7 research outputs found

    Using quantum key distribution for cryptographic purposes: a survey

    Full text link
    The appealing feature of quantum key distribution (QKD), from a cryptographic viewpoint, is the ability to prove the information-theoretic security (ITS) of the established keys. As a key establishment primitive, QKD however does not provide a standalone security service in its own: the secret keys established by QKD are in general then used by a subsequent cryptographic applications for which the requirements, the context of use and the security properties can vary. It is therefore important, in the perspective of integrating QKD in security infrastructures, to analyze how QKD can be combined with other cryptographic primitives. The purpose of this survey article, which is mostly centered on European research results, is to contribute to such an analysis. We first review and compare the properties of the existing key establishment techniques, QKD being one of them. We then study more specifically two generic scenarios related to the practical use of QKD in cryptographic infrastructures: 1) using QKD as a key renewal technique for a symmetric cipher over a point-to-point link; 2) using QKD in a network containing many users with the objective of offering any-to-any key establishment service. We discuss the constraints as well as the potential interest of using QKD in these contexts. We finally give an overview of challenges relative to the development of QKD technology that also constitute potential avenues for cryptographic research.Comment: Revised version of the SECOQC White Paper. Published in the special issue on QKD of TCS, Theoretical Computer Science (2014), pp. 62-8

    Quantum key distribution and cryptography: a survey

    Get PDF
    I will try to partially answer, based on a review on recent work, the following question: Can QKD and more generally quantum information be useful to cover some practical security requirements in current (and future) IT infrastructures ? I will in particular cover the following topics - practical performances of QKD - QKD network deployment - SECOQC project - Capabilities of QKD as a cryptographic primitive - comparative advantage with other solution, in order to cover practical security requirements - Quantum information and Side-channels - QKD security assurance - Thoughts about "real" Post-Quantum Cryptograph

    On Unconditionally Secure Robust Distributed Key Distribution Centers

    No full text

    On Unconditionally Secure Robust Distributed Key Distribution Centers

    No full text
    Abstract. A Key Distribution Center enables secure communications among groups of users in a network by providing common keys that can be used with a symmetric encryption algorithm to encrypt and decrypt messages the users wish to send to each other. A Distributed Key Distribution Center is a set of servers of a network that jointly realize a Key Distribution Center. In this paper we propose an unconditionally secure scheme to set up a robust Distributed Key Distribution Center. Such a distributed center keeps working even if some minority of the servers malfunction or misbehave under the control of a mobile adversary. Our scheme for a distributed key distribution center is constructed using unconditionally secure proactive verifiable secret sharing schemes. We review the unconditionally secure verifiable secret sharing scheme described by Stinson and Wei, discuss a problem with the proactive version of that scheme, and present a modified version which is proactively secure.

    On Unconditionally Secure Robust Distributed Key Distribution Centers

    No full text
    A Key Distribution Center enables secure communications among groups of users in a network by providing common keys that can be used with a symmetric encryption algorithm to encrypt and decrypt messages the users wish to send to each other. A Distributed Key Distribution Center is a set of servers of a network that jointly realize a Key Distribution Center. In this paper we propose an unconditionally secure scheme to set up a robust Distributed Key Distribution Center

    Novel Secret Sharing and Commitment Schemes for Cryptographic Applications

    Get PDF
    In the second chapter, the notion of a social secret sharing (SSS) scheme is introduced in which shares are allocated based on a player's reputation and the way she interacts with other parties. In other words, this scheme renews shares at each cycle without changing the secret, and it allows the trusted parties to gain more authority. Our motivation is that, in real-world applications, components of a secure scheme have different levels of importance (i.e., the number of shares a player has) and reputation (i.e., cooperation with other parties). Therefore, a good construction should balance these two factors accordingly. In the third chapter, a novel socio-rational secret sharing (SRS) scheme is introduced in which rational foresighted players have long-term interactions in a social context, i.e., players run secret sharing while founding and sustaining a public trust network. To motivate this, consider a repeated secret sharing game such as sealed-bid auctions. If we assume each party has a reputation value, we can then penalize (or reward) the players who are selfish (or unselfish) from game to game. This social reinforcement stimulates the players to be cooperative in the secret recovery phase. Unlike the existing protocols in the literature, the proposed solution is stable and it only has a single reconstruction round. In the fourth chapter, a comprehensive analysis of the existing dynamic secret sharing (DSS) schemes is first provided. In a threshold scheme, the sensitivity of the secret and the number of players may fluctuate due to various reasons. Moreover, a common problem with almost all secret sharing schemes is that they are ``one-time'', meaning that the secret and shares are known to everyone after secret recovery. We therefore provide new techniques where the threshold and/or the secret can be changed multiple times to arbitrary values after the initialization. In addition, we introduce a new application of dynamic threshold schemes, named sequential secret sharing (SQS), in which several secrets with increasing thresholds are shared among the players who have different levels of authority. In the fifth chapter, a cryptographic primitive, named multicomponent commitment scheme (MCS) is proposed where we have multiple committers and verifiers. This new scheme is used to construct different sealed-bid auction protocols (SAP) where the auction outcomes are defined without revealing the losing bids. The main reason for constructing secure auctions is the fact that the values of the losing bids can be exploited in future auctions and negotiations if they are not kept private. In our auctioneer-free protocols, bidders first commit to their bids before the auction starts. They then apply a decreasing price mechanism to define the winner and selling price in an unconditionally secure setting
    corecore