

{
ε3 − ε1 = δ3 ,

a−ε1 + a+h(ε3) = a−h(δ3) .
(3.11)

Substituting the expression for ε1 coming from the first equation of (3.11) into the

second one, we obtain ε3 + kh(ε3) = δ3 + h(δ3), where k = a+/a− > 1. Hence, we

have that sgn ε3 = sgn δ3. Now, take δ3 < 0 and assume to use RLL to solve the

Riemann problem at the point of interaction. The corresponding outgoing waves
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ε∗1, ε
∗
3 solve {

ε∗3 − ε∗1 = δ3 ,

a−h(ε∗1) + a+h(ε∗3) = a−h(δ3) .
(3.12)

Since ε∗1 > 0, then system (3.12) reduces to (3.11) and, by uniqueness, its solution

coincides precisely with ε1, ε3. Hence, (3.10) is valid. If δ3 > 0, instead, we have

that h(δ3) = δ3 and h(ε3) = ε3, i.e. in this case it holds RIL = RII . This amounts to

solve a linear system in ε1, ε3 and we find ε1 = −δ3δ/2. Hence, sgn ε1 = −sgn δ3 =

−sgn δ · sgn δ3, as wished.

When i = 1, by (3.9) ε1, ε3 solve{
ε3 − ε1 = −δ1 ,
a−h(ε1) + a+ε3 = a+h(δ1) .

(3.13)

Again, it is easy to prove that sgn ε1 = sgn δ1. If δ1 > 0, then RLI = RII and system

(3.13) is linear. Thus, we get ε3 = δ1δ/2 and sgn ε3 = sgn δ1 = sgn δ · sgn δ1, as

wished. If, instead, δ1 < 0, then the second formula in (3.13) becomes

sinh ε1 + kε3 = k sinh δ1 , (3.14)

where k = a+/a− > 1. By substituting the expression for ε1 obtained from the first

equation of (3.13) in (3.14), we get k(ε3 + δ1) + sinh(ε3 + δ1) = k (sinh δ1 + δ1). If

we call Γ(x) := kx+ sinhx, then Γ(ε3 + δ1) = k (sinh δ1 + δ1) and

Γ(ε3 + δ1)− Γ(δ1) = (k − 1) sinh δ1 . (3.15)

Since Γ is a strictly increasing function and δ1 < 0, it follows ε3 < 0, that is

sgn ε3 = sgn δ1 = sgn δ · sgn δ1. Therefore, the proposition is completely proved.

Remark 3.8. Differently from [1], in the Simplified Riemann solver the emerging

error is not only on the u-component of the 0-wave and the transmitted i-wave εi
does not maintain the same strength δi of the incoming one. The latter is a key

feature of the solver, that guarantees the decrease of the functional defined in (5.1)

across any interaction. Indeed, here we take into account the possible appearance

of a reflected j-wave εj (j 6= i) that we attach to δ0 in place of a standard non-

physical wave as in [4]: this is possible because the states connected by εj and by

the δj0 component lie on the same j-integral curve. See Remark 5.2 for more details.

4. Approximate solutions

We use Proposition 3.7 to build up the piecewise-constant approximate solutions to

(1.1) that are needed for the wave-front tracking scheme [9,4]. We first approximate

the initial data (1.3): for any ν ∈ N we take a sequence (vνo , u
ν
o) of piecewise constant

functions with a finite number of jumps such that, denoting pνo = a2(λo)/v
ν
o ,
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TV (log(pνo)) ≤ TV (log(po)) ,TV (uνo) ≤ TV (uo) ;

limx→−∞(vνo , u
ν
o)(x) = limx→−∞(vo, uo)(x);

‖(vνo , uνo)− (vo, uo)‖L1 ≤ 1/ν.

We introduce two strictly positive parameters: σ = σν , that controls the size of

rarefactions, and a threshold ρ = ρν , that determines which of the two Riemann

solver is to be used and depends on the initial data. Here follows a description of

the scheme that improves the algorithm of [4] and adapts it to the current situation.

(1) At time t = 0 we solve the Riemann problems at each point of jump of

(vνo , u
ν
o , λo)(·, 0+) as follows: shocks are not modified while rarefactions are

approximated by fans of waves, each of them having size less than σ. More

precisely, a rarefaction of size ε is approximated by N = [ε/σ] + 1 waves whose

size is ε/N < σ; we set their speeds to be equal to the characteristic speed of

the state at the right. Then (vν , uν , λo)(·, t) is defined until some wave fronts

interact; by slightly changing the speed of some waves we can assume that only

two fronts interact at a time.

(2) When two wave fronts of the families 1 or 3 interact, we solve the Riemann

problem at the interaction point. If one of the incoming waves is a rarefaction,

after the interaction it is prolonged (if it still exists) as a single discontinuity

with speed equal to the characteristic speed of the state at the right. If a new

rarefaction is generated, we employ the Riemann solver described in step (1)

and split the rarefaction into a fan of waves having size less than σ.

(3) When a wave front of family 1 or 3 with strength δ interacts with one of the

composite waves at a time t > 0, we proceed as follows:

• if |δ| ≥ ρ, we use the Accurate solver introduced in Proposition 3.7, parti-

tioning the possibly new rarefaction according to (1);

• if |δ| < ρ, we use the Simplified solver of Proposition 3.7.

5. Interactions

In this section we analyze interactions between waves. We separately study inter-

actions that involve one of the two composite waves and interactions between 3-

and 1-waves occurring in one of the regions L,M,R. In particular, we focus on

the interaction estimates for the former ones and we introduce a new functional F ,

different from that of [4], to estimate the possible increase of the total variation.

Consider t > 0 at which no interactions occur and ξ ≥ 1 to be determined.

Using indices `,m, r to refer to waves in the region L,M,R, respectively, we define

L = L` + Lm + Lr, where

L`,m,r =
∑

i=1,3, δi>0
δi∈L,M,R

|δi|+ ξ
∑

i=1,3, δi<0
δi∈L,M,R

|δi| .
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For K`,m,r
η,ζ > 0 (see Fig. 7) we introduce Q = Q` +Qm +Qr, where

Q` =
(
K`
η|η|+K`

ζ |ζ|
) ∑
δ3>0
δ3∈L

|δ3|+ ξK`
η

∑
δ3<0
δ3∈L

|δ3η| ,

Qm = Km
η

∑
δ1>0
δ1∈M

|δ1η|+Km
ζ

∑
δ3>0
δ3∈M

|δ3ζ| ,

Qr =
(
Kr
η |η|+Kr

ζ |ζ|
) ∑
δ1>0
δ1∈R

|δ1|+ ξKr
ζ

∑
δ1<0
δ1∈R

|δ1ζ| .

