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Abstract

In the second chapter, the notion of a social secret sharing (SSS ) scheme is introduced
in which shares are allocated based on a player’s reputation and the way she interacts with
other parties. In other words, this scheme renews shares at each cycle without changing
the secret, and it allows the trusted parties to gain more authority. Our motivation is
that, in real-world applications, components of a secure scheme have different levels of
importance (i.e., the number of shares a player has) and reputation (i.e., cooperation with
other parties). Therefore, a good construction should balance these two factors accordingly.

In the third chapter, a novel socio-rational secret sharing (SRS ) scheme is introduced
in which rational foresighted players have long-term interactions in a social context, i.e.,
players run secret sharing while founding and sustaining a public trust network. To mo-
tivate this, consider a repeated secret sharing game such as sealed-bid auctions. If we
assume each party has a reputation value, we can then penalize (or reward) the players
who are selfish (or unselfish) from game to game. This social reinforcement stimulates the
players to be cooperative in the secret recovery phase. Unlike the existing protocols in the
literature, the proposed solution is stable and it only has a single reconstruction round.

In the fourth chapter, a comprehensive analysis of the existing dynamic secret sharing
(DSS ) schemes is first provided. In a threshold scheme, the sensitivity of the secret and the
number of players may fluctuate due to various reasons. Moreover, a common problem with
almost all secret sharing schemes is that they are “one-time”, meaning that the secret and
shares are known to everyone after secret recovery. We therefore provide new techniques
where the threshold and/or the secret can be changed multiple times to arbitrary values
after the initialization. In addition, we introduce a new application of dynamic threshold
schemes, named sequential secret sharing (SQS ), in which several secrets with increasing
thresholds are shared among the players who have different levels of authority.

In the fifth chapter, a cryptographic primitive, named multicomponent commitment
scheme (MCS ) is proposed where we have multiple committers and verifiers. This new
scheme is used to construct different sealed-bid auction protocols (SAP) where the auction
outcomes are defined without revealing the losing bids. The main reason for constructing
secure auctions is the fact that the values of the losing bids can be exploited in future
auctions and negotiations if they are not kept private. In our auctioneer-free protocols,
bidders first commit to their bids before the auction starts. They then apply a decreasing
price mechanism to define the winner and selling price in an unconditionally secure setting.
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Chapter 1

Introduction

This thesis is focused on new cryptographic primitives and their applications in secure
systems such as sealed-bid auctions. Cryptographic primitives are building blocks of secure
systems. These primitives are designed by computer scientists and mathematicians in
various models subject to certain conditions and assumptions. Scientists then provide
proofs to show how a primitive complies with all the required specifications. Engineers
later use these building blocks in real-world applications and software. We refer to secret
sharing and commitment schemes as two major cryptographic primitives that are the main
focus of this thesis.

In a secret sharing scheme, a dealer distributes partial information regarding a secret,
called shares, among a set of players. Subsequently, players come together to reveal the
secret in the absence of the dealer. In a commitment scheme, a player first commits to
a secret without revealing it. He then discloses his secret to other parties. This is used
to bind a player to a secret so that he cannot change it later. As an application of these
primitives, we can refer to secure auctions where the bidders first submit their sealed-bids
and later the auction outcomes (i.e., the selling price and winner) are defined without
revealing the losing bids. Indeed, if the losing bids are not kept private, sellers can exploit
them in the future auctions and negotiations in order to maximize their revenues, which
would give them an unfair advantages.

In this chapter, an overview of the thesis is first provided, i.e., four new cryptographic
primitives are introduced in different models with certain specifications. We also demon-
strate how they can be used in various application scenarios. Subsequently, we illustrate
some preliminaries to be used in further technical discussions.
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1.1 Thesis Contributions

In the next two chapters, new secret sharing schemes in a social context as well as a
game-theoretic model are introduced. In the next chapter, the existing dynamic secret
sharing schemes are revisited and then new solutions are provided. In the final chapter,
a multicomponent commitment scheme is proposed to be used in first-price sealed-bid
auctions. We next provide a brief description with respect to the contributions of the
thesis, also shown in Figure 1.1.

New Cryptographic 
Primitives and 

Their Applications

Multicomponent Commitment (MCS)Social Secret Sharing (SSS)

pp

Dynamic Secret Sharing (DSS)

Multicomponent Commitment (MCS)

Having Multiple Committers and Verifiers

Socio-Rational Secret Sharing (SRS)

Social Secret Sharing (SSS)

Updating the Players’ Weights

Self-
Organizing 

Clouds

Changing the Secret and Threshold
1st-Price 

Sealed-Bid 
Auctions

Recovering Various Secrets Rationally

Repeated 
Sealed-Bid 
Auctions

Sequential 
Secret 
Sharing

Figure 1.1: Summary of the Thesis Contributions

We first introduce a new cryptographic primitive in a social context, named social secret
sharing [76, 71]. In this scheme, shares of a secret are allocated based on each player’s
reputation portraying how cooperative she has been with other parties. In other words,
the number of shares that each player receives at each cycle is updated according to her
reputation; i.e., the trusted parties gain more shares compared to non-cooperative players.
We motivate this construction with an application in self-organizing clouds [74], where the
service providers who are available at the secret recovery phase receive more shares for the
next cycle compared to the providers who are not available or respond with delay. This
enables us to maintain a balance in the number of shares a player has and its availability
for secret recovery.
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Subsequently, we introduce a novel cryptographic primitive in a hybrid setting, named
socio-rational secret sharing [75], that is, the game theoretic concept of rationality is consol-
idated by a social model. In this protocol, rational foresighted players run secret sharing
while founding and sustaining a public trust network among themselves. We motivate
this scheme with a repeated sealed-bid auction in which secret sharing is used to seal the
proposed valuations. Since each player has a reputation value, we can then penalize (or
reward) the players who are selfish (or unselfish) from game to game to incentivize them
to be cooperative in the secret recovery phase. In other words, players who are coopera-
tive have a greater chance to be invited to the future secret sharing games as opposed to
non-cooperative players who act selfishly.

Next, we provide a comprehensive analysis of the previous dynamic secret sharing
schemes [73]. In contrast to our previous chapters where we defined new models for two
new cryptographic primitives, here we revisit the existing problem of threshold and secret
changeability. In fact, in a threshold scheme, the sensitivity of the secret and the number of
participants may change due to many reasons. In addition, secret changeability might be
required from time to time. Therefore, we propose new methods to modify the threshold
and/or the secret after the scheme’s initialization. We motivate our dynamic schemes by
a new application, named sequential secret sharing, where multiple secrets with increasing
thresholds are shared among the players who have different levels of authority.

Finally, we propose a new cryptographic primitive, named a multicomponent commit-
ment scheme [72], where we have multiple committers and verifiers. In this scheme, each
member of a group of players commits to his secret value in the commitment phase. Sub-
sequently, they collaborate to validate each secret in the reveal phase. We motivate this
construction by presenting three different unconditionally secure first-price sealed-bid auc-
tions. The major motivation for constructing secure auctions is that the losing valuations
can be exploited in the future auctions and negotiations if they are not kept private. We
should note that we apply a decreasing price mechanism without using any auctioneers
in order to determine the winner and selling price; i.e., the bidders define the auction
outcomes themselves.

1.2 Security Model

For further technical discussions, we first review various types of adversarial models in the
setting of secret sharing. In our constructions, we consider two types of channels: private
channels, which are secure and exist between each pair of players, and a broadcast channel,
on which information is transmitted instantly and accurately to all parties.

3



• Passive versus Active Adversary : In the former case, the players follow protocols
correctly but bad players may attempt to learn the secret. Such adversaries are also
known as honest-but-curious. In the latter case, the players may deviate from proto-
cols by sending incorrect shares (to prevent secret recovery or cause the reconstruction
of an incorrect secret) while at the same time trying to learn the secret.

• Static versus Mobile Adversary : A passive or active adversary can be static or mobile.
The former refers to an adversary who corrupts a fixed set of players ahead of time,
while in the latter case, the adversary may corrupt different players at various stages
of the protocol’s execution.

• Computational versus Unconditional Security : In the former case, the security of
the protocols relies on computational assumptions (e.g., the hardness of factoring
or discrete logarithm), whereas in the latter case, the adversary is allowed to have
unlimited computational power.

1.3 Secret Sharing

In a basic secret sharing scheme, we have a trusted dealer and n players. The dealer
choses the secret α from a specified set of possible secrets. Then the dealer creates partial
information, called shares, and gives one share to each player. Later, a subset of players
tries to reconstruct the secret from the shares they collectively hold. Before we give the
security definition for secret sharing, we first provide the definition of an “access structure”.

Definition 1.1 Let P be a finite set of n players. An access structure Υ is a set of subsets
of players (called authorized subsets) that satisfies two conditions:

(a) if A ∈ Υ and A ⊆ B ⊆ P, then B ∈ Υ, and

(b) if A ∈ Υ then |A| > 0.

In a threshold access structure, the authorized sets are all sets of players A such that
|A| ≥ t where t is the threshold of the scheme.

A secret sharing scheme must satisfy the two following properties:

4



1. Correctness: if the players in an authorized subset combine their shares, then they
can compute the secret.

2. Secrecy: on the other hand, if the players in an unauthorized subset combine their
shares, then they have no information about the value of the secret.

In a (t, n)-threshold secret sharing (TSS ) scheme [94, 11], any t players can combine
their shares to reveal the secret, but no set of t − 1 players can learn any information
about the secret. That is, the access structure consists of all set of t or more players in
(t, n)-threshold secret sharing.

1.3.1 Threshold Secret Sharing

In this section, we first recall the Lagrange interpolation method [97] and then we review
a threshold secret sharing scheme.

Let q be a prime number. Let x1, ..., xt be distinct elements in the finite field Zq and
let f1, ..., ft be arbitrary elements in Zq. Then there is a unique polynomial f(x) ∈ Zq[x]
of degree at most t− 1 such that f(xi) = fi for 1 ≤ i ≤ t:

f(x) =
t∑
i=1

( ∏
1≤j≤t,j 6=i

x− xj
xi − xj

× fi
)
. (1.1)

Lagrange interpolation can also be applied to bivariate polynomials. Let y1, ..., yt be dis-
tinct elements in Zq and let f1(x), ..., ft(x) be polynomials of degree at most t− 1 in Zq[x].
Then there is a unique polynomial f(x, y) ∈ Zq[x, y] of degree at most t − 1 such that
f(x, yi) = fi(x) for 1 ≤ i ≤ t:

f(x, y) =
t∑
i=1

( ∏
1≤j≤t,j 6=i

y − yj
yi − yj

× fi(x)

)
. (1.2)

When we say that a bivariate polynomial f(x, y) has degree at most t − 1, we mean that
any term of the form cxiyj in f(x, y) has i ≤ t− 1 and j ≤ t− 1.

As a realization of threshold secret sharing, we can refer to a Shamir threshold scheme,
which consists of the following two phases:
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1. Secret Sharing: a dealer D selects a random polynomial f(x) ∈ Zq[x] of degree at
most t − 1 such that its constant term is the secret, i.e., f(0) = α. He then sends
the share f(i) to Pi for all 1 ≤ i ≤ n, i.e., each player receives a point on the secret
sharing polynomial.

2. Secret Recovery: subsequently, any subset ∆ of at least t players can collaborate
to reconstruct the secret by Lagrange interpolation, in the absence of the dealer:

f(0) =
∑
i∈∆

( ∏
j∈∆,j 6=i

j

j − i
× f(i)

)
. (1.3)

Although any t players can combine their shares to reveal the secret, no set of t− 1 parties
can learn the secret. For future use, let

γ∆
i

def
=

∏
j∈∆,j 6=i

j

j − i

denote the Lagrange constants used in the above formula, where j ∈ ∆ and j 6= i. Here
we provide a toy example of the Shamir threshold scheme:

Example 1.2 The dealer selects a secret sharing polynomial f(x) = 5+3x+6x2 ∈ Z13[x].
He then distributes the following shares among P1, P2, P3, P4 and leaves the scheme:

f(1) = 1, f(2) = 9, f(3) = 3, f(4) = 9.

Any three players, say P1, P2, P3, can pool their shares to recover the secret by Lagrange
interpolation as follows:

f(0) =
( 2

2− 1

)( 3

3− 1

)
(1) +

( 1

1− 2

)( 3

3− 2

)
(9) +

( 1

1− 3

)( 2

2− 3

)
(3) mod 13

= −21 mod 13 = 5.

1.3.2 Other Types of Secret Sharing Schemes

In a verifiable secret sharing scheme (VSS ) [24], the dealer and/or some of the players
might be malicious. It is required that the players be able to verify the consistency of
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their shares after the scheme’s initialization. If a sufficient number of players attest to the
consistency of their shares, then they will be able to reconstruct a unique secret. In the
next section, we review a simple verifiable secret sharing scheme and discuss its properties
in detail. In a threshold VSS scheme, the number of malicious players must be less than
the threshold t.

The papers [9, 23] provide the first unconditionally secure VSS when t < n
3

with a
zero probability of error. They only assume the existence of secure private channels be-
tween each pair of participants. Later, [86, 8] utilize both private channels and a broadcast
channel in order to construct a new VSS when t < n

2
. This protocol has a negligible prob-

ability of error. To simplify previous constructions, [98, 35] propose VSS schemes based on
symmetric bivariate polynomials in an unconditionally secure setting. These constructions
assume secure private channels and a broadcast channel under the assumption that t < n

4
.

