48,740 research outputs found

    Distinguishing graphs by their left and right homomorphism profiles

    Get PDF
    We introduce a new property of graphs called ‘q-state Potts unique-ness’ and relate it to chromatic and Tutte uniqueness, and also to ‘chromatic–flow uniqueness’, recently studied by Duan, Wu and Yu. We establish for which edge-weighted graphs H homomor-phism functions from multigraphs G to H are specializations of the Tutte polynomial of G, in particular answering a question of Freed-man, Lovász and Schrijver. We also determine for which edge-weighted graphs H homomorphism functions from multigraphs G to H are specializations of the ‘edge elimination polynomial’ of Averbouch, Godlin and Makowsky and the ‘induced subgraph poly-nomial’ of Tittmann, Averbouch and Makowsky. Unifying the study of these and related problems is the notion of the left and right homomorphism profiles of a graph.Ministerio de Educación y Ciencia MTM2008-05866-C03-01Junta de Andalucía FQM- 0164Junta de Andalucía P06-FQM-0164

    Note on the smallest root of the independence polynomial

    Get PDF
    One can define the independence polynomial of a graph G as follows. Let i(k)(G) denote the number of independent sets of size k of G, where i(0)(G) = 1. Then the independence polynomial of G is I(G,x) = Sigma(n)(k=0)(-1)(k)i(k)(G)x(k). In this paper we give a new proof of the fact that the root of I(G,x) having the smallest modulus is unique and is real

    Differential Calculus on Graphon Space

    Full text link
    Recently, the theory of dense graph limits has received attention from multiple disciplines including graph theory, computer science, statistical physics, probability, statistics, and group theory. In this paper we initiate the study of the general structure of differentiable graphon parameters FF. We derive consistency conditions among the higher G\^ateaux derivatives of FF when restricted to the subspace of edge weighted graphs Wp\mathcal{W}_{\bf p}. Surprisingly, these constraints are rigid enough to imply that the multilinear functionals Λ:Wpn→R\Lambda: \mathcal{W}_{\bf p}^n \to \mathbb{R} satisfying the constraints are determined by a finite set of constants indexed by isomorphism classes of multigraphs with nn edges and no isolated vertices. Using this structure theory, we explain the central role that homomorphism densities play in the analysis of graphons, by way of a new combinatorial interpretation of their derivatives. In particular, homomorphism densities serve as the monomials in a polynomial algebra that can be used to approximate differential graphon parameters as Taylor polynomials. These ideas are summarized by our main theorem, which asserts that homomorphism densities t(H,−)t(H,-) where HH has at most NN edges form a basis for the space of smooth graphon parameters whose (N+1)(N+1)st derivatives vanish. As a consequence of this theory, we also extend and derive new proofs of linear independence of multigraph homomorphism densities, and characterize homomorphism densities. In addition, we develop a theory of series expansions, including Taylor's theorem for graph parameters and a uniqueness principle for series. We use this theory to analyze questions raised by Lov\'asz, including studying infinite quantum algebras and the connection between right- and left-homomorphism densities.Comment: Final version (36 pages), accepted for publication in Journal of Combinatorial Theory, Series

    Parameter identifiability in a class of random graph mixture models

    Full text link
    We prove identifiability of parameters for a broad class of random graph mixture models. These models are characterized by a partition of the set of graph nodes into latent (unobservable) groups. The connectivities between nodes are independent random variables when conditioned on the groups of the nodes being connected. In the binary random graph case, in which edges are either present or absent, these models are known as stochastic blockmodels and have been widely used in the social sciences and, more recently, in biology. Their generalizations to weighted random graphs, either in parametric or non-parametric form, are also of interest in many areas. Despite a broad range of applications, the parameter identifiability issue for such models is involved, and previously has only been touched upon in the literature. We give here a thorough investigation of this problem. Our work also has consequences for parameter estimation. In particular, the estimation procedure proposed by Frank and Harary for binary affiliation models is revisited in this article

    Upper tails and independence polynomials in random graphs

    Full text link
    The upper tail problem in the Erd\H{o}s--R\'enyi random graph G∼Gn,pG\sim\mathcal{G}_{n,p} asks to estimate the probability that the number of copies of a graph HH in GG exceeds its expectation by a factor 1+δ1+\delta. Chatterjee and Dembo showed that in the sparse regime of p→0p\to 0 as n→∞n\to\infty with p≥n−αp \geq n^{-\alpha} for an explicit α=αH>0\alpha=\alpha_H>0, this problem reduces to a natural variational problem on weighted graphs, which was thereafter asymptotically solved by two of the authors in the case where HH is a clique. Here we extend the latter work to any fixed graph HH and determine a function cH(δ)c_H(\delta) such that, for pp as above and any fixed δ>0\delta>0, the upper tail probability is exp⁡[−(cH(δ)+o(1))n2pΔlog⁡(1/p)]\exp[-(c_H(\delta)+o(1))n^2 p^\Delta \log(1/p)], where Δ\Delta is the maximum degree of HH. As it turns out, the leading order constant in the large deviation rate function, cH(δ)c_H(\delta), is governed by the independence polynomial of HH, defined as PH(x)=∑iH(k)xkP_H(x)=\sum i_H(k) x^k where iH(k)i_H(k) is the number of independent sets of size kk in HH. For instance, if HH is a regular graph on mm vertices, then cH(δ)c_H(\delta) is the minimum between 12δ2/m\frac12 \delta^{2/m} and the unique positive solution of PH(x)=1+δP_H(x) = 1+\delta

    Bayesian Networks for Max-linear Models

    Full text link
    We study Bayesian networks based on max-linear structural equations as introduced in Gissibl and Kl\"uppelberg [16] and provide a summary of their independence properties. In particular we emphasize that distributions for such networks are generally not faithful to the independence model determined by their associated directed acyclic graph. In addition, we consider some of the basic issues of estimation and discuss generalized maximum likelihood estimation of the coefficients, using the concept of a generalized likelihood ratio for non-dominated families as introduced by Kiefer and Wolfowitz [21]. Finally we argue that the structure of a minimal network asymptotically can be identified completely from observational data.Comment: 18 page
    • …
    corecore