Moreover, we define F `,m,r = L`,m,r +Q`,m,r and

F = F ` + Fm + F r + L0 , (5.1)

where L0 = |η0|+ |ζ0|. Clearly, F can be seen as defined also by F = L+Q+ L0.

We also write

L̄ = L̄` + L̄m + L̄r =
∑
i=1,3
δi∈L

|δi|+
∑
i=1,3
δi∈M

|δi|+
∑
i=1,3
δi∈R

|δi| =
1

2
TV (log p(·, t))− |η0| − |ζ0| .
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Fig. 7. The parameters K`,m,r
η,ζ related to the approached 2-wave and to the regions of provenience

of the approaching waves.

Remark 5.1. The summation in Q` (Qr) is performed over the set of waves ap-

proaching the composite waves from the left (right, respectively) but it does not

include 3-shocks approaching ζ0 (1-shocks approaching η0, respectively). Moreover,

the sum in Qm includes neither 3-shocks approaching ζ0 nor 1-shocks approaching

η0. Indeed, the contributions given by these waves can be dropped from the in-

teraction potential since the linear functional L decreases when they interact with

a 0-wave. The functional F obtained in this way has proven to provide the best

possible conditions on the parameters involved and, consequently, the largest ones

on the initial data. Clearly, the choice of F is reflected in (2.3), where the total

variation of the data can be taken larger in M than in the outer regions.
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Remark 5.2. We will prove that the functional F decreases when we use the

Riemann solvers introduced in Proposition 3.7. This property does not hold true

with the solvers of [1,4]. As already mentioned in Remark 3.8, the key point is that

in the Simplified solver the strength of the transmitted wave is not the same of the

incoming one, while they coincide for the Pseudo Simplified solver of [1]. Indeed,

consider an asymmetrical functional F1 adapted to the situation of [1], i.e. F1 does

not include 3-shocks in the interaction potential. In the case of an interaction of a

3-shock with the 2-wave δ2 > 0 solved by the Pseudo Simplified solver, we would

get ∆L = Knp|γ2,0| > 0 and ∆Q = 0. Thus, F1 would increase.

In the following we often assume that, for some fixed mo > 0, any interacting

i-wave, i = 1, 3, with strength δi satisfies

|δi| ≤ mo . (5.2)

In particular, this bound is to be imposed only to shock waves, since we can control

the strength of the rarefaction waves by (6.1) below.

5.1. Interactions with the composite waves

Here we collect all the estimates concerning the composite waves.

Lemma 5.3 (Interaction estimates). Let i = 1, 3. Consider the interaction of

an i-wave δi with a composite wave δ0 = (δ10 , δ, δ
3
0). Denote by εi the strength of the

transmitted wave and by εj, j = 1, 3, j 6= i, the strength of the reflected one (even

in the Simplified case, where it is attached to δ0). Then, when |δi| ≥ ρ it holds

|εi − δi| = |εj | ≤
1

2
|δiδ| and |ε0 − δ0| = 0 ; (5.3)

while, when |δi| < ρ it holds

|εi − δi| = |ε0 − δ0| = |εj |

≤


Co
2
|δiδ| if δi < 0 and either (i = 1, δ > 0) or (i = 3, δ < 0) ,

1

2
|δiδ| otherwise ,

(5.4)

where Co = Co(ρ) = sinh(ρ)/ρ > 1 is such that Co(ρ)→ 1+ for ρ→ 0+.

Proof. When |δi| ≥ ρ, i.e. when the Accurate solver is used, (5.3)2 is immediate

and (5.3)1 can be derived from (3.9) (case θ1 = θ3 = h) following the same steps as

in [3, Theorem 2].

When |δi| < ρ, i.e. when the Simplified solver is used, we analyze only the case

δ > 0 and refer to Fig. 6 (c), (d). The equality |εi−δi| = |εj | in (5.4) is a consequence

of (3.9)1, while |ε0 − δ0| = |εj | reflects our choice to attach the reflected wave to

the composite one. To prove the inequality in (5.4), we distinguish cases according

to the characteristic family and the sign of the interacting wave. If δi > 0, then
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RLI = RII for i = 1 and RIL = RII for i = 3; moreover, it holds |εj | = |δiδ|/2 by

(3.9). When i = 3 and the interacting wave has negative sign, as in Proposition 3.7

we have RIL = RLL and the interaction estimate (5.4) follows exactly as in the

Accurate case. Instead, when i = 1 and the interacting wave has negative sign, we

have to pay more attention. Recall from Proposition 3.7 that we have ε1 = ε3 + δ1
and ε3 < 0, δ1 < 0; moreover, (3.15) holds. By the Mean Value Theorem there

exists some s such that Γ(ε3 + δ1)− Γ(δ1) = Γ′(s)ε3. Hence, we have

(k + 1)|ε3| ≤ Γ′(s)|ε3| = (k − 1) sinh |δ1|
and we deduce

|ε3| ≤
k − 1

k + 1
sinh |δ1| =

δ

2
sinh |δ1| ≤

Co
2
|δ1δ| .

We will discuss in Appendix A a refinement of estimate (5.4). Notice also that in

the previous lemma the biggest effort is required to handle the estimates for shocks

interacting with δ0 and going towards the phase where a is smaller. In our case,

these are precisely the shocks that hitM from the outside, i.e. 1-shocks interacting

with ζ0 and 3-shocks with η0.

Now, we are ready to give a first list of conditions to impose on the parameters

ξ,K`,m,r
η,ζ and ρ in order that the functional F decreases at any interaction time.

Proposition 5.4. Assume that at a time t > 0 a wave δi, i = 1, 3, interacts with

one of the composite waves η0 or ζ0. Then, ∆F (t) ≤ 0 provided that

ξ ≥ 1 , Kr
ζ ,K

`
η ≥ 1 ,

ξ − 1

2
≤ Km

ζ ≤
ξ − 1

|ζ| ,
ξ − 1

2
≤ Km

η ≤
ξ − 1

|η| ,

(5.5)

Km
η

(
1 +
|ζ|
2

)
|η| ≤ Kr

η |η|+ (Kr
ζ − 1)|ζ| , Km

ζ

(
1 +
|η|
2

)
|ζ| ≤ K`

ζ |ζ|+ (K`
η − 1)|η| ,

(5.6)

Co(ρ) ≤ 2ξ

ξ + 1
min{Kr

ζ ,K
`
η} . (5.7)

Proof.

Since the two cases give symmetric conditions, we only analyze interactions

involving ζ0; see Fig. 8. We have{
ε3 − ε1 = −δ1, |ε1| − |δ1| = |ε3| , if i = 1 ,

ε3 − ε1 = δ3, |ε3| − |δ3| = −|ε1| , if i = 3 .

i = 1. If the interacting wave is a rarefaction, then by (5.3),(5.4) we have ∆L +

∆L0 = |ε3| + |ε1| − |δ1| = 2|ε3| ≤ |δ1ζ| and ∆Q = Km
η |ε1η| − Kr

η |δ1η| − Kr
ζ |δ1ζ|.