The notion of proactive secret sharing scheme (PSS ) is introduced in [44]. PSS is
proposed to deal with a mobile adversary [80] who collects the shares of an increasing
number of players over time in order to recover the secret. In a PSS, the shares of the
players must be updated periodically without changing the secret. This “share update”
is done by adding some polynomials gi(x) with zero constant terms to the original secret
sharing polynomial f(x), which has constant term α. As a result, the new secret sharing
polynomial will be f̂(x) = f(x) +

∑
i gi(x), and therefore the secret remains f̂(0) = α.

The share update phase can be done with or without a dealer. Proactive secret sharing
schemes can also tolerate a malicious dealer.

We should stress that PSS is different from a dynamic threshold scheme, where the
parameters of the protocol (such as the threshold, the number of players, etc) can be
changed after the scheme’s initialization. Next, an example of proactive secret sharing is
provided.

Example 1.3 Suppose the secret sharing polynomial is f(x) = 3+4x+7x2 +5x3 ∈ Z13[x].
Players P1, P2, and P3, and P4 receive the following shares from the dealer accordingly.

f(1) = 6, f(2) = 1, f(3) = 5, f(4) = 9.

The players securely generate g(x) = 0+ 4x+ 2x2 + 10x3 in the absence of the dealer with
the following shares:

g(1) = 3, g(2) = 5, g(3) = 1, g(4) = 12.

Each player Pi locally adds his shares together. As a result, the new polynomial will be
f̂(x) = 3 + 8x+ 9x2 + 2x3 with the following shares:

f̂(1) = 9, f̂(2) = 6, f̂(3) = 6, f̂(4) = 8.
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To assign multiple shares rather than a single share to some players in a threshold secret
sharing scheme, weighted secret sharing (WSS ) is introduced [10]. For instance, consider
the scenario in which the president and chief executive of a company have the collective
authority to open the safe deposit box of the company, but that any two vice-presidents
can substitute for a missing party in their absence. In this scenario, the weighted scheme
is used to prioritize different players.

1.3.3 Review of a Simple VSS Scheme

The paper [98] proposes a verifiable secret sharing scheme in which players are able to
check the consistency of their shares by symmetric bivariate polynomials. This protocol
uses pairwise channels as well as a broadcast channel, and it is secure under the assumption
that |∇| ≤ t− 1 ≤

⌊
n−1

4

⌋
where ∇ denotes the set of bad players.

The reason behind this assumption is that a dishonest dealer may disrupt at most n/4
shares in the sharing phase (otherwise he is disqualified), and therefore the players who
have received these disrupted shares are removed from the scheme in the “sharing” phase.
Moreover, at most 1/3 of the remaining 3n/4 shares might be disrupted by the colluders in
the “recovery” phase. If |∇| ≤

⌊
n−1

4

⌋
, then a suitable error correction technique, e.g., based

on a Reed-Solomon code [58], can be used to recover the secret correctly. All computations
are done in Zq (where q is a prime number) and ω is a primitive element in this field. This
scheme is presented in Figure 1.2.

In this VSS scheme, the following properties are satisfied (see [98]):

1. If a good player Pi outputs veri = 0 at the end of the “sharing” phase, then every
good player outputs veri = 0. If this occurs, then more than t− 1 shares have been
corrupted by bad players and a dishonest dealer. In this case, the protocol is stopped.

2. If the dealer is honest, then veri = 1 for every good Pi at the end of the “sharing”
phase. In this situation, at most t−1 shares might be later corrupted by bad players.

3. If at least n− (t−1) players Pi output veri = 1, then α′ ∈ Zq will be reconstructed in
the “recovery” phase (i.e., at most t− 1 players have received incorrect shares from
the dealer), and α′ = α if the dealer is honest.

4. If |Z| = q, α is chosen randomly from Zq, and the dealer is honest, then any coalition
of at most t− 1 players cannot guess the value α with probability greater than 1

q
at

the end of the “sharing” phase.
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Secret Sharing

1. The dealer D selects a symmetric polynomial f(x, y) ∈ Zq[x, y] of degree t− 1
where f(0, 0) is the secret α. He sends fi(x) = f(x, ωi) to Pi for 1 ≤ i ≤ n.

2. Pi and Pj perform pairwise checks ; i.e., they verify that fi(ω
j) = fj(ω

i). If Pi
finds that fi(ω

j) 6= fj(ω
i), he broadcasts the ordered pair (i, j) to accuse Pj.

3. Each Pi computes a subset Γ ⊆ {1, ..., n} such that any ordered pair (i, j) ∈ Γ×Γ
is not broadcasted. If |Γ| ≥ n−(t−1), Pi outputs veri = 1, otherwise, veri = 0.

4. The sharing is accepted if at least n−(t−1) players output veri = 1, otherwise,
D is disqualified; Γ can be constructed by a polynomial time algorithm [35].

Secret Recovery

1. Each player Pi sends the constant term of his share, that is, fi(0), to a selected
player Pj.

2. Player Pj computes a polynomial fj(y) such that fj(ω
i) = fi(0) for at least

n− 2(t− 1) values of i. He then computes the secret fj(0) = f(0, 0).

Figure 1.2: An Unconditionally Secure Verifiable Secret Sharing Scheme

To change this protocol into a proactive verifiable secret sharing scheme, we require
assumption |∇| < t − 1 as opposed to |∇| ≤ t − 1; similarly |∇| denotes the number of
corrupted parties. Achieving proactivity has three steps:

1. Renewal : the servers update their shares by polynomials with zero constant terms.

2. Detection: subsequently, the corrupted servers are detected and they are rebooted.

3. Recovery : in the final stage, new shares are generated for the rebooted servers.

The renewal phase is shown in Figure 1.3 where the players use symmetric bivariate poly-
nomials with zero constant terms in order to update their shares. For detailed discussions
regarding the detection and recovery steps, see [26].
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Share Update

1. Each Pl acts as a dealer and selects a random symmetric polynomial of degree
t−2. He sends gli(x) = gl(x, i) to Pi for 1 ≤ i 6= l ≤ n through a secure channel.

gl(x, y) =
t−2∑
i=0

t−2∑
j=0

glijx
iyj where glij = glji for all i, j.

2. To verify the shares distributed by Pl, each pair of other players Pi and Pj
perform pairwise checks gli(j) = glj(i) through secure channels.

3. If player Pj finds that the equality does not hold for more than t− 2 values of
i (his share glj(x) is not consistent with other shares), player Pj broadcasts an
accusation of player Pl.

4. If Pl is accused by at most t−2 players (otherwise Pl is definitely a bad player),
he defends himself by broadcasting glj(x) that he had sent to the accusers.

5. Other players Pi, excluding the conflicting parties Pl, Pj, check glj(i) = gli(j)
and broadcast “yes” or “no”. If, for each broadcasted share, at least n− t + 1
players broadcast “yes”, Pl is not guilty and Pj stores the broadcasted glj(x).

6. Finally, each Pi updates the list of good players Γ who have not been found
guilty in the previous step, and then he updates his shares as follows:

fi(x) = fi(x) + (x+ i)
∑
l∈Γ

gli(x)

Figure 1.3: Share Renewal in a Proactive Verifiable Secret Sharing Scheme

1.4 Multiparty Computation

Secure multiparty computation (MPC ) [37, 9, 23] was first motivated by the millionaires’
problem [108]. In this problem, the goal is to determine whether x > y, where both x and
y are private secrets of two players. The answer to this question becomes known to the
two parties after the execution of the protocol.
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In a multiparty computation protocol, various users, intelligent agents, or computer
servers cooperate in order to perform computations based on the private data they each
provide [29], e.g., they compute a function f(α1, . . . , αn), where α1, . . . .αn are private
values and f(α1, . . . , αn) = α is revealed to everyone. Since these computations could
involve untrusted participants or competitors, consequently, the privacy of each player’s
input is an important factor. As stated in the literature [38], a fundamental method used
in secure multiparty computations is secret sharing.

We present a high-level description of a MPC protocol where the computation phase
involves a boolean or arithmetic circuit [9]. Multiparty computation consists of the follow-
ing three phases: sharing, computation and reconstruction, as shown in Figure 1.4. In the
“sharing” phase, each player acts as a dealer to distribute shares of his secret among all
the other parties. Subsequently, “computation” is done using two secure operations: ad-
dition and multiplication. Suppose we only have two secrets. In the case of addition, each
player locally adds shares of the two secrets. For multiplication, players locally multiply
shares of the two secrets by each other. They then collaborate and perform some further
computations, which we shortly explain. Finally, in the “reconstruction” phase, players
reveal the shares of the function value so that all the players learn it.

Reconstruction

P1: 1

Sharing

Computation

(1, …, n)P2 : 2

… …

…

Pn : n

3

Figure 1.4: Secure Multiparty Computation

Sample applications of such schemes are: interval test, comparison, and equality test
[25, 69, 68, 33], joint signature or decryption, where a group of players sign documents
or decrypt messages with the intention that, only if all of them or a specified subset of
participants cooperate, then a signature or a message can be generated [38], shared RSA
keys, in which a number of players collaborate to jointly construct an RSA key [15], and
electronic auctions with private bids, where a group of agents perform sealed-bid electronic
auctions while preserving the privacy of the submitted bids [42]. The main challenge in a
secure multiparty protocol protocol is the “multiplication” operation. In the next section,
we briefly review an initial solution to this problem.
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1.4.1 Secure Multiplication of Secrets

Ben-Or et al. [9] proposed a method for the secure multiplication of two secrets. Suppose
secrets α and β are encoded by two polynomials f(x) and g(x) of degree t − 1, and each
player Pi holds one share on each of these polynomials, f(i) and g(i) respectively. The
product of these two secrets αβ is the constant term of the polynomial h(x) = f(x)×g(x).
If each player multiplies his shares together, the resulting value is a point on h(x). There
are two problems with this approach:

1. The degree of h(x) is 2t−2 instead of the desired t−1; i.e., the threshold is increased.

2. Since h(x) = f(x)× g(x), h(x) is reducible and so it is not a random polynomial.

To overcome these problems, the authors in [9] use a “degree reduction” protocol in which
the polynomial h(x) is truncated to decrease its degree to t− 1. Let k(x) be the resulting
truncation of h(x) padded with 0’s up to degree 2t−2. They then apply a simple procedure
to randomize coefficients of k(x), except the constant term which remains the product of
the two secrets. For the sake of simplicity, suppose n = 2t − 1, where n is the number of
players.

• Let ~H1×n be the coefficient vector of h(x), and

• let Zn×n be a projection matrix, i.e., Zij = 1 if i = j and i, j ≤ t, otherwise Zij = 0.

We therefore have:

~K = ~H · Z, where (1.4)

• ~K1×n is the coefficient vector of k(x), padded with 0’s.

• Let V ′n×n be the transpose of a Vandermonde matrix.

We therefore have:

~S = ~H · V ′ (1.5)

~R = ~K · V ′, where (1.6)
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• ~S1×n is an evaluation vector of h(x), that is, the players’ shares on h(x), and

• ~R1×n is an evaluation vector of k(x), that is, the players’ shares on k(x).

We define W = (V ′−1 · Z · V ′) as a publicly known matrix. Therefore, we have:

~S · W = ~S · V ′−1 · Z · V ′

= ~H · V ′ · V ′−1 · Z · V ′ by (1.5)

= ~H · Z · V ′

= ~K · V ′ by (1.4)

= ~R by (1.6).

This computation shows that if we multiply the evaluation vector ~S of a polynomial h(x)

by W (as a publicly known matrix), we get the evaluation vector ~R of h(x)’s truncation,
denoted by k(x). This means, if each player re-shares his share by another polynomial,
then each party is going to hold a vector of shares. Subsequently, if the players locally
multiply their vectors by W , all the shares are transformed from h(x) of degree 2t− 2 to
a new polynomial k(x) of degree t− 1.

To randomize the coefficients of k(x), players perform the following procedure (that is
similar to the “share update” phase of a proactive secret sharing scheme): Each player
Pi (1 ≤ i ≤ n) randomly selects a polynomial qi(x) of degree 2t − 2 with a zero constant
term (the protocol in [9] ensures that malicious players are not able to send shares on
a polynomial with non-zero constant term). After that, they each send qi(j) to Pj for
1 ≤ j ≤ n. Finally, players add these values to their shares on k(x):

k(x) = k(x) +
n∑
i=1

n∑
j=1

qi(j)

where k(0) = α. We should note that this method of “degree reduction and randomization”
was later simplified by Gennaro et al. [36], which is discussed in detail in Section 4.3.2.

1.5 Reputation Management

In the context of the social networks, trust is the expectation that a player has about
the future behavior of another player based on the history of their interactions. On the
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other hand, reputation is the perception that a player creates by past behavior about his
intentions. The former is a personal quantity while the latter is a social quantity [65]. A
comprehensive survey of existing trust and reputation systems are presented in [47].

To quantify the reputation of each player in a social secret sharing scheme, we apply
the trust calculation method proposed in [70] (which is the modified version of the solution
in [111]). For additional discussion and motivation regarding this trust function, see [70].
We start with the following definition:

Definition 1.4 Let T ji (p) be the trust value assigned by player Pj to player Pi in time
interval p. Ti : N 7→ R is the reputation function used to compute the reputation of Pi:

Ti(p) =
1

n− 1

∑
j 6=i

T ji (p),

where −1 ≤ Ti(p) ≤ +1 and Ti(0) = 0. That is, we calculate the average of the n− 1 trust
values (personal quantities) to compute a player’s reputation (a social quantity) [76].

For instance, let the trust values of P1, P2, P3 with respect to P4 be T 1
4 (p) = 0.4,

T 2
4 (p) = 0.5, and T 3

4 (p) = 0.6. As a result, reputation of P4 will be T4(p) = 0.5. In this
thesis, only a public value Ti(p) is assigned to each player Pi, where Ti(p) represents his
reputation. This value depends on players’ public actions and behavior. Therefore, we can
assume that Ti(p) = T ji (p) for all j.

