51,112 research outputs found

    Optimal paths on the road network as directed polymers

    Get PDF
    We analyze the statistics of the shortest and fastest paths on the road network between randomly sampled end points. To a good approximation, these optimal paths are found to be directed in that their lengths (at large scales) are linearly proportional to the absolute distance between them. This motivates comparisons to universal features of directed polymers in random media. There are similarities in scalings of fluctuations in length/time and transverse wanderings, but also important distinctions in the scaling exponents, likely due to long-range correlations in geographic and man-made features. At short scales the optimal paths are not directed due to circuitous excursions governed by a fat-tailed (power-law) probability distribution.Comment: 5 pages, 7 figure

    Towards Universally Optimal Shortest Paths Algorithms in the Hybrid Model

    Full text link
    A drawback of the classic approach for complexity analysis of distributed graph problems is that it mostly informs about the complexity of notorious classes of ``worst case'' graphs. Algorithms that are used to prove a tight (existential) bound are essentially optimized to perform well on such worst case graphs. However, such graphs are often either unlikely or actively avoided in practice, where benign graph instances usually admit much faster solutions. To circumnavigate these drawbacks, the concept of universal complexity analysis in the distributed setting was suggested by [Kutten and Peleg, PODC'95] and actively pursued by [Haeupler et al., STOC'21]. Here, the aim is to gauge the complexity of a distributed graph problem depending on the given graph instance. The challenge is to identify and understand the graph property that allows to accurately quantify the complexity of a distributed problem on a given graph. In the present work, we consider distributed shortest paths problems in the HYBRID model of distributed computing, where nodes have simultaneous access to two different modes of communication: one is restricted by locality and the other is restricted by congestion. We identify the graph parameter of neighborhood quality and show that it accurately describes a universal bound for the complexity of certain class of shortest paths problems in the HYBRID model

    Shortest path embeddings of graphs on surfaces

    Get PDF
    The classical theorem of F\'{a}ry states that every planar graph can be represented by an embedding in which every edge is represented by a straight line segment. We consider generalizations of F\'{a}ry's theorem to surfaces equipped with Riemannian metrics. In this setting, we require that every edge is drawn as a shortest path between its two endpoints and we call an embedding with this property a shortest path embedding. The main question addressed in this paper is whether given a closed surface S, there exists a Riemannian metric for which every topologically embeddable graph admits a shortest path embedding. This question is also motivated by various problems regarding crossing numbers on surfaces. We observe that the round metrics on the sphere and the projective plane have this property. We provide flat metrics on the torus and the Klein bottle which also have this property. Then we show that for the unit square flat metric on the Klein bottle there exists a graph without shortest path embeddings. We show, moreover, that for large g, there exist graphs G embeddable into the orientable surface of genus g, such that with large probability a random hyperbolic metric does not admit a shortest path embedding of G, where the probability measure is proportional to the Weil-Petersson volume on moduli space. Finally, we construct a hyperbolic metric on every orientable surface S of genus g, such that every graph embeddable into S can be embedded so that every edge is a concatenation of at most O(g) shortest paths.Comment: 22 pages, 11 figures: Version 3 is updated after comments of reviewer

    Universal properties of shortest paths in isotropically correlated random potentials

    Full text link
    We consider the optimal paths in a dd-dimensional lattice, where the bonds have isotropically correlated random weights. These paths can be interpreted as the ground state configuration of a simplified polymer model in a random potential. We study how the universal scaling exponents, the roughness and the energy fluctuation exponent, depend on the strength of the disorder correlations. Our numerical results using Dijkstra's algorithm to determine the optimal path in directed as well as undirected lattices indicate that the correlations become relevant if they decay with distance slower than 1/r in d=2 and 3. We show that the exponent relation 2nu-omega=1 holds at least in d=2 even in case of correlations. Both in two and three dimensions, overhangs turn out to be irrelevant even in the presence of strong disorder correlations.Comment: 8 pages LaTeX, eps figures included, typos added, references added, content change

    Betweenness Centrality in Large Complex Networks

    Full text link
    We analyze the betweenness centrality (BC) of nodes in large complex networks. In general, the BC is increasing with connectivity as a power law with an exponent η\eta. We find that for trees or networks with a small loop density η=2\eta=2 while a larger density of loops leads to η<2\eta<2. For scale-free networks characterized by an exponent γ\gamma which describes the connectivity distribution decay, the BC is also distributed according to a power law with a non universal exponent δ\delta. We show that this exponent δ\delta must satisfy the exact bound δ(γ+1)/2\delta\geq (\gamma+1)/2. If the scale free network is a tree, then we have the equality δ=(γ+1)/2\delta=(\gamma+1)/2.Comment: 6 pages, 5 figures, revised versio

    On Compact Routing for the Internet

    Full text link
    While there exist compact routing schemes designed for grids, trees, and Internet-like topologies that offer routing tables of sizes that scale logarithmically with the network size, we demonstrate in this paper that in view of recent results in compact routing research, such logarithmic scaling on Internet-like topologies is fundamentally impossible in the presence of topology dynamics or topology-independent (flat) addressing. We use analytic arguments to show that the number of routing control messages per topology change cannot scale better than linearly on Internet-like topologies. We also employ simulations to confirm that logarithmic routing table size scaling gets broken by topology-independent addressing, a cornerstone of popular locator-identifier split proposals aiming at improving routing scaling in the presence of network topology dynamics or host mobility. These pessimistic findings lead us to the conclusion that a fundamental re-examination of assumptions behind routing models and abstractions is needed in order to find a routing architecture that would be able to scale ``indefinitely.''Comment: This is a significantly revised, journal version of cs/050802
    corecore