Therefore,

∆F ≤ |δ1|
[(
Km
η

(
1 +
|ζ|
2

)
−Kr

η

)
|η|+ (1−Kr

ζ )|ζ|
]
,
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Fig. 8. Interactions of 1- and 3-waves with ζ0 solved by means of the Accurate solver. Here the

fronts carrying the composite waves are represented as a single line.

which is nonpositive by (5.6)1. Instead, if the interacting wave is a shock, then by

(5.3),(5.4)

∆L+ ∆L0 =


ξ|ε1|+ ξ|ε3| − ξ|δ1| = 2ξ|ε3| ≤ ξ|δ1ζ| if |δ1| ≥ ρ ,

ξ|ε1|+ |ε3| − ξ|δ1| = (1 + ξ)|ε3| ≤ Co(1 + ξ)
|δ1ζ|

2
if |δ1| < ρ ,

and ∆Q = −Kr
ζ ξ|δ1ζ| in both cases. Consequently,

∆F ≤


ξ
[
1−Kr

ζ

]
|δ1ζ| if |δ1| ≥ ρ ,[

(1 + ξ)
Co
2
− ξKr

ζ

]
|δ1ζ| if |δ1| < ρ ,

is nonpositive by (5.5)1,2 and (5.7).

i = 3. If the interacting wave is a rarefaction, then by the interaction estimates

∆L+ ∆L0 =

ξ|ε1|+ |ε3| − |δ3| = (ξ − 1)|ε1| ≤ (ξ − 1)
|δ3ζ|

2
if |δ3| ≥ ρ ,

|ε1|+ |ε3| − |δ3| = 0 if |δ3| < ρ ,

and ∆Q = −Km
ζ |δ3ζ|. Then,

∆F

≤
[
ξ − 1

2
−Km

ζ

]
|δ3ζ| if |δ3| ≥ ρ ,

= −Km
ζ |δ3ζ| if |δ3| < ρ ,

is nonpositive if (5.5)3 holds. On the other hand, if the interacting wave is a shock,

then ∆L+ ∆L0 = |ε1|+ ξ|ε3| − ξ|δ3| = −(ξ − 1)|ε1| and

∆Q =

K
m
η |ε1η| if |δ3| ≥ ρ ,

0 if |δ3| < ρ .
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Therefore,

∆F =


[
−(ξ − 1) +Km

η |η|
]
|ε1| if |δ3| ≥ ρ ,

−(ξ − 1)|ε1| if |δ3| < ρ ,

is nonpositive by (5.5)4.

5.2. Interactions between waves of the same family

In this subsection we analyze the interactions between 1- and 3-waves, see Fig. 9.
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Fig. 9. Interactions of 1- and 3-waves.

For interactions of two i-waves, i = 1, 3, under the notation of Fig. 9 we shall

make use of the identities [3]:

ε3 − ε1 =

{
−α1 − β1 if i = 1 ,

α3 + β3 if i = 3 ,
h(ε1) + h(ε3) = h(αi) + h(βi) , i = 1, 3 .

(5.8)

Lemma 5.5. For the interaction patterns in Fig. 9, the following holds.

(1) Two interacting waves of different families cross each other without changing

strengths.

(2) Let αi, βi be two interacting waves of the same family and ε1, ε3 the outgoing

waves.

(a) If both incoming waves are shocks, then the outgoing wave of the same

family is a shock and satisfies |εi| > max{|αi|, |βi|}; the reflected wave is

a rarefaction.

(b) If the incoming waves have different signs, then the reflected wave is a

shock; both the amounts of shocks and rarefactions of the i-th family de-

crease across the interaction. Moreover for j 6= i and αi < 0 < βi one

has

|εj | ≤ c(αi) ·min{|αi|, |βi|} , c(z) =
cosh z − 1

cosh z + 1
. (5.9)
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The proof of Lemma 5.5 can be found in [1], where the function c is used in

place of the damping coefficient d of [4]. Remark also that, by definition of the

functionals, we need to distinguish between interactions taking place in M and in

L or R.

Proposition 5.6. Consider the interaction at time t > 0 of two waves of the same

family 1 or 3 and assume (5.2). Then, ∆F (t) ≤ 0 provided that

1 ≤ ξ ≤ 1

c(mo)
, Km

ζ ≤
ξ − 1

|ζ| , Km
η ≤

ξ − 1

|η| , (5.10)

Kr
η |η|+Kr

ζ |ζ| ≤ ξ − 1 , K`
η|η|+K`

ζ |ζ| ≤ ξ − 1 . (5.11)

Proof. First, we consider the interactions taking place inM, see Fig. 10. Here, we

only cover the case of interactions between two 3-waves α3 and β3 giving rise to ε1
and ε3 (the 1-waves case is analogous).

η0 ζ0

�
�

�
�α3








 β3

�
��

ε3

@
@@

ε1

L M R

Fig. 10. Interactions of 3-waves in M.

When both α3 and β3 are shocks, by Lemma 5.5 we have that ε1 is a rarefaction

and we notice as in [1, Proposition 5.8] that

∆L+ |ε1|(ξ − 1) = 0 , (5.12)

for any ξ ≥ 1. Moreover, we have

∆Q = Km
η |ε1η| ,

∆F =
[
−(ξ − 1) +Km

η |η|
]
|ε1|

and F is non-increasing by (5.10)1,3. On the other hand, when the two interacting

waves are of different type, for example α3 < 0 < β3, as in [1, Proposition 5.8] one

can prove that it holds

∆L+ ξ(ξ − 1)|ε1| ≤ 0 (5.13)

by condition (5.10)1. If ε3 is a rarefaction, then ∆Q = Km
ζ (|ε3| − |β3|) |ζ| and F

decreases by Lemma 5.5; if ε3 is a shock, then ∆Q = −Km
ζ |β3ζ| and, again, F

decreases. Remark that the analysis of the interactions between 1-waves requires

symmetrically the condition Km
ζ ≤ (ξ − 1)/|ζ|.
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Next, we analyze the case of interactions taking place in R (similarly one pro-

ceeds to analyze those occurring in L). As for interactions between two 1-waves, it

is easy to verify that F decreases with no need of other conditions than (5.10)1.

η0 ζ0

L M R
�
�

�
�α3








 β3

�
��

ε3

@
@@

ε1

Fig. 11. Interactions of 3-waves in R.