We now briefly review the approach proposed in [70]. As shown in Table 1.1, three
“types” of players (that is, B: bad; N : new; and G: good) with six possible outcomes
are defined, where α and β determine boundaries on the trust values used to define the
different sets of players. This approach then applies functions µ(x) and µ′(x) respectively
to update the reputation of each player Pi, as shown in Figure 1.5. Parameters η, θ, κ,
and ε are used to increment and/or decrement the trust value of a player. In intervals
[1− ε,+1] and [−1, ε− 1], functions µ(x) and µ′(x) both converge to 0.

We should stress that our trust function is not just a function of a single round, but
of the “players’ history”. That is, it rewards more the better a participant has been, e.g.,
see Figure 1.5: Cooperation, where Ti(p) ∈ [α, 1 − ε], and it penalizes more the worse a
participant has been, e.g., see Figure 1.5: Defection, where Ti(p) ∈ [ε− 1, β]. In addition,
it provides opportunities for newcomers to increase their trust values even where we do not
know much about their behavior, e.g., see Figure 1.5: where Ti(p) ∈ [β, α].
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Current Trust Value Cooperation Defection

Pi ∈ B if Ti(p) ∈ [−1, β) Encourage Penalize

Pi ∈ N if Ti(p) ∈ [β, α] Give a Chance Take a Chance

Pi ∈ G if Ti(p) ∈ (α,+1] Reward Discourage

Table 1.1: Six Possible Actions for the Trust Management

Cooperation
κκ

θ

In
cr

ea
se

-1

Trust Value

+1

η

β α 1-ε

Defection
η

Trust Value

θ

D
ec

re
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e

-1

Trust Value

+1

κ

β αε-1

Figure 1.5: Trust Adjustment by µ(x) and µ′(x) Functions

Let `i ∈ {0, 1} where `i = 1 denotes that player Pi has cooperated in the current period
and `i = 0 denotes that he has defected. Let 0 < η < θ < κ ≤ ε. The proposed trust
function is as follows, where x = Ti(p− 1) (i.e., x is the previous trust value):

`i = 1 ⇒ Ti(p) = Ti(p− 1) + µ(x), where

µ(x) =



θ − η
β + 1

(x+ 1) + η Pi ∈ B

θ Pi ∈ N
κ− θ

1− ε− α
(x− α) + θ Pi ∈ G, Ti(p) ≤ 1− ε

κ

ε
(1− x− ε) + κ Ti(p) > 1− ε
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`i = 0 ⇒ Ti(p) = Ti(p− 1)− µ′(x), where

µ′(x) =



κ

ε
(x+ 1) Ti(p) < ε− 1

θ − κ
β − ε+ 1

(x− ε+ 1) + κ Pi ∈ B, Ti(p) ≥ ε− 1

θ Pi ∈ N
η − θ
1− α

(x− α) + θ Pi ∈ G

Each function µ(x) and µ′(x) consists of four linear equations, each of which is simply
determined by two points (x1, y1) and (x2, y2) as follows:

y =
y2 − y1

x2 − x1

(x− x1) + y1.

To ensure that Ti(p − 1) + µ(x) ≤ 1 and Ti(p − 1) − µ′(x) ≥ −1 when x = 1 − ε and
x = ε − 1 respectively, we must satisfy the conditions 1 − ε + κ ≤ 1 and ε − 1 − κ ≥ −1,
or equivalently κ ≤ ε. Because 0 < η < θ < κ ≤ ε, it can be shown that −1 ≤ Ti(p) ≤ +1.

It is worth mentioning that the authors in [70] also define an additional parameter
as the transaction cost to deal with cheap cooperations and expensive defections. For
instance, consider a scenario in which a player cooperates in regular transactions for several
times in order to gain a high trust value. He can then defect in a critical transaction to
severely damage the scheme. By considering this transaction cost parameter, a weight for
“cooperation” or “defection” is defined and accordingly the trust value is adjusted.

1.5.1 New Trust Function

As an alternative solution, we would like to propose a new trust function with “social
characteristics”, where we consider the other players’ behavior. The function that we
reviewed in the previous section uses the following two properties in order to adjust the
trust value in different cases:

1. Type: parameters α and β are used to categorize the players in three sets B,N ,G.
Accordingly, six scenarios are considered to increment or decrement the trust value,
as shown in Table 1.1.
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2. History : The trust value Ti(p) represents a history of actions taken by a player Pi so
far. For instance, the “quality” of being a good player ranges from α all the way to
+1, which quantifies how good a player is and what kind of history the player has.

The previous trust function applies an individual evaluation strategy. We intend to define
a social evaluation strategy by adding the following property to our new trust function:

3. Sociality : this takes into account the social behavior of the other parties. In other
words, besides players’ types and histories, this function considers all players together
for trust computation, as opposed to an individual evaluation technique.

As before, `i = 1 denotes Pi’s cooperation and `i = 0 denotes Pi’s defection in a specific
time interval. Therefore, δ =

∑n
i=1 `i denotes the total number of cooperative players

in that time interval. Intuitively, the new function should satisfy the following “social”
conditions:

1. if δ = n, i.e., if all the players have cooperated, then it is not required to increase the
trust value of anyone.

2. if δ = 0, i.e., if all the players have defected, then it is not required to decrease the
trust value of anyone.

3. if δ > n
2
, i.e., if the majority of the players have cooperated, then cooperation should

be rewarded less and defection should be penalized more.

4. if δ < n
2
, i.e., if the majority of the players have defected, then defection should be

penalized less and cooperation should be rewarded more.

5. if δ = n
2
, i.e., if the number of cooperative players and non-cooperative ones are equal,

then cooperation and defection should be rewarded and penalized equally.

Our modified trust function, termed “social trust function”, is defined as follows, using
the previously defined µ(x) and µ′(x) functions:

Ti(p) =


Ti(p− 1) +

(
1− δ

n

)
µ(x) if `i = 1

Ti(p− 1)−
( δ
n

)
µ′(x) if `i = 0
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where δ =
∑n

i=1 `i. By using the same µ(x) function for trust increase and reduction in
the case of cooperation and defection, the trust function can be simplified as follows:

Ti(p) = Ti(p− 1) +
(
`i −

δ

n

)
µ(x).

An example of the new social trust function is provided in Table 1.2 for further clarifi-
cation. Each time the players “gain” a portion of the previously defined µ(x) (e.g., 25%),
where this percentage is proportional to the number of “non-cooperative” players. On the
other hand, they “lose” a portion of the previously defined µ′(x) (e.g., 75%), where this
percentage is proportional to the number of “cooperative” players.

δ =
∑n

i=1 `i Cooperation Defection

n Ti(p− 1) no defection
3
4
n Ti(p− 1) + 0.25µ(x) Ti(p− 1)− 0.75µ′(x)

1
2
n Ti(p− 1) + 0.5µ(x) Ti(p− 1)− 0.5µ′(x)

1
4
n Ti(p− 1) + 0.75µ(x) Ti(p− 1)− 0.25µ′(x)

0 no cooperation Ti(p− 1)

Table 1.2: Computing Ti(p) with Different Values of δ

As stated earlier, reputation is a social quantity representing a player’s type and history.
Therefore, it is reasonable to assume that “cooperation” has more value if the majority
of the players are defecting and vice versa. This is similar to human social life in which
cooperation is appreciated more when most of the people are not cooperating. Intuitively,
the same justification is true for the case of “defection”.

Furthermore, if all the players are cooperating or they all are defecting, their trust
values should remain unchanged, no matter what types of players with what kinds of
histories are in the society. This can be justified by the uniformity of the players’ actions,
which occurs in a social situation where there is no competition.
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Chapter 2

Social Secret Sharing

We introduce the notion of social secret sharing (SSS ), in which shares are allocated based
on a player’s reputation and the way he interacts with other participants. During the
social tuning phase, weights of players are adjusted such that participants who cooperate
will end up with more shares than those who defect. Alternatively, newcomers are able
to be enrolled in the scheme while corrupted players are disenrolled immediately. This
scheme proactively renews shares at each cycle without changing the secret, and allows
trusted participants to gain more authority. In the proposed schemes, both the passive
and active mobile adversaries are considered in an unconditionally secure setting.

2.1 Introduction

In this chapter, we first propose a new secret sharing scheme in a social context. In this
new cryptographic primitive, shares are allocated based on each player’s reputation and
behavior. In fact, player’s shares are proactively renewed at each cycle without changing
the secret, while allowing the cooperative players to gain more authority. We then illustrate
how this construction can be used in cloud computing to create a self-organizing environ-
ment. In fact, we show how distributed secure systems using threshold secret sharing can
be adjusted automatically based on the resource availability of the cloud providers.

Our scheme is called “social secret sharing” since it can be visualized in terms of players
collaborating to recover the secret in a social network, based on their reputations. This
is similar to human social life where people share more secrets with those whom they
really trust and vice versa. In the literature, there exist other types of dynamic schemes

19



with different properties than our constructions, such as schemes in which one can activate
various access structures [14], enroll or disenroll players [112], or change the threshold [102].

2.1.1 Motivation

Our motivation is that, in real-world applications, components of a secure system may
have different levels of importance, which is reflected in the number of shares a player has,
as well as reputation, which is based on the amount of cooperation with other players for
“secret recovery”. A good construction should balance these two factors respectively, that
is, adjusting the number of shares a player can hold based on his reputation. For instance,
assume a major shareholder has been attacked. If the scheme is not re-arranged (i.e., the
weight of each player is not changed), the security cost would be severe. On the other
hand, if a player with a small number of shares is working reliably for some period of time,
it might be reasonable to assign him more shares. Equivalently, this is modifying the access
structure in an appropriate way based on the players’ behavior.

Although our goal is to focus on the theoretical aspects of such a construction, we mo-
tivate the proposed scheme by the following scenario. Suppose shares of a secret have been
distributed among various players based on their weights in a secure system. Consequently,
revealing the secret will trigger an action. The aim is to monitor participants’ behavior
over time to regulate players’ responsibility. As an example of this scenario, we can refer to
real time systems that are subject to operational deadlines. If a server provides his share
in a single time slot when it is needed, he is classified as a cooperative player in that time
period. Otherwise, he is not a reliable player.

2.1.2 Contributions

As our main contribution, we first explain a scenario in which this cryptographic primitive
can be used to create a self-organizing protocol in the cloud. In fact, we show a distributed
system can be reconfigured automatically based on the resource availability of the cloud
providers. Subsequently, the formal definition and necessary conditions of a social secret
sharing scheme is provided.

Afterwards, a scheme under the passive mobile adversary model is constructed, and the
required techniques for weight escalation/reduction based on an existing trust computation
model [70] is proposed. In addition, a new tool, called the enrollment protocol, is developed
for this primary protocol.

20



Our social tuning phase is dealer-free, unconditional, and secure under the passive or
active mobile adversary models. In fact, it is quite challenging to design protocols in
this setting. Moreover, if one relaxes any of these requirements, he can then decrease the
computation and communication complexities. For instance, by using a trusted authority,
or by constructing the proposed schemes in a computational setting, or by considering the
simple passive adversary model without mobility, simpler protocols can be constructed.

2.1.3 Organization

This chapter is organized as follows: Section 2.2 creates a general picture of our social secret
sharing scheme. Section 2.3 provides an application of the proposed scheme. Section 2.4
demonstrates the first construction under the passive mobile adversary model. Section 2.5
describes a solution in the active mobile adversary model. Finally, Section 2.6 contains
concluding remarks.

2.2 Social Secret Sharing

The proposed social secret sharing model consists of n participants, P1, P2, . . . , Pn, and a
dealer who is available only during the initialization phase. We assume the existence of
private channels between each pair of participants (to be used during the share renewal
step), and we assume that the dealer can communicate securely with participants in the
dealing stage. We also assume the existence of a synchronized broadcast channel, on which
information is transmitted instantly and accurately to all participants.

Let Mn×m be a matrix representing the players’ identifiers, where n is the maximum
number of players, m is the maximum weight of each player, and the entries inMn×m are
distinct non-zero elements of Zq. For instance, in the case of M2×2, then entries m11 and
m12 are the identifiers of player P1 and entries m21 and m22 are the identifiers of P2. Let
Zq be a finite field and let ω be a primitive element in this field. All computations are
performed in the finite field Zq.

Our intention is to construct unconditionally secure schemes, i.e., schemes that do not
rely on computational assumptions. We consider both passive and active adversaries with
mobility, i.e., adversaries who are able to change the set of corrupted players from time to
time during the execution of protocols. In our first construction, we assume that players
correctly follow all protocols but are curious to learn the secret, while in the second one,
we assume that players may deviate from the protocols.
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In social secret sharing, each participant initially receives a constant number of shares.
As time passes, players are reassigned weights based on their behavior in the scheme.
Consequently, each participant receives a number of shares corresponding to his trust
value, which is the representation of a player’s current reputation. (Recall that reputation
is based on the availability of the players and cooperative players are available more often.)
Weights of participants are adjusted such that cooperative players receive more shares than
non-cooperative ones. The motivation here is that this increases the availability of the
system over time.

In addition, newcomers can join the scheme while corrupted players are disenrolled. The
reason for a corruption might be an active attack or a computational failure. A corrupted
server can return to the scheme (as a newcomer) only after being fixed.

To further illustrate the proposed scheme, the required assumptions are first defined in
order to ensure that the scheme works correctly. Subsequently, different possible behaviors
are defined. Finally, the formal definition of a social secret sharing scheme is illustrated.
The following assumptions are required to construct a social secret sharing scheme:

1. To recover the secret, the total weight of authorized players Pi ∈ ∆ must be equal or
greater than the threshold, i.e.,

∑
Pi∈∆ wi ≥ t, where ∆ denotes the set of uncorrupted

participants. We later show that this set ∆ is further divided into three subsets B:
bad, N : new, and G: good that represent non-cooperative, new, and cooperative
players respectively.

