20,926 research outputs found

    An extension of Yuan's Lemma and its applications in optimization

    Full text link
    We prove an extension of Yuan's Lemma to more than two matrices, as long as the set of matrices has rank at most 2. This is used to generalize the main result of [A. Baccari and A. Trad. On the classical necessary second-order optimality conditions in the presence of equality and inequality constraints. SIAM J. Opt., 15(2):394--408, 2005], where the classical necessary second-order optimality condition is proved under the assumption that the set of Lagrange multipliers is a bounded line segment. We prove the result under the more general assumption that the hessian of the Lagrangian evaluated at the vertices of the Lagrange multiplier set is a matrix set with at most rank 2. We apply the results to prove the classical second-order optimality condition to problems with quadratic constraints and without constant rank of the jacobian matrix

    On the (non)existence of best low-rank approximations of generic IxJx2 arrays

    Get PDF
    Several conjectures and partial proofs have been formulated on the (non)existence of a best low-rank approximation of real-valued IxJx2 arrays. We analyze this problem using the Generalized Schur Decomposition and prove (non)existence of a best rank-R approximation for generic IxJx2 arrays, for all values of I,J,R. Moreover, for cases where a best rank-R approximation exists on a set of positive volume only, we provide easy-to-check necessary and sufficient conditions for the existence of a best rank-R approximation

    Three-point bounds for energy minimization

    Full text link
    Three-point semidefinite programming bounds are one of the most powerful known tools for bounding the size of spherical codes. In this paper, we use them to prove lower bounds for the potential energy of particles interacting via a pair potential function. We show that our bounds are sharp for seven points in RP^2. Specifically, we prove that the seven lines connecting opposite vertices of a cube and of its dual octahedron are universally optimal. (In other words, among all configurations of seven lines through the origin, this one minimizes energy for all potential functions that are completely monotonic functions of squared chordal distance.) This configuration is the only known universal optimum that is not distance regular, and the last remaining universal optimum in RP^2. We also give a new derivation of semidefinite programming bounds and present several surprising conjectures about them.Comment: 30 page

    Optimal decomposable witnesses without the spanning property

    Full text link
    One of the unsolved problems in the characterization of the optimal entanglement witnesses is the existence of optimal witnesses acting on bipartite Hilbert spaces H_{m,n}=C^m\otimes C^n such that the product vectors obeying =0 do not span H_{m,n}. So far, the only known examples of such witnesses were found among indecomposable witnesses, one of them being the witness corresponding to the Choi map. However, it remains an open question whether decomposable witnesses exist without the property of spanning. Here we answer this question affirmatively, providing systematic examples of such witnesses. Then, we generalize some of the recently obtained results on the characterization of 2\otimes n optimal decomposable witnesses [R. Augusiak et al., J. Phys. A 44, 212001 (2011)] to finite-dimensional Hilbert spaces H_{m,n} with m,n\geq 3.Comment: 11 pages, published version, title modified, some references added, other minor improvement

    On Marton's inner bound for broadcast channels

    Full text link
    Marton's inner bound is the best known achievable region for a general discrete memoryless broadcast channel. To compute Marton's inner bound one has to solve an optimization problem over a set of joint distributions on the input and auxiliary random variables. The optimizers turn out to be structured in many cases. Finding properties of optimizers not only results in efficient evaluation of the region, but it may also help one to prove factorization of Marton's inner bound (and thus its optimality). The first part of this paper formulates this factorization approach explicitly and states some conjectures and results along this line. The second part of this paper focuses primarily on the structure of the optimizers. This section is inspired by a new binary inequality that recently resulted in a very simple characterization of the sum-rate of Marton's inner bound for binary input broadcast channels. This prompted us to investigate whether this inequality can be extended to larger cardinality input alphabets. We show that several of the results for the binary input case do carry over for higher cardinality alphabets and we present a collection of results that help restrict the search space of probability distributions to evaluate the boundary of Marton's inner bound in the general case. We also prove a new inequality for the binary skew-symmetric broadcast channel that yields a very simple characterization of the entire Marton inner bound for this channel.Comment: Submitted to ISIT 201
    • …
    corecore