As for interactions between 3-waves (Fig. 11), instead, we need to require (5.10)1,3
in order to have ∆F (t) ≤ 0. Indeed, we have (5.12) when the interacting waves

α3, β3 are both shocks, while in the other two cases of interaction it still holds

(5.13) under condition (5.11)1. Also, if α3, β3 < 0 we have

∆Q = Kr
η |ε1η|+Kr

ζ |ε1ζ| ,
∆F =

[
−(ξ − 1) +Kr

η |η|+Kr
ζ |ζ|
]
|ε1| ,

while if, for example, α3 < 0 < β3 we have

∆Q = Kr
ζ ξ|ε1ζ| ,

∆F ≤ ξ
[
−(ξ − 1) +Kr

ζ |ζ|
]
|ε1| .

Consequently, F is non-increasing by (5.11)1.

Symmetrically, in L we get the condition K`
η|η|+K`

ζ |ζ| ≤ ξ − 1.

5.3. Decreasing of the functional F and control of the variations

In order that F decreases across any interaction, the various parameters in (5.2),

(5.5), (5.6), (5.7), (5.10) and (5.11) are chosen in the following order. Given mo to

be fixed later on, we choose in turn ξ, Km
η,ζ , K

`,r
η,ζ and finally ρ. Remark that in the

following calculations we keep (almost) everywhere strict inequalities, since they

are needed in the analysis on the control of the size of the composite waves (see

Section 6.1).

We notice that, for the choice of Km
ζ,η, by (5.5)3,4 and (5.10) it must hold

ξ − 1

2
< min

{
ξ − 1

|η| ,
ξ − 1

|ζ|

}
, (5.14)

which is always satisfied since |η|, |ζ| < 2. Moreover, by putting together the condi-

tions obtained in (5.5)3 with (5.6)1 we get necessarily

(ξ− 1)
(
1 +
|ζ|
2

) |η|
2
< Kr

η |η|+ (Kr
ζ − 1)|ζ| < (ξ− 1)−Kr

ζ |ζ| ≤ (ξ− 1)− |ζ| . (5.15)
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Hence, it follows

(ξ − 1)
(
1 +
|ζ|
2

) |η|
2
< (ξ − 1)− |ζ| ,

which is equivalent to

1 +
|ζ|

1− (1 + |ζ|/2)|η|/2 < ξ , (5.16)

provided that 1− (1 + |ζ|/2)|η|/2 > 0. Analogously, from (5.5)4 and (5.6)1 we get

1 +
|η|

1− (1 + |η|/2)|ζ|/2 < ξ ,

provided that 1− (1 + |η|/2)|ζ|/2 > 0. Therefore, it must hold

1 + max

{ |ζ|
1− (1 + |ζ|/2)|η|/2 ,

|η|
1− (1 + |η|/2)|ζ|/2

}
< ξ (5.17)

under the stability condition

min

{
1−

(
1 +
|ζ|
2

) |η|
2
, 1−

(
1 +
|η|
2

) |ζ|
2

}
> 0 ,

which is equivalent to (2.1). Then, by (2.2), (5.5)1 and (5.17) we obtain the condition

1 +H(|η|, |ζ|) < ξ ≤ 1

c(mo)
.

Summarizing, the choice of the parameters proceeds as follows. Let |η|, |ζ| satisfy

(2.1).

• Recalling (5.10)1, we fix mo such that

c(mo) <
1

1 +H(|η|, |ζ|) . (5.18)

We will prove in Section 6.2 that this is possible under suitable conditions on

the initial data. Notice that c is a strictly increasing function of mo and then it

is invertible.

• Then, we choose ξ in the non-empty interval given by

1 +H(|η|, |ζ|) < ξ ≤ 1

c(mo)
. (5.19)

• We choose Km
η ,K

m
ζ such that

ξ − 1

2
< Km

η < min

{
ξ − 1

|η| ,
(ξ − 1)− |ζ|
(1 + |ζ|/2)|η|

}
=

(ξ − 1)− |ζ|
(1 + |ζ|/2)|η| , (5.20)

ξ − 1

2
< Km

ζ < min

{
ξ − 1

|ζ| ,
(ξ − 1)− |η|
(1 + |η|/2)|ζ|

}
=

(ξ − 1)− |η|
(1 + |η|/2)|ζ| . (5.21)

This is possible since these two intervals are non-empty by (5.19) and (5.16).

Thus, (5.5)3,4 and (5.10)2,3 follow and it holds

Km
η

(
1 +
|ζ|
2

)
|η| < (ξ − 1)− |ζ| , Km

ζ

(
1 +
|η|
2

)
|ζ| < (ξ − 1)− |η| . (5.22)
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• By (5.22), we choose Kr
η ,K

`
ζ that satisfy

Km
η

(
1 +
|ζ|
2

)
|η| ≤ Kr

η |η| < (ξ − 1)− |ζ| , (5.23)

Km
ζ

(
1 +
|η|
2

)
|ζ| ≤ K`

ζ |ζ| < (ξ − 1)− |η| ; (5.24)

then, we can take K`
η and Kr

ζ such that

1 < Kr
ζ < 1 +

(ξ − 1)− |ζ| −Kr
η |η|

|ζ| , (5.25)

1 < K`
η < 1 +

(ξ − 1)− |η| −K`
ζ |ζ|

|η| , (5.26)

from which (5.6) and (5.11) follow.

• Finally, we choose ρ that satisfies (5.7).

In the following proposition we collect the results obtained so far.

Proposition 5.7 (Local decreasing). Let mo > 0 satisfy (5.18) and consider

the interaction of two waves at time t that satisfy (5.2). Moreover, assume that ξ,

K`,m,r
η,ζ and ρ satisfy (5.19)–(5.26) and (5.7). Then,

∆F (t) ≤ 0 . (5.27)

Now, we can prove the global in time decreasing of the functional F .

Proposition 5.8 (Global decreasing). Let mo > 0 satisfy (5.18) and choose

parameters ξ, K`,m,r
η,ζ and ρ as in Proposition 5.7. Moreover, assume that

L̄`(0) + c(mo)L̄
m(0) + L̄r(0) ≤ mo c(mo) , (5.28)

and that the approximate solution is defined in [0, T ]. Then, F (0) ≤ mo, ∆F (t) ≤ 0

for every t ∈ (0, T ] and (5.2) is satisfied.

Proof. For convenience, we use notation LmiR and LmiS to indicate the partial sums

in Lm due to i-rarefaction waves (iR) and i-shock waves (iS), respectively. By

(5.5)3,4 we have

Fm(0) = Lm(0) +Qm(0) ≤
≤ Lm1S(0) + Lm1R(0)

(
1 +Km

η |η|
)

+ Lm3S(0) + Lm3R(0)
(
1 +Km

ζ |ζ|
)
≤

≤ Lm1S(0) + ξLm1R(0) + Lm3S(0) + ξLm3R(0) ≤ ξL̄m(0) .