2. On the other hand, the total weight of colluders Pi ∈ ∇ must be less than the
threshold, where ∇ denotes the set of corrupted players, i.e.,

∑
Pi∈∇wi < t.

3. Finally, the weight of each Pi is bounded by a parameter m which is much less than
t, that is, wi ≤ m� t for 1 ≤ i ≤ n.

Definition 2.1 The following actions are defined, where a player’s action ai ∈ {C,D,X}.

• C denotes cooperation, where player Pi is available at the required time and he sends
correct shares to the other parties.

• D denotes defection, where player Pi is not available at the required time or he re-
sponds with a significant delay.

• X denotes corruption, where player Pi has been compromised by an adversary and
he may send incorrect shares.
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A social secret sharing scheme consists of three phases: secret sharing, social tuning,
and secret recovery. The only difference compared to a traditional threshold scheme is the
social tuning stage, in which the weight of each player Pi is adjusted based on the player’s
reputation Ti(p). After that, shares are updated accordingly. The details of this procedure
will be discussed in later sections of this chapter.

2.2.1 Social Tuning in a Nutshell

In a social secret sharing scheme, players first receive multiple shares from the dealer.
Subsequently, the scheme is readjusted based on the players’ behavior. We review the
social tuning phase that consists of the following steps. For the sake of simplicity, suppose
we increase or decrease the weights of the players one by one.

1. Adjustment : based on the players’ availability or response time, the “reputation”
and consequently the “weights” of all the players are adjusted.

2. Enrollment : to increase the weight of a cooperative player, say by one, parties jointly
collaborate to generate a new share on the original secret sharing polynomial f(x)
for the cooperative player. This procedure is done in the absence of the dealer. For
details, see the enrollment protocol in [76].

3. Disenrollment : to decrease the weight of a player, say by one, parties jointly col-
laborate to update all shares except one share of the non-cooperative player. That
is, while all shares are updated to be on a new secret sharing polynomial f̂(x), one
share remains on f(x), and as a result, the share will not be valid anymore.

As shown in Figure 2.1, share f(s14) is first enrolled and then share f(s4) is disenrolled.

2.3 Application: Self-Organizing Clouds

In cloud computing, different commercial providers (such as Amazon, Google, and Mi-
crosoft) offer computing services to consumers. The major goal is to provide computing,
storage, and software as a service. As a result, consumers do not need to invest in IT in-
frastructure of their own. They can obtain these services from external providers according
to their demands by a pay-per-use model [106], i.e., obtaining more services in the case of
growing demand and vice versa.

23



Amazon

w1 = 4

s4 Amazon

w1 = 3

Amazon s4

w1 = 4

Enrollment

s1 s2
s3

Update & 
Disenrollment

s1 s2
s3s1 s2

s3

Microsoft
s14 s13

w4 = 2

Microsoft
s14 s13

w4 = 2

Microsoft

s13

w4 = 1

5

Figure 2.1: Social Secret Sharing Scheme

A significant challenge in cloud computing is resource management, due to consumers’
expectations in terms of resource availability, overall performance, etc. In some settings,
enterprises provide valuations to service providers (i.e., the money they are going to pay if
cloud providers satisfy their demands). The service providers then try to maximize their
own profit, for instance, by prioritizing the consumers’ jobs. All these factors may lead
to competition, negotiation, dynamic allocation, and automatic load balancing. For an
extensive survey on this matter, see [21].

We demonstrate a new method of share distribution over the cloud in a secure system
using threshold secret sharing. The question is how such systems can be automatically
configured based on the availability of different components. This can help to better
comply with the service-level agreements (SLA) established between the cloud providers
and consumers. We believe that the challenge can be seen as a cooperative game between
the cloud providers and consumers, that is:

1. For the service providers to comply with the service-level agreements, and

2. for the consumers to receive services with a high satisfaction rate.

As an example, we can refer to a significant spike in online shopping with “Amazon”
at the end of the year. It would be helpful for both consumers and service providers if the
system adopts an automatic reconfiguration strategy and relies less on busier components
during certain periods. We illustrate how this can be accomplished by regular interactions
between the providers and consumers.
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The good news is that, in a distributed secure system using threshold secret sharing,
even if some servers do not act properly (for instance, due to an adversarial attack or
delay in response time), the system can still accomplish the task if a certain number of
components operate appropriately. Therefore, we intend to show this cooperation can
be modeled by social secret sharing. In other words, the consumers use a reputation
management system to rate different components of the cloud. Subsequently, the system
is reconfigured over the cloud to guarantee the service-level agreement.

Our model consists of a dealer who initiates a weighed secret sharing scheme, n cloud
providers denoted by P1, . . . , Pn, and many servers interacting with the cloud providers.
Let T = (T1, T2, . . . , Tn) and ~w = (w1, w2, . . . , wn) be the vector of players’ trust values
and the vector of players’ weights respectively. The initial values in T are all zero (that is,
all service providers are treated as newcomers), whereas the initial values in ~w are chosen
by the dealer based on a specific distribution.

Let us assume a secret key α is selected in order to accomplish a secure task whenever
it is required. For instance, we can refer to secure auctions in which bidders submit their
sealed-bids to auctioneers when the auction starts and then the auctioneers define the
outcomes (i.e., the winner and the selling price) without revealing the losing bids [85].

We can therefore assume that secret key α is used by many auctioneers to start or
accomplish several sealed-bid auctions over time on behalf of a seller. Considering this
secure auction scenario, a dealer (or a seller) first distributes shares of this secret among
different service providers (or clouds) according to their initial weights in vector ~w, as
shown in Figure 2.2. He then leaves the scheme.
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YahooMicrosoft
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Figure 2.2: System Initialization
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Subsequently, different servers (or auctioneers) interact with the cloud providers to
perform their tasks in the absence of the dealer; see Figure 2.3. For instance, from time
to time, requests for these shares are sent to the cloud providers by the servers. The
secret is recovered on these servers and then a secure procedure (or sealed-bid auction) is
accomplished. Finally, the secret and its corresponding shares are erased from the servers.
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Figure 2.3: Weight Adjustment

Based on the service providers’ actions ai ∈ {C,D} (Definition 2.1) as well as a trust
function, these servers rate each component of the cloud in terms of its response time;
this issue is going to be more critical in real-time systems where “response time” plays an
important role. Consequently, the weight of each service provider is changed according to
his new trust value. For instance, as shown in Figure 2.3, the weights of two components
are going to be updated. To see how increase or reduction of a trust value affects the
weight of a player, see [70], for a discussion of trust-to-share ratio computation.

In the case of corruption, where ai = X , the corrupted providers are rebooted. They
then return to the scheme and are treated as newcomers. We should note that corrupt
actions (for instance, sending incorrect shares to the other players) are detectable by using
a verifiable secret sharing scheme.

In the final phase, the service providers jointly collaborate to reconfigure the scheme
according to new weights. They initially create the new shares by using an enrollment
protocol, e.g., the share f(s14) is enrolled for “Microsoft”. Subsequently, shares are updated
(except for the shares that are scheduled to be disenrolled) such that they are transformed
to a new secret sharing polynomial, e.g., if the share f(s4) is not updated, then “Amazon”
is going to have three shares afterward, as shown in Figure 2.4. Misbehavior during this
phase can be also detected and punished if desired.
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Figure 2.4: Self-Configuration

The benefit of using threshold secret sharing schemes in a distributed secure system is
its “fault-tolerance” and “availability”. For instance, if one component is compromised by
an adversary or he responds with delay, other parties can carry out the intended procedure.

2.4 Passive Adversary Model Construction

In this construction, we consider the passive adversary model, where players follow all
protocols but an unauthorized subset of them may collude to gather information and
attempt to reconstruct the secret.

2.4.1 Secret Sharing

Suppose the dealer initiates a secret sharing scheme by generating f(x) ∈ Zq[x] of degree
t−1 where its constant term is secret f(0) = α, i.e., Shamir threshold scheme, as discussed
in Section 1.3.1. He sends shares of player Pi for 1 ≤ i ≤ n according to his weight wi, and
then he leaves the scheme:

ϕij = f(ϑij) for 1 ≤ j ≤ wi

where ϑij = im −m + j and m is the maximum weight of any participant, as defined in
Section 2.2. The initial trust value is zero for all players. This trust value and, consequently,
weights of participants are updated at each cycle during the share renewal stage based on
players’ behavior.
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2.4.2 Social Tuning

Our scheme provides a mechanism for assigning new weights to players based on their
behavior at the end of each time period, where by behavior we refer to a participant’s
reputation. We apply a weight adjustment technique that rewards reliable participants
because of their repeated cooperation, reduces the influence of unreliable players due to
their past defection, and protects the scheme from colluders.

The trust function illustrates how reputable or trustworthy each participant is. One
simple solution is to assign an initial trust value to newcomers, increase this value by a
constant if the participant is cooperating, and decrease it otherwise. However, this naive
method does not consider various scenarios when making the adjustment. For that reason,
we apply the proposed trust function presented in Section 1.5.

Although we upper-bounded the weight of each player by m, trust function Ti(p) also
bounds the trust value, both above and below, so that a participant cannot continually
build up his reputation in order to be the main shareholder and form a monopoly. This
protects the scheme in a scenario where a malicious player cooperates for a while to gather
most of the shares and then defects.

Finally, since players’ weights and consequently their trust values are public informa-
tion, the trust computation and weight adjustment can be done by any authority or a
committee of players on a public board. In the next sections, we illustrate how to increase
and/or decrease the weights of different players consistently.

a. Inactivating Non-cooperative Players’ Shares.

Now that we have a trust value for each participant, we turn to the task of using that value
to adjust the scheme. Clearly, some identifiers j (1 ≤ j ≤ m) should be inactivated for each
player whose trust value has been decreased, and activated for players whose trust values
have risen, as well as for newcomers. The task is to determine how many, say δ, identifiers
should be inactivated for non-cooperative participants, and how δ new identifiers should
be activated for cooperative players and newcomers.

One option for share removal is simply to disenroll a single id of a player each time
his trust value decreases. However, such an approach does not take into account the total
number of shares in the scheme, nor does it consider the number of shares each participant
has. For instance, if the player has a large number of shares, inactivation of a single id
has a small effect. On the other hand, a participant with only one share remaining would
be totally removed from the scheme. In this case, one particular approach is to inactivate
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a number of ids for each player Pi that is proportional to the amount that the player’s
reputation Ti(p) is decreased:

ai = D :⇒ wi(p) =
⌊
wi(p− 1) · (1− τ

2
)
⌋

(2.1)

where τ = Ti(p − 1) − Ti(p) ≥ 0 denotes the trust value reduction for a non-cooperative
player Pi. Since the trust values Ti(p) are in the range [−1,+1] for every player, we divide
τ by 2 in order to compute the rate of weight reduction in the interval [0, 1]. If wi(p)
becomes zero, player Pi is removed from the scheme, which results in the release of a row
in Mn×m. The total number of ids to be deactivated (and then activated) in the entire
scheme is given as follows:

δ(p) =
∑

i : ai=D

(
wi(p− 1)− wi(p)

)
. (2.2)

Example 2.2 Suppose that trust values of a bad player Pi and a good player Pj have been
decreased from Ti(p − 1) = −0.2 to Ti(p) = −0.8 and from Tj(p − 1) = 0.8 to Tj(p) = 0.2
respectively. As a result, τ = 0.6 would be the same for both players. Therefore, the rate
of weight reduction computed in (2.1) would be 0.7. This means that each player loses
approximately 30% of his shares.

b. Activating Cooperative Players’ Shares.

Given the number of ids to be activated, we now define which players should receive extra
shares and how many newcomers can enter into the scheme. For each participant Pi,
consider the ratio of a player’s trust value, Ti(p), to the number of shares he is holding,
wi(p). This ratio ρ = Ti(p)/wi(p) increases with an increase in the participant’s trust value,
and decreases as the participant gains more shares.

As a result, it is reasonable to activate ids in participants for whom this ratio is highest,
but this is not enough since we also need to consider newcomers, whose trust values are
initially defined to be zero. Therefore, to have a fair policy, we give the “first” priority to
cooperative players for whom this ratio is both highest and positive, the “second” priority
to newcomers, and the “third” priority to other cooperative players with negative trust
values. However, the assumptions of social secret sharing, as stated in Section 2.2, must
be satisfied in the following Algorithm.
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Algorithm 1 : Activation of Players’ ids

collect the cooperative and new players in an array R
compute the trust-to-share ratio ρ for all Pi ∈ R
sort the array R based on the computed ratios ρ
\\ for the sake of simplicity, assume δ(p) ≤ |R|

k := 0
for j := 1 to |R| do

select player Pi from R[j]
if 0 < wi(p) < t− 1 then
\\ an existing player
activate a new id for Pi
wi(p) := wi(p− 1) + 1
k := k + 1

else if wi(p) := 0 then
\\ a new player
assign a new row in Mn×m to Pi
activate a new id for Pi
wi(p) := 1
k := k + 1

end if
if k := δ(p) then

break the loop
end if

end for

We assume that there are enough cooperative and/or new players Pi with wi(p) < t−1
to activate their ids, i.e., δ(p) ≤ |R|. The scenario in which there are no cooperative par-
ticipants or newcomers to receive shares seems unlikely. However, our algorithm can easily
be modified to handle this situation by assigning the remaining shares to non-cooperative
participants who still have relatively high trust values; doing so maintains a constant num-
ber of shares in the scheme. By sorting the array R and assuming |R| ≈ n, the complexity
of the algorithm is O(n+ n log n) = O(n log n).

To add participants to the scheme, we have two options for assigning ids to new players
in Mn×m. The first solution is to add a new row for each new player in the matrix. As

30



time passes, this approach leads to a big matrix with empty rows. The second alternative
is to reuse released rows of the disenrolled players. Since we first remove players from the
scheme and then update shares of remaining participants, we can reuse the released ids
and assign them to newcomers without leaking any information about the secret. In fact,
new players will receive updated shares corresponding to those recycled ids.

c. Share Renewal.

This stage consists of two phases. First, initial shares for newcomers (or newly activated
ids of existing players) are generated. Then, players proactively update their shares, while
disenrolled ids do not receive any more shares. As a result, old shares corresponding to
those inactivated ids become useless since they remain on an old secret sharing polynomial.

To update shares in a proactive scheme, a participant must have his previous shares.
Suppose we intend to activate a new id in period p, where we do not have the corresponding
old share in period p− 1. For the sake of simplicity, assume each participant has only one
identifier. In this case, if at least t participants cooperate, they can generate the old share
for the newcomer, where t is the threshold.

The initial solution for generating an old share, named share recovery, was proposed
in [44]. That solution is not efficient due to its random shuffling procedure. Saxena et al.
[93] proposed a non-interactive solution by using bivariate polynomials, named bivariate
admission control, but this protocol is secure only under the discrete logarithm assumption.
Our solution, as shown in Figure 2.5, is called the enrollment protocol. It is an efficient new
construction with unconditional security under the passive adversary model. We assume
that this protocol is executed in a single time slot in our social secret sharing scheme. We
also provide a toy example of this scheme.

Example 2.3 Assume t = 3 and the dealer has generated shares of three players P1, P2,
and P3 based on f(x) = 9 + 2x + 5x2 ∈ Z13[x], i.e., ϕ1 = 3, ϕ2 = 7, and ϕ3 = 8. After
some time, players are asked to create a share for a newcomer (for instance P4) in the
absence of the dealer. First each player Pi privately computes ϕi × γi as follows:

ϕi × γi =


3× (4−2)(4−3)

(1−2)(1−3)
= 3

7× (4−1)(4−3)
(2−1)(2−3)

= 5

8× (4−1)(4−2)
(3−1)(3−2)

= 11

Et×t =


∂11 = 1 ∂21 = 1 ∂31 = 1

∂12 = 2 ∂22 = 1 ∂32 = 2

∂13 = 4 ∂23 = 2 ∂33 = 5
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Enrollment Protocol

1. First, each player Pi for 1 ≤ i ≤ t computes his corresponding Lagrange inter-
polation constant as follows:

γi =
∏

1≤j≤t,i 6=j

k − j
i− j

(2.3)

where i, j, and k represent players’ ids.

2. Each player Pi multiplies his share ϕi by his Lagrange interpolation constant,
and randomly splits the result into t portions in order to exchange them with
other parties:

ϕi × γi = ∂1i + ∂2i + · · ·+ ∂ti for 1 ≤ i ≤ t. (2.4)

3. Players exchange ∂ji’s accordingly through pairwise channels. Subsequently,
each player Pj holds t values. Player Pj adds the t values together and sends
the result to player Pk.

σj =
t∑
i=1

∂ji (2.5)

where ∂ji is the jth share-portion of the ith participant.

4. Finally, Pk adds the received values σj (for 1 ≤ j ≤ t) together to compute his
share ϕk:

ϕk =
t∑

j=1

σj. (2.6)

Figure 2.5: Enrollment Protocol in the Passive Adversary Model

After that, they randomly split the results and exchange them, as shown in the share-
exchange matrix Et×t. Players then compute and send σ1 = 7, σ2 = 4, and σ3 = 8 to P4.
Finally, P4 adds up these values to compute his new share ϕ4 = 6.

Theorem 2.4 The enrollment protocol in Figure 2.5 is correct and unconditionally secure
under the passive adversary model tolerating t− 1 colluders.

Proof. We first show the protocol is correct and then prove its unconditional security.
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The following computation illustrates that the new value ϕk is in fact Pk’s share on f(x):

ϕk =
t∑

j=1

σj by (2.6)

=
t∑

j=1

t∑
i=1

∂ji by (2.5)

=
t∑
i=1

t∑
j=1

∂ji

=
t∑
i=1

(
ϕi × γi

)
by (2.4)

=
t∑
i=1

(
ϕi ×

∏
1≤j≤t,i 6=j

k − j
i− j

)
by (2.3)

= f(k) by (1.1).

As shown in the enrollment protocol, each player Pi first multiplies his share ϕi by
the corresponding Lagrange interpolation constant γi, and then splits the result into t
pieces. We defined the share-exchange matrix Et×t, where each row presents various pieces
of a single share and each column represents portions of different shares that each player
receives. In other words, all values in the ith row, i.e., ∂1i, ∂2i, · · · , ∂ti, originate from a
single player Pi and the entries in the jth column, i.e., ∂j1, ∂j2, · · · , ∂jt, represent values
that player Pj receives from other participants.

Et×t =


∂11 ∂21 · · · ∂t1

∂12 ∂22 · · · ∂t2
...

...
. . .

...

∂1t ∂2t · · · ∂tt

 .

We consider the following two scenarios to show that a coalition of t − 1 participants
cannot learn any information about the secret.

First, suppose that t− 1 of t participants collude. In this case, colluders have access to
all entries of t−1 rows. In addition, they also know t−1 entries of the single unknown row,
because t−1 columns belong to them. Therefore, just one entry remains unknown, but this
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is sufficient to prevent the colluders from finding the newcomer’s share and consequently
the secret remains unknown. As presented in Example 2.3, if players P1 and P2 collude,
then ∂33 = 5 in the third row is not known to the colluders.

Second, suppose that t − 2 of t participants with the newcomer collude. In this case,
the colluders have access to all entries of t − 2 rows. In addition, they also know t − 2
entries of the two unknown rows, because t − 2 columns belong to them. Therefore, four
entries remain unknown. On the other hand, the newcomer also knows the sum of the
column’s entries for all columns. As a consequence, he can just construct two equations
with four unknowns which does not reveal any information about the secret. As presented
in Example 2.3, if P1 and the newcomer P4 collude, then ∂22 = 1 and ∂32 = 2 in the second
row and ∂23 = 2 and ∂33 = 5 in the third row remain unknown and P4 can only construct
the following two equations: 1 + ∂22 + ∂23 = 4 and 1 + ∂32 + ∂33 = 8.

However, for the given set of t− 1 players to compute the secret, they need to compute
a particular linear combination of t shares and these t shares can only be computed if all of
the ∂ji’s are known. This linear combination involves different Lagrange constants than the
ones that we used to construct the ∂ji’s in Figure 2.5. Therefore, the desired computation
cannot be carried out since these t players do not know all of the ∂ji’s. The other thing we
need to verify is that it is impossible to compute the desired linear combination without
knowing all the ∂ji’s. This could be done only if the ratio of two “old” Lagrange coefficients
is the same as the ratio of two “new” Lagrange coefficients, which it is possible to prove
cannot happen.

In the next phase, shares of the players are updated by polynomials gu(x) that have
zero constant terms, as shown in Figure 2.6. Therefore, secret α remains the same while the
shares of the players are updated (to overcome a mobile adversary [44]). As we mentioned
earlier, inactivated ids do not receive any shares at this stage and they remain on the old
secret sharing polynomial, i.e., they are disenrolled.

2.4.3 Secret Recovery

As stated earlier, authorized players are able to recover the secret if their total weight is
equal or greater than the threshold, i.e., if

∑
Pi∈∆ wi ≥ t. In this case, players Pi ∈ ∆ send

their shares ϕij for 1 ≤ j ≤ wi to a selected participant to reconstruct f(x) by Lagrange
interpolation, and consequently the secret f(0) = α is recovered.

Theorem 2.5 The social secret sharing scheme (Sha, T un,Rec) presented in Section 2.4
is unconditionally secure under the passive mobile adversary model.
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Share Update

1. To update shares, each player Pu generates a random polynomial gu(x) ∈ Zq[x]
of degree t− 1 with a zero constant term.

2. Pu then sends wi shares ψuij = gu(ϑij), where 1 ≤ j ≤ wi, to Pi for 1 ≤ i ≤ n,
where ϑij = im−m+ j and m is the maximum weight of any participant.

3. Finally, each player Pi updates his share by adding the auxiliary shares ψuij to
his share ϕij:

ϕij = ϕij +
n∑
u=1

ψuij for 1 ≤ j ≤ wi.

Figure 2.6: Share Update in the Passive Adversary Model

The security of Sha and Rec is the same as the security of the Shamir’s scheme [94].
The security of T un depends on the share renewal step that consists of the following two
protocols: enrollment protocol and share update. The enrollment protocol is secure as
shown in Theorem 2.4. Share update is also proven to be secure; see [44].

2.5 Active Adversary Model Construction

In this section, we consider the active adversary model, where the players may deviate
from protocols or collude to reconstruct the secret. We use the proactive verifiable secret
sharing scheme that we presented in Section 1.3.3. We modify those protocols accordingly
to adapt them to our social secret sharing scheme.

As in the previous section, each player Pi has wi shares where wi is his current weight.
The total number of shares will be denoted by W , where W =

∑n
i=1 wi. We will require

that the number of bad shares, denoted by ξ, satisfies the inequality ξ ≤ t − 1 <
⌊
W−1

4

⌋
.

Our protocol is a small modification of the VSS schemes presented in Section 1.3.3. As
before, a pairwise check procedure will be used to verify the consistency of all pair of shares.
Also, the “recovery protocol” is used to generate new shares for newly activated ids. This
recovery protocol is used to restore incorrect shares after running the detection procedure.
We assume that the share renewal step is instantaneous, therefore, the adversary cannot
corrupt additional participants while shares are being updated.
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As before, we consider the matrixMn×m of the participants’ identifiers, where n is the
maximum number of players and m is the maximum weight of any player. We also denote
ϑij = im−m+ j to define the entries of the matrix Mn×m in our protocols.

The initial secret sharing by the dealer is essentially identical to protocol in Figure 1.2.
The only difference is that now we have W shares instead of n shares; pairwise checks
are performed on all pairs of shares. In step 3, Γ will be a subset of consistent shares. If
|Γ| ≥ W − (t−1), the sharing is going to be accepted. During secret recovery, the constant
terms of all the shares should be sent to a selected player.

Social tuning is similar to its counterpart in the passive adversary model (Section 2.4.2).
The only difference is the “share renewal” stage. In other words, the players inactivate (or
activate) the shares of non-cooperative (or cooperative) players in the same way that we
explained in Section 2.4.2.

Share renewal consists of two phases. In the first phase, initial shares for newcomers
or newly activated ids of existing players are generated, i.e., they are enrolled, as shown
in Figure 2.7. Then, in the second phase, players proactively update their shares, while
disenrolled ids do not receive any updates.

Enrollment Protocol

1. For every share ϕik(x) ∈ Γ, ϕik(ω
ϑjl) is sent to a selected player Pj in order to

generate his lth share, that is, ϕjl(x).

2. After that, Pj computes a polynomial ϕjl(x) of degree at most t− 1 such that
ϕjl(ω

ϑik) = ϕik(ω
ϑjl) for at least W − 2(t− 1) indices ik.

Figure 2.7: Enrollment Protocol in the Active Adversary Model

In fact, share ϕjl(x) is constructed through the interpolation of pairs (ωϑik , ϕik(ω
ϑjl)) in

the second step. We now explain why we need at least W−2(t−1) indices ik to interpolate
polynomial ϕjl(x) in the above protocol. As we earlier stated, the scheme itself can tolerate
t− 1 incorrect shares. In addition, a dishonest dealer may transmit t− 1 incorrect shares
during sharing in order to eliminate them from the scheme. As a result, set Γ of consistent
shares has size at least W − 2(t− 1) shares. Therefore, an error correction technique, such
as the one proposed in [87], can be used to interpolate polynomial ϕjl(x).

Share update phase is done using the protocol in Figure 1.3. As before, n is replaced by
W and each player acts as an independent dealer to distribute shares of a new polynomial
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of degree at most t−2. If a player is detected as a bad dealer, he will be removed from the
scheme. This can be done through pairwise checks on distributed shares and accusation
procedure, as in step 4 of the protocol. Finally, secret recovery is the same as the protocol
in Figure 1.3.3.

2.6 Conclusion

We introduced the notion of a social secret sharing scheme, in which a player’s weight is
adjusted based on his reputation and behavior over time. We then demonstrated an appli-
cation of social secret sharing in cloud computing. Finally, we proposed two constructions
that are secure in the passive and active mobile adversary models respectively.

By providing a model for resource management in self-organizing clouds, we showed
how a new line of research can be opened within cross-interdisciplinary areas. In fact,
using various tools from different disciplines (such as cryptography, reputation systems,
and cloud computing) can provide a better way to address the challenges of both existing
and new models.