Moreover, from (5.11) it follows

F `,r(0) ≤ L`,r(0)
(

1 +K`,r
η |η|+K`,r

ζ |ζ|
)
≤ ξ2L̄`,r(0) .

Then,

F (0) = F `(0) + Fm(0) + F r(0) ≤ ξ2L̄`(0) + ξL̄m(0) + ξ2L̄r(0) . (5.29)



January 14, 2016 8:52 WSPC/INSTRUCTION FILE Amadori-Baiti-Corli-
DalSanto

Global existence of solutions for a multi-phase flow: a drop in a gas-tube 25

Now, for a fixed t ≤ T , suppose by induction that F (τ) ≤ mo and ∆F (τ) ≤ 0 for

every 0 < τ < t, interaction time. Then, by Proposition 5.7 we have ∆F (t) ≤ 0.

This implies

F (t) ≤ F (0) ≤ ξ2L̄`(0) + ξL̄m(0) + ξ2L̄r(0) .

By (5.29) and (5.28) the size |δi| of a shock (i = 1, 3) at time t satisfies

|δi| ≤
1

ξ
F (t) ≤ ξL̄`(0)+L̄m(0)+ξL̄r(0) ≤ 1

c(mo)
L̄`(0)+L̄m(0)+

1

c(mo)
L̄r(0) ≤ mo .

Hence, (5.2) is satisfied and the proof is complete.

6. The convergence and consistency of the algorithm

In this section we finally conclude the proof of Theorem 2.1 on the convergence and

consistency of the front tracking algorithm.

In order to be well-defined, the algorithm must satisfy three main requirements:

i) the size of rarefaction waves must remain small; ii) the total number of wave fronts

and interactions must be finite; iii) the total size of the composite waves must vanish

as the approximation parameter ν tends to +∞. The first one is accomplished as

in [4, Lemma 6.1] and, in particular, the size ε of any rarefaction wave is bounded

by

0 < ε < σ

(
1 +

1

2
max {|η|, |ζ|}

)
< 2σ . (6.1)

The second requirement can be proved as in [4, Lemma 6.2 and Proposition 6.3];

while the next section is devoted to the proof of iii), i.e. of the consistency of the

algorithm.

6.1. Control of the total size of the composite waves

Our wave front-tracking scheme exploits the concept of generation order of a wave

to prove that the size of the error attached to the two phase waves tends to zero. We

introduce such generation order as in [4] for 1- and 3-waves, while for the composite

waves we proceed in the following way. Consider an interaction with δ0 (either η0 or

ζ0): we assign order 1 to the component δ (which never changes) and order kγ + 1

to the outgoing j-th component when the interacting wave is an i-wave γ of size

< ρ, i, j = 1, 3, j 6= i, while we keep the order of the other component unchanged.

In other words, denote by (kδ10 , 1, kδ30 ) the triple made of the orders of the three

components and consider the interaction with a wave γ solved by the Simplified

solver. Then, for the outgoing 0-wave ε0 = (ε10, δ, ε
3
0) we have

(kε10 , 1, kε30) =

{
(kγ + 1, 1, kδ30 ) if γ is of family 3 ,

(kδ10 , 1, kγ + 1) if γ is of family 1 .

Mimicking what has already been done in [4,1], for every k = 1, 2, . . . we define

the functionals Lk, Qk and Fk simply by referring L,Q, F to waves with order k.
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Moreover, we define L̃k =
∑
h≥k Lh and F̃k =

∑
h≥k Fh. In detail, for k ≥ 1 and

for ξ,K`,m,r
η,ζ as in Proposition 5.7, we define Lk = L`k + Lmk + Lrk, where

L`,m,rk =
∑

i=1,3, δi>0, kδi
=k

δi∈L,M,R

|δi|+ ξ
∑

i=1,3, δi<0, kδi
=k

δi∈L,M,R

|δi|

and Qk = Q`k +Qmk +Qrk, where

Q`k =
(
K`
η|η|+K`

ζ |ζ|
) ∑
δ3>0, kδ3

=k

δ3∈L

|δ3|+ ξK`
η

∑
δ3<0, kδ3

=k

δ3∈L

|δ3η| ,

Qmk = Km
η

∑
δ1>0, kδ1

=k

δ1∈M

|δ1η|+Km
ζ

∑
δ3>0, kδ3

=k

δ3∈M

|δ3ζ| ,

Qrk =
(
Kr
η |η|+Kr

ζ |ζ|
) ∑
δ1>0, kδ1

=k

δ1∈R

|δ1|+ ξKr
ζ

∑
δ1<0, kδ1

=k

δ1∈R

|δ1ζ| .

Moreover, we define

Fk = Lk +Qk + L0
k , (6.2)

where

L0
k =

∑
τk<t

(|∆η0|+ |∆ζ0|) (τk) , (6.3)

with τk in (6.3) denoting the interaction times when a small reflected wave of order

k is born and attached to one of the composite waves. As a consequence, only the

times τk where the Simplified solver is used give positive summands in (6.3), since

when the Accurate solver is used we have |∆η0|+ |∆ζ0| = 0.

By Ik we denote the set of times in which two waves of the same family of order

at most k interact with each other, while by Jk we denote the set of times in which

a wave of order k hits one of the two composite waves. Moreover, let Tk = Ik ∪ Jk.

Here, we will prove the analogous of [1, Proposition 6.1]. In particular, we define:

µ = max

{
1

2K`
η − 1

,
1

2Kr
ζ − 1

,
ξ

1 + 2Km
η

,
ξ

1 + 2Km
ζ

,
1 +Km

η |η|
ξ

,
1 +Km

ζ |ζ|
ξ

,

1 + (K`
η|η|+K`

ζ |ζ|)
ξ

,
1 + (Kr

η |η|+Kr
ζ |ζ|)

ξ
,

Co
ξ(2K`

η − Co)
,

Co
ξ(2Kr

ζ − Co)

}
.

(6.4)

We have that µ < 1 by the conditions required in Proposition 5.7.

Proposition 6.1. Let mo, ξ,K
`,m,r
η,ζ satisfy the assumptions of Proposition 5.7 and

assume that (5.2) holds, that is, |δi| ≤ mo for the size of every wave. Then, the

following holds for τ ∈ Th, h ≥ 1:

∆Fh < 0 , ∆Fh+1 > 0 , (6.5)

∆Fk = 0 if k ≥ h+ 2 . (6.6)
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Moreover,

[∆Fh+1]+ ≤ µ
(

[∆Fh]− −
h−1∑
`=1

∆F`

)
. (6.7)

Remark 6.2. Proposition 6.1 let us improve Proposition 5.7. Indeed, recalling that

Th = Ih ∪ Jh, Proposition 6.1 implies, for τ ∈ Ih,

∆F =

h−1∑
`=1

∆F` − [∆Fh]− + [∆Fh+1]+ ≤ −(1− µ)[∆Fh]− < 0 ,

while for τ ∈ Jh, being
∑h−1
`=1 [∆F`]+ = 0, it gives

∆F = −[∆Fh]− + [∆Fh+1]+ ≤ −(1− µ)[∆Fh]− < 0 .