Our proposed construction has a variety of desirable properties: it is unconditionally
secure, meaning that it does not rely on any computational assumptions; proactive, re-
freshing shares at each cycle without changing the secret; dynamic, allowing changes to
the access structure after the initialization; weighted, allowing the cooperative players to
gain more authority in the scheme; and verifiable in the case of the active adversary model.
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Chapter 3

Socio-Rational Secret Sharing

Rational secret sharing was proposed by Halpern and Teague in [41]. The authors show
that, in a setting with rational players, secret sharing and multiparty computation are
only possible if the actual secret reconstruction round remains unknown to the players,
see Section 3.2.2. All the subsequent works use a similar approach with different assump-
tions. We change the direction by bridging cryptography, game theory, and reputation
systems, and propose a “social model” for repeated rational secret sharing. We provide a
novel scheme, named socio-rational secret sharing (SRS ), in which players are invited to
each game based on their reputations in the community. The players run secret sharing
protocols while founding and sustaining a public trust network. As a result, new concepts
such as a rational foresighted player, repeated social game, and social Nash equilibrium are
introduced. To motivate our approach, consider a repeated secret sharing game such as
“secure auctions”, where the auctioneers receive sealed-bids from the bidders to compute
the auction outcome without revealing the losing bids. If we assume each party has a repu-
tation value, we can then penalize (or reward) the players who are selfish (or unselfish) from
game to game. We show that this social reinforcement rationally stimulates the players to
be cooperative.

3.1 Introduction

A new research direction was initiated by Halpern and Teague [41] in the area of secret
sharing and multiparty computation in a game-theoretic setting. In this new construction,
players are rational rather than being honest or malicious. This means each player selects
his action (i.e., revealing his share or not revealing his share) based on the utility that he
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can gain. As illustrated by the authors, classical secret sharing fails in this setting due to
the failure of the secret reconstruction round. We should highlight that, in the context of
rational secret sharing, “deviation” means that a player has not revealed his share during
the reconstruction phase. Sending incorrect shares is another issue which can be prevented
by having the dealer sign the shares. For a simple example of such an authentication
method, see [53]. We now provide a high-level description of the problem.

If players are primarily incentivized to learn the secret, and secondly, they prefer that
fewer of the other parties learn it, then it is not reasonable for each player to reveal his share
in the “recovery phase”. For instance, suppose players P1, P2, P3 receive shares 6, 11, 18
from an honest dealer respectively, where f(x) = 3 + 2x+ x2 ∈ Z19[x] is the secret sharing
polynomial. If only two players reveal their shares in the recovery phase, then the third
selfish player (who has not revealed his share) can reconstruct the secret using two revealed
shares and his own private share. Obviously, the other two cooperative players who have
revealed their shares do not learn the secret. This justifies why the players do not reveal
their shares in a rational setting, i.e., each player waits to receive shares of the other parties
(see [28, 48] for an overview in this direction).

To generalize this, consider the following scenario for a player Pj where the degree of
the secret sharing polynomial is t − 1. If i players (for i less than t − 1 or i more than
t − 1) reveal their shares, nothing changes whether Pj reveals his share or not. In the
former case, no one learns the secret. In the latter case, everyone learns the secret. On
the other hand, if exactly t− 1 players reveal their shares, then Pj can not only learn the
secret with his own private share (i.e., t shares are sufficient to use Lagrange interpolation)
but also can prevent the other players from learning the secret by not revealing his share,
i.e., achieving the second preference of a self-interested player in rational secret sharing.
In other words, for each Pi, revealing the share is weakly dominated by not revealing the
share. As a result, no one reveals his share and the secret is never reconstructed.

3.1.1 Motivation

In our “socio-rational” setting, the players are “selfish” and the dealer is honest, similar
to standard rational secret sharing. In addition, they have “concerns” about future gain
or loss since our secret sharing game is repeated an unknown number of times. We term
this new type of the player, a rational foresighted player. In the proposed construction,
each player has a reputation value that is updated according to his behavior each time the
game is played. The initial reputation value is zero and its computation is public. For
instance, if a player cooperates (e.g., he reveals his share), then his trust value is increased,
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otherwise, it is decreased. A long-term utility (used by each player for action selection)
and an actual utility (used for the real payment at the end of each game) are computed
based on the following parameters:

1. Estimation of future gain or loss due to trust adjustment (virtual utility).

2. Learning the secret at the current time (real utility).

3. The number of other players learning the secret at the moment (real utility).

All these factors are used by each player to estimate his long-term utility and conse-
quently to select his action, whereas only the last two items are used to compute the real
payment at the end of each game. To estimate future impact, the following scenario is
considered: whenever a player cooperates (or defects), we assume he can potentially gain
(or lose) some extra units of utility, i.e., he has a greater (or lesser) chance to be “invited”
to the future games and consequently he gains (or loses) more utility. In other words, if
the reputation of Pi is decreased, he will have less chance to be invited to the future secret
sharing games. Otherwise, Pi is going to be invited to more secret sharing games. To real-
ize this scenario, in each game, the dealer selects the players based on their reputations, for
instance, 50% from reputable players, 30% from newcomers, and 20% from non-reputable
parties, where the number of players in each category possibly varies. We consider the
possibility of including the newcomers and non-reputable parties in order to give them a
chance to participate and improve their behavior.

This gain or loss is “virtual” at the current time but will be “realized” in the future.
As an example, consider the following statements, where U � u and V � v:

1. As a consumer, if you buy something today (cooperate and lose $u), you will receive
a significant discount from the producer (rewarded $U) on your next purchase.

2. As a producer, if you use low-grade materials to save some money (defect and gain
$v), you will lose many of your consumers (penalized $V) in the coming years.

In other words, if we construct a socio-rational model in which the players can gain (or
lose) more utility in the future games than the current game, depending on their behavior,
we can then incentivize them to be foresighted and cooperative. To further motivate our
concept of “socio-rational secret sharing”, consider the following repeated game, as shown
in Figure 3.1:
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1. The bidders select a subset of auctioneers based on a probability distribution over the
auctioneers’ types, i.e., reputable auctioneers have a greater chance to be selected.

2. Each bidder then acts as an independent dealer to distribute the shares of his sealed-
bid among the selected auctioneers.

3. Subsequently, the auctioneers compute the selling price and determine the winner by
using a multiparty computation protocol.

4. In the last phase of the multiparty computation, the auctioneers reconstruct the
selling price α and report it to the seller.

In this setting, only the auctioneers who have learned and reported α to the seller, are
each paid $Ω, i.e., there exists a “competition” for learning the secret. In addition, $Ω are
divided among the auctioneers who have learned the secret; each of them can therefore
earn more money if fewer of them learn α. If we repeat this game an unknown number of
times and choose an appropriate invitation mechanism based on the players’ reputation,
we can incentivize the auctioneers to be cooperative, that is, they will reveal the shares of
α in the recovery phase.

rs

public trust network
B1

A

$

……

bi
dd

er
s 

/ d
ea

le
r

seller

A1
S

AN

selling price

b

auctioneers
Bm

N

Figure 3.1: Sealed-Bid Auction as a Repeated Secret Sharing Game

3.1.2 Contributions

We provide a new solution concept to the rational secret sharing problem by considering
a social setting in which the players enter into a long-term interaction for executing an
unknown number of independent secret sharing protocols.

In our model, a public trust network is constructed to incentivize the players to be
cooperative. This incentive is sustained from game to game since the players are motivated
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to enhance their reputations and consequently gain extra utility. In other words, they
avoid a selfish behavior due to the social reinforcement of the trust network. Constructing
a “social model” and inviting the players to a repeated game based on their “reputations”
in the community, is a new contribution not only in rational cryptography but also in the
existing game-theoretic solution concepts. We refer the reader to [60] for other discussions
in this direction. Our scheme has the following desirable properties:

• It has a single recovery round, unlike the existing rational secret sharing schemes.

• It provides a unique game-theoretic solution, which is always a Nash equilibrium.

• It is immune to the rushing attack; i.e., it is not advantageous for players to wait.

• It prevents the players from aborting the game, which is a possibility in some existing
solutions.

3.1.3 Organization

This chapter is organized as follows: Section 3.2 provides some preliminary materials.
Section 3.3 reviews the literature of rational cryptography. Section 3.4 presents our con-
struction. Section 3.5 compares our solution with the existing schemes and techniques.
Finally, Section 3.6 provides concluding remarks.

3.2 Preliminary: Game Theory and Cryptography

In this section, some preliminary materials are provided for further technical discussions.

3.2.1 Game Theoretic Concepts

A game consists of a set of players, a set of actions and strategies (i.e., the way of choosing
actions), and finally a payoff function which is used by each player to compute his utility.
In cooperative games, players collaborate and split the total utility among themselves, i.e.,
cooperation is enforced by agreements. In non-cooperative games, players can not form
agreements to coordinate their behavior, i.e., any cooperation must be self-enforcing.

The prisoner’s dilemma, as shown in Figure 3.2, is an example of a non-cooperative
game. In this game, we have two possible actions: C: keep quiet (or cooperation) and D:
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confess (or defection). In the pay-off matrix, +1, 0,−1, and −2 denote freedom, jail for one
year, jail for two years, and jail for three years respectively. The outcome of this game is
going to be (D,D) due to the Nash equilibrium concept, while the ideal outcome is (C, C).
To analyze why the game has such an outcome, consider the following two scenarios:

1. If P1 selects C (the 1st row), then P2 will select D (the 2nd column) since +1 > 0.

2. If P1 selects D (the 2nd row), then P2 will select D (the 2nd column) since −1 > −2.

This means that, regardless of whether P1 cooperates or defects, P2 will always defect. Since
the pay-off matrix is symmetric, we also have that, regardless of whether P2 cooperates
or defects, player P1 will always defect. In other words, since players are in two different
locations and cannot coordinate their behavior, the final outcome is going to be (D,D).

P1: “what if I defect”P2P2

-1 , -1+1 , -2

-2 , +10 , 0
P1 -1 , -1+1 , -2

-2 , +10 , 0
P1

P1: what if I defect

-1 , -1+1 , -2: Confess

-2 , +10 , 0: Quiet

: Confess: Quiet

P1

P1: “what if I cooperate”
P2

Figure 3.2: Nash Equilibrium in Prisoner’s Dilemma

Definition 3.1 Let A def
= A1×· · ·×An be an action profile for n players, where Ai denotes

the set of possible actions of player Pi. A game Γ = (Ai, ui) for 1 ≤ i ≤ n, consists of
Ai and a utility function ui : A 7→ R for each player Pi. We refer to a vector of actions
~a = (a1, . . . , an) ∈ A as an outcome of the game.

Definition 3.2 The utility function ui illustrates the preferences of player Pi over different
outcomes. We say Pi prefers outcome ~a to ~a′ iff ui(~a) > ui(~a

′), and he weakly prefers
outcome ~a to ~a′ if ui(~a) ≥ ui(~a

′).

In order to allow the players to follow randomized strategies (where the strategy is the
way of choosing actions), we define σi as a probability distribution over Ai for a player
Pi. This means that he samples ai ∈ Ai according to σi. A strategy is said to be a
pure strategy if each σi assigns probability 1 to a certain action, otherwise, it is said to
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be a mixed strategy. Let ~σ = (σ1, . . . , σn) be the vector of players’ strategies, and let

(σ′i, ~σ−i)
def
= (σ1, . . . , σi−1, σ

′
i, σi+1, . . . , σn), where Pi replaces σi by σ′i and all the other

players’ strategies remain unchanged. Therefore, ui(~σ) denotes the expected utility of Pi
under the strategy vector ~σ. A rational player’s goal is to maximize this utility. In the
following definitions, one can substitute an action ai ∈ Ai with its probability distribution
σi ∈ Si or vice versa, where Si denotes the set of possible strategies of player Pi.

Definition 3.3 A vector of strategies ~σ is a Nash equilibrium if, for all i, it holds that
ui(σ

′
i, ~σ−i) ≤ ui(~σ). This means no one gains any advantage by deviating from the protocol

as long as the other players follow the protocol.

Definition 3.4 Let S−i
def
= S1 × · · · × Si−1 × Si+1 × · · · × Sn. A strategy σi ∈ Si (or an

action) is weakly dominated by σ′i ∈ Si (or another action) with respect to S−i if:

1. For all ~σ−i ∈ S−i, it holds that ui(σi, ~σ−i) ≤ ui(σ
′
i, ~σ−i).

2. There exists a ~σ−i ∈ S−i such that ui(σi, ~σ−i) < ui(σ
′
i, ~σ−i).

This means that Pi can never improve its utility by playing σi, and he can sometimes
improve it by not playing σi. A strategy σi ∈ Si is strictly dominated if player Pi can
always improve its utility by not playing σi.

3.2.2 Rational Secret Sharing

In this section, we review rational secret sharing, which was initiated by Halpern and
Teague [41]. Their construction was later improved in [39]. The scheme consists of an
honest dealer D, who creates a secret sharing scheme with threshold t, and n players P1,
. . . , Pn.

The protocol proceeds in a sequence of iterations where only one iteration is the “real”
secret recovery phase (i.e., the last iteration) and the rest are just “fake” iterations for
trapping selfish players. At the end of each iteration, the protocol either terminates (due
to the observation of selfish behavior or cooperation for secret recovery) or it proceeds to
the next iteration. Indeed, in any given round, players do not know whether the current
iteration is the real recovery phase (where a player may gain more utility by being silent
and not sending his share to others), or just a test round. The following steps (a)-(d)
provide a description of the initial solution to a rational secret sharing game, where n = 3,
t = 3, and shares are revealed simultaneously, as presented in [41, 39]. Table 3.1 shows all
the different possibilities that can occur.
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(a) In each round, D initiates a secret sharing scheme where each Pi receives a share fi.

(b) During an iteration, each Pi flips a biased coin ci ∈ {0, 1} where Pr[ci = 1] = ρ.

(c) Players compute c∗ = ⊕ci by a multiparty computation scheme without revealing ci’s.

(d) Now c∗ is known to everyone. If c∗ = ci = 1, Pi broadcasts his share. We then have:

(d.1) If three shares are revealed, the secret is recovered and the protocol ends.

(d.2) If c∗ = 1, and no share or two shares are revealed, players terminate the protocol.

(d.3) In any other cases, D and the players proceed to the next round, i.e., step (a).

Rows c1 c2 c3 Public c∗ Revealed Shares

1 0 0 0 0 -

2 0 0 1 1 f3

3 0 1 0 1 f2

4 0 1 1 0 -

5 1 0 0 1 f1

6 1 0 1 0 -

7 1 1 0 0 -

8 1 1 1 1 f1, f2, f3

Table 3.1: Three-Player Rational Secret Sharing Game

To see how the above protocol works, assume P1, P2 follow the protocol whereas P3

is willing to deviate. He may deviate in “coin-tossing” or in “revealing” his share. We
should note that each Pi selects ci independently. The following cases are different possible
deviation scenarios:

• It is not advantageous for P3 to bias c3 to be 0 with higher probability, since, when
c3 = 0, either no share or one share is revealed.

• It is also not advantageous for P3 to bias c3 to be 1 with higher probability, since,
when c3 = 1, either no share, or one share, or all shares are revealed. This may lead
to an “early” secret recovery but it does not have any effect of the utility of P3.
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• If c3 = 0 or c∗ = 0 (that is, one of rows 1, 3, 4, 5, 6, 7 in Table 3.1 occurs), then there
is no incentive for player P3 to deviate since in all these cases he is supposed not to
reveal his share.

• If c3 = 1 and c∗ = 1 (that is, one of rows 2, 8 in Table 3.1 occurs), then player P3 is
supposed to reveal his share. There exist two possibilities:

1. c1 = 1 and c2 = 1, which occurs with the following probability:

Pr[c1 = 1 ∧ c2 = 1|c3 = 1 ∧ c∗ = 1] =
Pr[c1 = 1 ∧ c2 = 1 ∧ c3 = 1]

Pr[c3 = 1 ∧ c∗ = 1]

=
ρ3

(1− ρ)(1− ρ)ρ+ ρ3

=
ρ2

(1− ρ)2 + ρ2
.

2. c1 = 0 and c2 = 0, which occurs with the remaining probability:

Pr[c1 = 0 ∧ c2 = 0|c3 = 1 ∧ c∗ = 1] =
Pr[c1 = 0 ∧ c2 = 0 ∧ c3 = 1]

Pr[c3 = 1 ∧ c∗ = 1]

=
(1− ρ)(1− ρ)ρ

(1− ρ)(1− ρ)ρ+ ρ3

=
(1− ρ)2

(1− ρ)2 + ρ2
.

Therefore, if player P3 deviates by not revealing his share, either he is going to be
the only player who learns the secret or the protocol terminates and he never learns the
secret. Let assume player P3 gains U+ if he is the only player who learns the secret, let U
denotes the utility gain for each Pi if all three players learn the secret, and let U− denotes
the utility gain, say $0, for each player Pi if no one learns the secret. It is assumed that
U+ > U > U−. Therefore, a rational P3 will cheat only if:

U+

(
ρ2

(1− ρ)2 + ρ2

)
+ U−

(
(1− ρ)2

(1− ρ)2 + ρ2

)
> U. (3.1)

If we assign an appropriate value to ρ, based on the players’ utility function, such that
the inequality (3.1) is not satisfied, then player P3 has no incentive to deviate when c3 = 1
and c∗ = 1.
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The authors in [41] also showed that this three-player game can be generalized to a
game with n players. As we just stated, certain assumptions regarding the players’ utility
function are required for rational secret sharing to be achievable. Let ui(~a) denote the
utility of Pi in a specific outcome ~a of the protocol. Suppose li(~a) is a bit defining whether
Pi has learned the secret or not in ~a. We then define δ(~a) =

∑
i li(~a), which denotes the

number of players who have learned the secret. The generalized assumptions of rational
secret sharing are as follows:

• li(~a) > li(~a
′)⇒ ui(~a) > ui(~a

′).

• li(~a) = li(~a
′) and δ(~a) < δ(~a′)⇒ ui(~a) > ui(~a

′).

The first assumption means Pi prefers an outcome in which he learns the secret, that is,
since li(~a) = 1 and li(~a

′) = 0, he therefore prefers ~a. The second assumption means Pi
prefers an outcome in which the fewest number of other players learn the secret, given that
Pi learns (or does not learn) the secret in both outcomes.

3.3 Previous Works: Rational Secret Sharing

As we mentioned, the notion of rational secret sharing was introduced by Halpern and
Teague [41], and it was later improved in [39]. Assuming the same game-theoretic model,
Lysyanskaya and Triandopoulos [57] provide a solutions in a mixed behavior setting in
which players are either rational or malicious. Abraham et al. [2] define a notion of resis-
tance to coalitions and present a coalition-resistant protocol. All these constructions use
simultaneous channels (either a broadcast channel or secure private channels) that means
each player must decide on the value he wants to broadcast before observing the values
broadcasted by the other players; this is known as a strategic game.

The proposed protocols in [54, 55, 45] rely on physical assumptions such as secure
envelopes and ballot boxes, which might be impossible or difficult to implement. In the
same model, Micali and shelat [64] provided a purely rational secret sharing scheme using
a verifiable trusted channel. They showed that all the existing solutions not only rely on
the players’ rationality, but also on their beliefs. As a result, they cannot guarantee that
all rational players learn the secret. For instance, suppose Pi believes that equilibrium
(a, b) is played whereas Pj believes (a′, b′) is played, but the game leads to (a, b′), which
may not be an equilibrium at all.
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Kol and Naor [53] introduced an equilibrium notion, termed strict Nash equilibrium,
in an information-theoretic secure setting. In a Nash equilibrium, no deviations are ad-
vantageous (i.e., there is no incentive to deviate). In its strict counterpart, all deviations
are disadvantageous (i.e., there is an incentive not to deviate). They first considered both
simultaneous and non-simultaneous broadcast channels and provided a new solution to
avoid the simultaneous channel at the cost of increasing the round complexity.

Kol and Naor later [52] showed that all the existing computational-based protocols
are susceptible to backward induction because of the cryptographic primitives used in the
beginning of those protocols. That is, they can surely be broken after an exponential
number of rounds. The authors then illustrate a new cryptographic coalition-resilient
approach that is immune to backward induction by considering simultaneous as well as
non-simultaneous broadcast channels.

The notion of computational strict Nash equilibrium was introduced in [32]. This con-
struction is dealer-free and can tolerate a coalition of size t−1 without using simultaneous
channels. It can even be run over asynchronous point-to-point networks. Finally, it is
efficient in terms of computation, share size, and round complexity.

Maleka et al. [61] presented repeated rational secret sharing, with the same approach
proposed in [79], by considering two punishment strategies. In the first strategy, each player
reveals his share as long as the other players cooperate. As soon as the first defection
is observed, the players do not reveal their shares in every subsequent game. In the
second strategy, the players do not send their shares to the deviant for k subsequent games
after observing the first defection. In the first scheme, each player not only punishes the
deviant but also the other players including himself. In the second method, a player may
deviate in an expensive secret recovery without having any concern for k subsequent cheap
reconstructions. Indeed, the nature of a punishment strategy must depend on how much
future outcomes are worth for each player. Finally, they only considered a fixed number
of m players without allowing newcomers to join the scheme.

Other results have recently been proposed in the literature. For instance, Ong et
al. [78] presented a protocol that is fair when the reconstruction phase is executed with
many rational players together with a minority of honest parties. Asharov and Lindell [4]
explained that in all the existing protocols, the designer needs to know the actual utility
values of the players. They then showed that it is possible to achieve utility independence
through the relaxation of assumptions. Gradwohl et al. [40] provided the definitions of
computational solution concepts that guarantee sequential rationality. Finally, Asharov et
al. [3] demonstrated how game theoretic concepts can be used to capture cryptographic
notions of security.
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3.4 Socio-Rational Secret Sharing

We first provide formal definitions of a social game, a social Nash equilibrium, and socio-
rational secret sharing. In our model, each Pi has a public reputation value Ti, where
Ti(0) = 0 and −1 ≤ Ti(p) ≤ +1; p = 0, 1, 2, . . . denote the time periods of the games. The
construction of this function is independent of our protocol; therefore, we use the existing
function presented in Section 1.5. Since the importance of each game might be different,
it would be possible to consider the transaction cost parameter (as stated in Section 1.5)
during trust adjustment, but we do not use this in the thesis. We assume each player’s
action ai ∈ {C,D,⊥}, where C and D denote “cooperation” and “defection” respectively,
and ⊥ denotes Pi has not been chosen by the dealer to participate in the current game.

Definition 3.5 In a society of size N , a social game Γ = (Ai, Ti, ui, u′i), where 1 ≤ i ≤ N ,
is repeatedly played an unbounded number of times among different subsets of players. Each
Pi has a set of actions Ai, a reputation value Ti, a long-term utility function ui, and an

actual utility function u′i. Let A def
= A1 × · · · × AN be the action profile. In each game:

• A subset of n ≤ N players is chosen by the dealer for each new secret sharing game
based on their reputation values Ti, where more reputable players have a greater
chance to be selected.

• Each Pi estimates his long-term utility by ui : A × Ti 7→ R based on his gain in the
current game and future games. Player Pi then selects his action ai according to ui.

• Let ~a = (a1, . . . , aN) ∈ A be the current game’s outcome. The actual utility of each
Pi is computed based on a function u′i : A 7→ R at the end of the current game.

• Each player’s reputation value Ti is publicly updated by a trust function based on each
player’s action in the current game, as shown in Section 1.5, except that Ti(p) =
Ti(p− 1) if ai = ⊥.

Note that the long-term utility function ui is used for “action selection” and the actual
utility function u′i is used to compute the “real gain” at the end of the current game.

Definition 3.6 A vector of strategies ~σ is said to be a social Nash equilibrium in each
game of a social game Γ if for all i and any σ′i 6= σi it holds that ui(σ

′
i, ~σ−i) ≤ ui(~σ).

Accordingly, if ui(σ
′
i, ~σ−i) < ui(~σ), it is said to be a strict social Nash equilibrium. That is,

considering future games, a player cannot gain any benefit by deviating from the protocol
in the current game.
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In the next sections, we discuss the utility function as a central component in every
game. This is due to the fact that players make decisions based on this function. Note that
the utility assumption refers to the players’ preferences over the game’s outcome whereas
the utility computation shows the method of computing the utility of each player.

3.4.1 Utility Assumption

Let ui(~a) denotes Pi’s utility resulting from a list of players’ actions ~a by considering future
games, let u′i(~a) denotes Pi’s utility resulting from the current game, let li(~a) ∈ {0, 1}
denote if Pi has learned the secret during a given time period, and define δ(~a) =

∑
i li(~a).

Finally, let T ~ai (p) denote the reputation of Pi after outcome ~a in period p; each game of
a social game is played in a single period. The generalized assumptions of socio-rational
secret sharing are as follows:

A. li(~a) = li(~a
′) and T ~ai (p) > T ~a′i (p)⇒ ui(~a) > ui(~a

′).

B. li(~a) > li(~a
′)⇒ u′i(~a) > u′i(~a

′).

C. li(~a) = li(~a
′) and δ(~a) < δ(~a′)⇒ u′i(~a) > u′i(~a

′).

The preference “A” illustrates that, whether player Pi learns the secret or not, Pi prefers to
maintain a high reputation. The preferences “B” and “C” are the standard assumptions
of rational secret sharing.

Definition 3.7 In a social game, a rational foresighted player has prioritized assumptions:
“A” (greediness) is strictly preferred to “B” and has an impact factor ρ1, “B” (selfishness)
is at least as good as “C” and has an impact factor ρ2, and “C” (selfishness) has an impact
factor ρ3. We denote this using the notation Aρ1 � Bρ2 � Cρ3, where ρ1 > ρ2 ≥ ρ3 ≥ 1.

The above definition reflects the fact that a rational foresighted player has a “long-term”
vision and firstly prefers to achieve the highest level of trustworthiness. Only in this case,
he will be involved in the future games and consequently gain more profits (interpreted
as greediness). He secondly prefers an outcome in which he learns the secret. Finally, he
desires the fewest number of other players learn the secret. We next propose a long-term
utility function that satisfies all three preferences.
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3.4.2 Utility Computation

Our long-term utility function ui : A × Ti 7→ R computes the utility that each player Pi
potentially gains or loses by considering future games, based on assumptions “A”, ”B”,
“C”, whereas the actual utility function u′i : A 7→ R only computes the current gain or loss
in a given time period, based on assumptions “B” and “C”.

Sample Function.

We define two functions ωi(~a) and τi(~a) for the n participating players of the current game:

ωi(~a) =
3

2− T ~ai (p)
(3.2)

τi(~a) = T ~ai (p)− T ~ai (p− 1). (3.3)

Since −1 ≤ T ~ai (p) ≤ +1, then +1 ≤ ωi(~a) ≤ +3. Let Ω > 0 be a “unit of utility”, for
instance, $100. To satisfy our assumptions in Section 3.4.1, we define:

A :
|τi(~a)|
τi(~a)

× ωi(~a)× Ω where
|τi(~a)|
τi(~a)

=

{
+1 if ai = C
−1 if ai = D

(3.4)

B : li(~a)× Ω where li(~a) ∈ {0, 1} (3.5)

C :
li(~a)

δ(~a) + 1
× Ω where δ(~a) =

N∑
i=1

li(~a). (3.6)

• (3.4) will evaluate to +ωi(~a)Ω if Pi cooperates and it will evaluate to −ωi(~a)Ω,
otherwise. This means that Pi gains or loses at least 1Ω and at most 3Ω (depending
on his reputation value, as reflected in ωi) units of utility in the future games due to
his current behavior.

• (3.5) illustrates that a player gains one unit of utility if he learns the secret in the
current game and he loses this opportunity, otherwise.