Then, estimate (6.7) specifies the decrease of the functional F and improves (5.27).

Proof of Proposition 6.1. If k ≥ h+ 2, no wave of order k is involved and then

(6.6) holds . To prove (6.5) and (6.7), we distinguish between two cases.

τ ∈ Ih (Interactions between waves of 1-, 3-family).

Clearly the Fk’s do not vary when a 1-wave interacts with a 3-wave. Then we

consider interactions of waves of the same family occurring in one of the three

distinct regions L,M,R. Since τ ∈ Ih, then ∆Lh+1 = ∆L`,m,rh+1 > 0 and

0 ≤ ∆Qh+1 =


∆Qmh+1 ≤ max

{
Km
η |η|,Km

ζ |ζ|
}

∆Lmh+1 for interactions in M,

∆Q`,rh+1 ≤
(
K`,r
η |η|+K`,r

ζ |ζ|
)

∆L`,rh+1 for interactions in L,R.

(6.8)

Also, ∆Fh = ∆Lh + ∆Qh < 0, since both terms in the sum are negative or zero.

This proves (6.5).

By (5.12) and (5.13) (see also [4, (6.10)]), we have that

[∆Lh+1]+ ≤
1

ξ

(
[∆Lh]− −

h−1∑
`=1

∆L`

)
. (6.9)

From (6.9), (6.8) and (6.4) we deduce that

0 < ∆Fh+1 ≤


(

1 + max
{
Km
η |η|,Km

ζ |ζ|
})

[∆Lh+1]+ for interactions in M ,(
1 +K`,r

η |η|+K`,r
ζ |ζ|

)
[∆Lh+1]+ for interactions in L,R ,

≤ µ
(

[∆Lh]− −
h−1∑
`=1

∆L`

)
.

(6.10)
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We now claim that

[∆Qh]− −
h−1∑
`=1

∆Q` ≥ 0 . (6.11)

To prove (6.11), we only have to analyze the cases when ∆Q` > 0 for an ` ≤ h− 1.

This can occur for interactions between waves αi < 0 < βi with αi of order ` and

βi of order h, giving rise to waves εi, εj of different sign, i, j = 1, 3, i 6= j. More

precisely, by Lemma 5.5 we have, according to interactions take place in L, M, R,

[∆Qh]− −
h−1∑
`=1

∆Q` =



[
(−|ε3|+ |β3|)

(
K`
η|η|+K`

ζ |ζ|
)

+ ξK`
η|α3η|

]
in L ,

Km
η (−|ε1|+ |β1|) |η| in M ,

Km
ζ (−|ε3|+ |β3|) |ζ| in M ,[

(−|ε1|+ |β1|)
(
Kr
η |η|+Kr

ζ |ζ|
)

+ ξKr
ζ |α1ζ|

]
in R ,

which is always a nonnegative quantity. This proves (6.11). Therefore, for τ ∈ Ih,

estimate (6.7) follows from (6.10) and (6.11).

τ ∈ Jh (Interactions with the composite waves).

Here we focus only on interactions involving ζ0, since the other case gives sym-

metric conditions. Since no wave of order ≤ h− 1 interact, then (6.7) reduces to

[∆Fh+1]+ ≤ µ[∆Fh]− . (6.12)

ζ0η0
A
A
A
A

δ1,h

�
�
�

ε3,h+1

@
@

@

ε1,h

M RL

Fig. 12. Interactions of a 1-wave δ1 with ζ0 solved by the Accurate solver.

To prove (6.12), assume that a 1-wave δ1 of order h interacts with ζ0; see Fig. 12

for the Accurate case. If δ1 is a rarefaction, then by Lemma 5.3 we have

∆Fh = ∆Lh + ∆Qh + ∆L0
h ≤
|δ1ζ|

2
+Km

η |ε1η| −Kr
η |δ1η| −Kr

ζ |δ1ζ| ≤

≤ |δ1|
[(
Km
η

(
1 +
|ζ|
2

)
−Kr

η

)
|η|+

(
1− 2Kr

ζ

) |ζ|
2

]
,
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which is nonpositive by (5.6)1 and, in particular, implies [∆Fh]− ≥ (2Kr
ζ−1)|δ1ζ|/2.

Notice that in the formula above the first inequality is due to the possible presence

of a wave of generation order h in ∆L0
h. As a consequence, we get (6.12) by (6.4):

[∆Fh+1]+ = Lh+1 = |ε3| ≤
|δ1ζ|

2
≤ 1

2Kr
ζ − 1

[∆Fh]− .

If, instead, δ1 is a shock, then

∆Fh = ξ|ε3| −Kr
ζ ξ|δ1ζ|+ ∆L0

h ≤


ξ
(
1− 2Kr

ζ

) |δ1ζ|
2

if |δ1| ≥ ρ ,

ξ
(
Co − 2Kr

ζ

) |δ1ζ|
2

if |δ1| < ρ .

is nonpositive by (5.5)2 and (5.7). Hence, by Lemma 5.3, we get

[∆Fh+1]+ =


Lh+1 = ξ|ε3| ≤ ξ

|δ1ζ|
2
≤ 1

2Kr
ζ − 1

[∆Fh]− if |δ1| ≥ ρ ,

∆L0
h+1 = |ε3| ≤

Co
2
|δ1ζ| ≤

Co
ξ(2Kr

ζ − Co)
[∆Fh]− if |δ1| < ρ .

On the other hand, let us consider the interaction with a wave δ3 of order h

belonging to family 3. We first analyze the case δ3 > 0; by Lemma 5.3 we have

∆Fh = ∆Lh + ∆Qh + ∆L0
h ≤ −[1 + 2Km

ζ ]|ε1| ≤ 0. Thus, by (6.4) we get (6.12):

[∆Fh+1]+ =


Lh+1 = ξ|ε1| ≤

ξ

1 + 2Km
ζ

[∆Fh]− if |δ3| ≥ ρ ,

∆L0
h+1 = |ε1| ≤

1

1 + 2Km
ζ

[∆Fh]− if |δ3| < ρ .

In the other case, i.e. when δ3 is a shock, we have ∆Fh ≤ −ξ|ε1| ≤ 0. Hence,

[∆Fh+1]+ =


Lh+1 +Qh+1 =

(
1 +Km

η |η|
)
|ε1| ≤

1 +Km
η |η|
ξ

[∆Fh]− if |δ3| ≥ ρ ,

∆L0
h+1 = |ε1| ≤

1

ξ
[∆Fh]− if |δ3| < ρ .

Then, (6.12) is completely proved. Finally, we notice that in all above cases for

τ ∈ Jh formula (6.7) holds.

The remaining analysis aims at proving that

F̃k(t) =
∑
j≥k

Fj(t) ≤ µk−1F1(0) (6.13)

for any k ≥ 2 and for any t; it is carried out as in [1, Propositions 6.3 and 6.4] and

follows from Proposition 6.1. In particular, formula (6.13) is needed to prove that

the total size of the composite waves vanishes as ν → ∞. We conclude the section

by determining parameters ρ and σ as in [4]. Fix σ > 0 such that σ = σν → 0 as
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ν → ∞ and estimate the total number of waves of order < k. Then, the total size

of the composite waves is less (or equal) than

L̃k(t) +
∑
h<k
τh<t

(|∆η0|+ |∆ζ0|) (τh)

≤ µk−1 · F1(0) + Co(ρ)
ρ

2
(|η|+ |ζ|) [number of fronts of order < k]

≤ µk−1 ·mo + Co(ρ)
ρ

2
(|η|+ |ζ|) [number of fronts of order < k] ,

which is < 1/ν by choosing k sufficiently large to have the first term ≤ 1/(2ν) and,

then, ρ = ρν(mo) small enough to have the second term also ≤ 1/(2ν).

6.2. End of the Proof of Theorem 2.1 and a comparison

In this last section we accomplish the proof of Theorem 2.1 and compare the result

we obtain with that proved in [4,5].

End of the Proof of Theorem 2.1. It only remains to reinterpret the choice of

the parameter mo in terms of the assumption (2.3) on the initial data. Notice that

we can approximate the initial datum (already satisfying 1., 2. and 3. of Section 4)

in such a way that the jump ((p`, u`, λ`), (pm, um, λm)) at the interface x = a is

substituted by a jump consisting of the 2-wave separating (p`, u`, λ`) and (p`, u`, λm)

at x = a and by the solution to the newly appeared Riemann problem at x = a+

with states (p`, u`, λm) and (pm, um, λm). Analogously, we can proceed for a jump

((pm, um, λm), (pr, ur, λr)) at x = b. This is possible because p, u remain constant

across a phase wave. Thus, we can relate hypothesis (2.3) to (5.28) by including in

L̄m (L̄r, respectively) the total variation of po and uo at the interface and as in [4,

(3.12)] we can prove that

L̄`(0) ≤ 1

2
TV
x<a

(
log(po),

uo
a`

)
,

L̄m(0) ≤ 1

2
TV

a<x<b

(
log(po),

uo
am

)
,

L̄r(0) ≤ 1

2
TV
x>b

(
log(po),

uo
ar

)
.

(6.14)

Now, by (5.19), (5.28) and (6.14) we have to look for an mo satisfying

H(|η|, |ζ|) < 1

c(mo)
− 1 =

2

coshmo − 1
=: w(mo) (6.15)

and

TV
x<a

(
log(po),

uo
a`

)
+ c(mo) TV

a<x<b

(
log(po),

uo
am

)
+ TV
x>b

(
log(po),

uo
ar

)
< 2mo c(mo) =: z(mo) . (6.16)
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Notice that w(mo) is strictly decreasing from R+ to R+, while z(mo) is strictly

increasing on the same sets. We can now define

K(r) = z
(
w−1(r)

)
, r ∈ (0,+∞) , (6.17)

which can be written explicitly as

K(r) =
2

1 + r
c−1

(
1

1 + r

)
=

2

1 + r
log

(
1 +

2

r

(
1 +
√

1 + r
))

. (6.18)

Hence, if the assumption (2.3) holds, it is easy to prove that one can choose mo

such that (6.15), (6.16) hold. Finally, in order to pass to the limit and prove the

convergence to a weak solution, one can proceed as in [9]. Theorem 2.1 is, therefore,

completely proved.

Remark 6.3. Notice that a slight improvement of Theorem 2.1 follows from the

use of the Riemann invariants

z = u− a log v , w = u+ a log v ,

where a = a`, a = am and a = ar in the regions L, M and R, respectively. Indeed,

recalling Definition 3.2, one easily finds that the solution to the Riemann problem

with U− = (v−, u−, λ) and U+ = (v+, u+, λ) satisfies

|ε1|+ |ε3| ≤
1

4a
(|w+ − w−|+ |z+ − z−|) ≤

1

2
| log(p+)− log(p−)|+ 1

2a
|u+ − u−| ,

(with obvious notation) and the second inequality is possibly strict (for instance if

the solution to the Riemann problem is a single rarefaction).

Hence, the right sides of (6.14) could be replaced by 1
4a`

TVx<a (wo, zo),
1

4am
TVa<x<b (wo, zo) and 1

4ar
TVx>b (wo, zo), respectively, and (6.16) could be

given in terms of these quantities, leading to a weaker assumption on the initial

data.

Now, we make a comparison between Theorem 2.1 and the main result in [4],

which was proved to be equivalent to Theorem 3.1 of [5]. First, notice that condition

(3.6) of [5, Theorem 3.1] can be written as |η|+|ζ| < 1/2, when applied to the current

problem. Then, it implies (2.1), since

max

{(
1 +
|ζ|
2

) |η|
2
,
(
1 +
|η|
2

) |ζ|
2

}
<
|η|+ |ζ|

2
<

1

4
,

i.e. the domain D contains entirely that of [5].

Next, we claim that H(|η|, |ζ|) < |η|+ |ζ| when |η|+ |ζ| < 1/2. Indeed, by (2.1)

we have that

|ζ|
1− (1 + |ζ|/2)|η|/2 ≤ |η|+ |ζ|

is equivalent to

(|η|+ |ζ|)
(
1 +
|ζ|
2

)
≤ 2 ,
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which holds true by (2.1). Similarly, the inequality

|η|
1− (1 + |η|/2)|ζ|/2 ≤ |η|+ |ζ| ,

is equivalent to (|η|+ |ζ|)(1 + |η|/2) ≤ 2, which holds true for the same reason. This

proves the claim.

On the other hand, condition (3.7) of [5, Theorem 3.1] here becomes by (1.4)

TV

(
log(po),

1

am
uo

)
< H(|η|+ |ζ|) , (6.19)

where the function H(r) is only defined for r < 1/2 by

H(r) = 2(1− 2r)k−1(r) , k(mo) =
1−

√
d(mo)

2−
√
d(mo)

. (6.20)

Here above, d(mo) is the damping coefficient introduced in [4, Lemma 5.6]. From

[1] we already know that K > H in the common range |η|+ |ζ| < 1/2. Thus, (2.3)

improves (6.19), since the left-hand side of (6.19) is bigger than the left-hand side

of (2.3) and

K (H(|η|, |ζ|)) > K(|η|+ |ζ|) > H(|η|+ |ζ|) .

Consequently, we obtain enhanced conditions on the initial data in comparison with

[4,5], even though the latter results apply to a wider class of λo.

Remark 6.4. As already mentioned, in absence of one of two phase-waves, i.e. for

example η = 0, hypothesis [1, (2.3)], as well as (2.4), can be improved by (2.5).

Indeed, consider a modified functional F̂ = Fm + F r + L0, where Fm,r, L0 are the

same of (5.1) with η = 0 and M = {(x, t) : x < b}. Arguing as in the proof of

Proposition 5.8, if we assume that

c(mo) <
1

1 + |ζ| and c(mo)L̄
m(0) + L̄r(0) ≤ mo c(mo) ,

then F̂ decreases. This last inequality holds true if we take

c(mo) TV
x<b

(
log(po),

uo
am

)
+ TV
x>b

(
log(po),

uo
ar

)
< z(mo) ,

which is implied by (2.5).

Appendix A. On the estimate (5.4)

In this short appendix we consider estimate (5.4), in the case of interaction of a

1-shock with a composite wave δ0. The question is whether we can substitute Co
with 1. The answer is only partially positive as we show in the following lemma,

which improves (5.4). For simplicity, we focus on the case δ > 0.
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Lemma A.1. Assume that a 1-shock δ1 interacts with δ0, when δ > 0 and |δ1| < ρ.

Then,

|ε0 − δ0| = |ε3| ≤
1

2
δ|δ1| if 0 < δ ≤

√
5− 1 , (A.1)

where the bound on δ in (A.1) is sharp. We also have

|ε0 − δ0| = |ε3| ≤
Θ(δ, δ1)

2
δ|δ1| , (A.2)

for a suitable function Θ such that Θ(δ, z) ≤ 1 for δ ≤ 2/3, Θ(δ, z) > 1 on a right

neighborhood of z = 0 for δ > 2/3 and limz→+∞Θ(δ, z) = 0.

Remark that conditions (A.1) and (A.2) overlap when δ ≤ 2/3.

Proof of Lemma A.1. First, we claim that for every fixed δ >
√

5− 1 there exist

r = r(δ) and R = R(δ) such that

sup
|δ1|<r

{ |ε0 − δ0|
δ|δ1|/2

}
> 1 , sup

|δ1|>R

{ |ε0 − δ0|
δ|δ1|/2

}
< 1 . (A.3)

Recalling that in this case ε1 = ε3+δ1 and ε3, δ1 < 0, equation (3.14) can be written

as

k|ε3|+ sinh(|ε3|+ |δ1|)− k sinh |δ1| = 0 ,

i.e. Γ̃(k, x, y) = 0 where x = |δ1|, y = |ε3|, k = (2 + δ)/(2 − δ), Γ̃(k, x, y) =

ky+ sinh(x+ y)− k sinhx; this equation implicitly defines y = y(x; k). Then, (A.1)

for a fixed δ is equivalent to y ≤ k−1
k+1x, and, since Γ̃y = k + cosh(x+ y) > 0, this is

true iff Γ̃(k, x, k−1k+1x) ≥ 0 for all x ≥ 0. It holds

Γ̃

(
k, x,

k − 1

k + 1
x

)
=

(
k
k − 1

k + 1
+

2k

k + 1
− k
)
x+

∞∑
h=1

[(
2k

k + 1

)2h+1

− k
]

x2h+1

(2h+ 1)!

=:

∞∑
h=1

ak,hx
2h+1 ,

as well as

Γ̃

(
k, x,

k − 1

k + 1
x

)
= ak,1x

3 + o(x3) = −k(k − 1)(k2 − 4k − 1)

6(k + 1)3
x3 + o(x3) .

We have ak,1 < 0 iff k > 2+
√

5; hence, Γ̃(k, x, k−1k+1x) < 0 in a right neighborhood of

x = 0. Since k > 2+
√

5 iff δ >
√

5−1, (A.3)1 follows. Moreover, for k > 1 fixed, there

exists h̃(k) such that ak,h > 0 for h ≥ h̃(k); this implies limx→+∞ Γ̃(k, x, k−1k+1x) =

+∞, hence (A.3)2. This proves the claim. As a consequence, for δ >
√

5−1 it holds

sup
|δ1|6=0

{ |ε0 − δ0|
δ|δ1|/2

}
> 1 ,

and the estimate on the left in (A.1) fails.



January 14, 2016 8:52 WSPC/INSTRUCTION FILE Amadori-Baiti-Corli-
DalSanto

34 D. Amadori, P. Baiti, A. Corli and E. Dal Santo

On the contrary, when k ≤ 2 +
√

5 (i.e. δ ≤
√

5− 1), there holds 0 ≤ ak,1 < ak,h
for h > 1, hence Γ̃(k, x, k−1k+1x) > 0 for all x ≥ 0 and (A.1) follows.

Now, we prove (A.2); by (3.14) and the Mean Value Theorem, there exists

s ∈ ]ε3 + δ1, δ1[ such that Γ(ε3 + δ1) − Γ(δ1) = Γ′(s)ε3. Since s < δ1 < 0 we get

Γ′(s) > Γ′(δ1) = k + cosh δ1 so that (k + cosh |δ1|) · |ε3| ≤ (k − 1) sinh |δ1|. Then,

(A.2) holds for all δ > 0, since

|ε3| ≤
k − 1

k + cosh |δ1|
sinh |δ1|

=

(
k + 1

k + cosh |δ1|
· sinh |δ1|
|δ1|

)
· 1

2
|δδ1| =: Θ(δ, |δ1|) ·

1

2
|δδ1| .

Finally, let us prove the properties of Θ. For simplicity, call z = |δ1|; then

Θ(δ, z) ≤ 1 iff 0 ≤ (k + cosh z)− (k + 1) sinh z/z, which is equivalent to

∞∑
h=1

[(2h+ 1)− (k + 1)]
z2h

(2h+ 1)!
≥ 0 .

This last inequality is verified for every z ≥ 0 iff 2h+ 1 ≥ k+ 1 for every h ≥ 1, i.e.

iff k ≤ 2. It is easy to check that k = 2 is equivalent to δ = 2/3. This implies that

Θ(δ, z) ≤ 1 for every z ≥ 0 if δ ≤ 2/3, while Θ(δ, z) > 1 on a right neighborhood of

0 if δ > 2/3. By construction Θ(δ, δ1) < Co(δ1) ≤ Co(ρ), with limδ1→∞Θ(δ, δ1) = 0,

while limδ1→∞ Co(δ1) = +∞. Hence, (A.2) is far better than (5.4) especially when

δ > 2/3. �
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