• (3.6) results in “almost” one unit of utility being divided among all the players Pi who
have learned the secret in the current game; to avoid a division by 0 when δ(~a) = 0,
we use δ(~a) + 1 in the denominator.
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We combine these three terms, weighted with their corresponding impact factors, as follows:

u′i(~a) = ρ2

(
li(~a)× Ω

)
+ ρ3

(
li(~a)

δ(~a) + 1
× Ω

)
, (3.7)

and then we have:

ui(~a) = ρ1

(
|τi(~a)|
τi(~a)

× ωi(~a)× Ω

)
+ u′i(~a)

= Ω×

(
ρ1

(
|τi(~a)|
τi(~a)

× ωi(~a)

)
+ ρ2

(
li(~a)

)
+ ρ3

(
li(~a)

δ(~a) + 1

))
. (3.8)

The function ui(~a) shows that if Pi, with preference factors ρ1 > ρ2 ≥ ρ3 ≥ 1, defects
(or cooperates), he may gain (or lose) ρ2Ω + (ρ3Ω)/(δ(~a) + 1) utility in the current game,
but he will lose (or gain) “x” units of utility in the future games, where ρ1Ω ≤ x ≤ 3ρ1Ω.
That is, future loss or gain is more important than the current loss or gain. We later
show that the dealer gives a lesser (or a greater) chance of contribution to non-reputable
(or reputable) players in the future games; i.e., reputation remains with a player as a
characteristic which continuously affects his utility.

We will prove that in our socio-rational secret sharing scheme, cooperation is a strict
Nash equilibrium. Our proofs are based on the sample function described above. However,
the proofs can be generalized to apply to any utility function that satisfies the requirements
of Definition 3.7.

3.4.3 Proposed Protocol

We now discuss our socio-rational secret sharing scheme; the details are presented in Figure
3.3. Suppose the public trust network has already been created. Assume we have a dealer
who initiates a (t, n)-threshold secret sharing scheme. Also, as in previous research on
rational secret sharing, we assume all the players use a “pure strategy”. A socio-rational
secret sharing game Γ = (Ai, Ti, ui, u′i) is a social game that is played among rational
foresighted players and it is based on the following elements:
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1. Set of possible actions Ai = {C,D,⊥}, as defined in Section 3.4.

2. Trust function Ti, except that Ti(p) = Ti(p− 1) if ai = ⊥, as defined in Section 1.5.

3. Long-term utility function ui : A× Ti 7→ R, as defined in Section 3.4.2.

4. Actual utility function u′i : A 7→ R, as defined in Section 3.4.2.

Secret Sharing

1. Let φ be the current probability distribution over players’ types B,N ,G, as
defined in Section 1.5. The dealer D first selects n out of N players, where
n ≤ N , based on this non-uniform probability distribution.

2. The dealer D then initiates a (t, n)-secret sharing scheme by selecting f(x) ∈
Zq[x] of degree t − 1, where f(0) = α is the secret. Subsequently, he sends
shares f(i) to Pi for the n chosen players, and leaves the scheme.

Secret Recovery

1. Each chosen player Pi computes his long-term utility function ui : A×Ti 7→ R,
and then selects an action, i.e., revealing or not revealing his share f(i).

2. If enough shares are revealed, the polynomial f(x) is reconstructed through
Lagrange interpolation and the secret f(0) = α is recovered.

3. Each chosen player Pi receives his utility u′i : A 7→ R (i.e., the real payment) at
the end of the reconstruction phase according to the outcome.

4. Finally, the reputation values Ti of all the chosen players are publicly updated
according to each player’s behavior and the trust function.

Figure 3.3: Socio-Rational Secret Sharing Protocol

The sharing phase is similar to that of standard secret sharing. The only difference is
the way that the dealer selects n out of N players for secret sharing. In other words, the
dealer gives more chance to reputable players compared to unreliable parties. Although a
natural approach is to invite only the reputable players, it might be preferable if the dealer
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provides opportunities for newcomers as well as the bad players. Once in a while, he could
give a chance to the bad players so they can compensate for their past behavior. This is
a realistic approach even in human society; it can be interpreted as a “forgiveness factor”.
The secret recovery phase is also similar to that of the standard secret sharing but with
some extra components.

We should mention that the players’ reputations and the trust function are public
information. Therefore, all computations associated with the reputation system can be
done by any authority or a committee of the players. It is also worth mentioning that it
is not required to consider unknown number of iterations for secret recovery, which is the
case in all the existing rational secret sharing schemes. In fact, in a “socio-rational secret
sharing” game, we have an unknown number of independent secret sharing games, whereas
in “rational secret sharing”, we only have one secret with an unknown number iterations
for secret recovery.

Theorem 3.8 In a (2, 2)-socio-rational secret sharing, C strictly dominates D, considering
a long-term utility function, shown in Equation (3.8), which satisfies the preferences of ra-
tional foresighted players, shown in Definition 3.7. In other words, D is strictly dominated
by C. As a result, (C, C) is a strict social Nash equilibrium that is a unique solution.

Proof. We compute the utility of each outcome for player Pi. Let Pj be the other player.

1. If both players cooperate, denoted by (C, C), then τi is positive, li = 1 since Pi has
learned the secret, and δ = 2 because both players have learned the secret. We have:(

τi > 0, li = 1, δ = 2
)
⇒ u

(C,C)
i (~a) = Ω

(
ρ1ωi + ρ2 +

ρ3

3

)
.

2. If only Pi cooperates, denoted by (C,D), then τi is positive, li = 0 since Pi has not
learned the secret, and δ = 1 because only player Pj has learned the secret. We have:(

τi > 0, li = 0, δ = 1
)
⇒ u

(C,D)
i (~a) = Ω

(
ρ1ωi

)
.

3. If only Pj cooperates, denoted by (D, C), then τi is negative, li = 1 since Pi has
learned the secret, and δ = 1 because only player Pi has learned the secret. We have:(

τi < 0, li = 1, δ = 1
)
⇒ u

(D,C)
i (~a) = Ω

(
− ρ1ωi + ρ2 +

ρ3

2

)
.
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4. If both players defect, denoted by (D,D), then τi is negative, li = 0 since Pi has not
learned the secret, and δ = 0 because no one has learned the secret. We have:(

τi < 0, li = 0, δ = 0
)
⇒ u

(D,D)
i (~a) = Ω

(
− ρ1ωi

)
.

We can ignore the common factor Ω. We know 1 ≤ ωi(~a) ≤ 3 and ρ1 > ρ2 ≥ ρ3 ≥ 1.

• First, we have:

u
(C,C)
i (~a) = ρ1ωi + ρ2 +

ρ3

3
> ρ1ωi = u

(C,D)
i (~a). (3.9)

• Next, it is easy to see that

u
(C,D)
i (~a) = ρ1ωi > −ρ1ωi + ρ2 +

ρ3

2
= u

(D,C)
i (~a) (3.10)

if and only if 2ρ1ωi > ρ2 +
ρ3

2
. We have:

2ρ1ωi ≥ 2ρ1

> ρ2 + ρ3

> ρ2 +
ρ3

2
,

so the desired conclusion follows.

• Finally,

u
(D,C)
i (~a) = −ρ1ωi + ρ2 +

ρ3

2
> −ρ1ωi = u

(D,D)
i (~a). (3.11)

Consequently, we have the following payoff inequalities which proves the theorem:

Pi cooperates︷ ︸︸ ︷
u

(C,C)
i (~a) > u

(C,D)
i (~a) >

Pi defects︷ ︸︸ ︷
u

(D,C)
i (~a) > u

(D,D)
i (~a) .

The interesting observation is the difference between the two utilities u
(C,D)
i (~a) and

u
(D,C)
i (~a). This means that it is better for player Pi to cooperate, even though he might not

learn the secret and the other party might learn it. On the other hand, even if Pi learns
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HHH
HHHP1

P2 Cooperation Defection

Cooperation U ,U U−−,U+

Defection U+,U−− U−,U−

Table 3.2: (2, 2)-SS with Selfish Players

HHH
HHHP1

P2 Cooperation Defection

Cooperation U+,U+ U ,U−

Defection U−,U U−−,U−−

Table 3.3: (2, 2)-Socio-Rational SS

the secret by deviating at a given period (using the share of the other party), he will gain
less utility in the long-term. This is due to future gain or loss and the significance of being
reputable, which is incorporated in our long-term utility function by considering an impact
factor ρ1. We should also note that, as ρ1 is increased, the difference between u

(C,D)
i (~a) and

u
(D,C)
i (~a) also increases, i.e., the enforcement for cooperation would be greater.

In a secret sharing scheme with selfish players, the outcome (U−,U−) is a Nash equi-
librium, as shown in Table 3.2, where U+ > U > U− > U−−. Rational secret sharing
solves this problem by using a randomized mechanism, as presented in Section 3.2.2. The
payoff matrix associated with socio-rational secret sharing is illustrated in Table 3.3. In
this payoff matrix, the outcome (U+,U+) is a strict social Nash equilibrium.

We should note that our socio-rational game is a non-cooperative game. In fact, coop-
eration is self-enforcing due to the importance of reputation as well as future concerns of a
rational foresighted player. In a cooperative game, this enforcement is provided by a third
party and players do not really compete. Moreover, this payoff matrix does not mean that
the players never deviate. As an example, consider a scenario in which a player is involved
in many independent social games. If he simultaneously receives many requests for secret
recovery of various schemes, he will select the one in which he can gain more utility. This
is discussed later, in Section 3.4.4.

We now analyze our socio-rational secret sharing in a setting where n > 2 players take
part in each secret sharing game.

Theorem 3.9 In a socio-rational secret sharing scheme with n participants and t = 2,
C strictly dominates D for all players Pi, assuming the preferences of rational foresighted
parties. Consequently, the vector ~aC = (aC1 , . . . , a

C
n) is a strict social Nash equilibrium that

is a unique solution.

Proof. Let Ci (or Di ) denote that player Pi cooperates (or defects), and let C−i (or D−i)
denote that, excluding Pi, all the other players cooperate (or defect), and finally let M−i
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denotes that, excluding Pi, some players cooperate and some of them defect, that is, we
have both Cooperation and Defection. We compute the utility of each outcome based on
Equation (3.8) for the least possible threshold t = 2 when n > 2, that is, when two shares
are enough to learn any secret.

1. If all the players cooperate, denoted by (Ci, C−i), then τi is positive, li = 1 since player
Pi has learned the secret, and δ = n because all the players have learned the secret.
We have: (

τi > 0, li = 1, δ = n
)
⇒ u

(Ci,C−i)
i (~a) = Ω

(
ρ1ωi + ρ2 +

ρ3

n+ 1

)
.

2. If player Pi cooperates but some of the other parties cooperate and some defect,
denoted by (Ci,M−i), then τi is positive, li = 1, and δ = n because all the players
have learned the secret. We have:(

τi > 0, li = 1, δ = n
)
⇒ u

(Ci,M−i)
i (~a) = Ω

(
ρ1ωi + ρ2 +

ρ3

n+ 1

)
.

3. If only Pi cooperates, denoted by (Ci,D−i), then τi is positive, li = 0, and δ = n− 1
because all the players, except Pi, have learned the secret. We have:(

τi > 0, li = 0, δ = n− 1
)
⇒ u

(Ci,D−i)
i (~a) = Ω

(
ρ1ωi

)
.

4. If only Pi defects, denoted by (Di, C−i), then τi is negative, li = 1, and δ = n because
all the players have learned the secret. We have:(

τi < 0, li = 1, δ = n
)
⇒ u

(Di,C−i)
i (~a) = Ω

(
− ρ1ωi + ρ2 +

ρ3

n+ 1

)
.

5. If player Pi defects but some of the other parties cooperate and some defect, denoted
by (Di,M−i), then τi is negative, li = 1, and δ = n− 1 if only one player reveals his
share, or δ = n if at least two players reveal their shares. We have:(

τi < 0, li = 1, δ
)
⇒ u

(Di,M−i)
i (~a) = Ω

(
− ρ1ωi + ρ2 +

ρ3

δ + 1

)
,

where δ ∈ {n− 1, n}.
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6. If all the players defect, denoted by (Di,D−i), then τi is negative, li = 0, and δ = 0
because no one has learned the secret. We have:(

τi < 0, li = 0, δ = 0
)
⇒ u

(Di,D−i)
i (~a) = Ω

(
− ρ1ωi

)
.

We now analyze these six scenarios:

• If player Pi cooperates (cases 1–3), regardless of whether the other players cooperate
or defect, then

uCi (~a) ≥ ρ1ωi. (3.12)

• If player Pi defects (cases 4–6), regardless of whether the other players cooperate or
defect, then

uDi (~a) ≤ −ρ1ωi + ρ2 +
ρ3

n
. (3.13)

It is easy to prove that ρ1ωi > −ρ1ωi+ρ2 +
ρ3

n
. In fact, the proof is essentially the same as

the proof of (3.10) in Theorem 3.8. Therefore, it is always in Pi’s best interest to cooperate:

uCi (~a) > uDi (~a).

Remark 3.10 A similar analysis can be given for t > 2 with any number of players.

3.4.4 Expected Utility

In this section, we illustrate how each Pi can compute his expected utility when he partic-
ipates in different independent social games, whereas in the previous section, we studied
a player’s participation in a single social game. Note that the utility value shows the con-
nection between actions and their corresponding consequences for a player, whereas the
expected utility of Pi is an estimation of gain or loss when he plays with another player Pj.

We initially show how to compute the expected utilities in a (2, 2)-game for “coopera-
tion” and “defection”. An expected utility is computed as a linear combination of utility
values and the probability of Pj’s cooperation, where εj ∈ [0, 1] denotes the probability
that the opponent Pj may cooperate and U+ > U > U− > U−− are the utility values from
Table 3.3. We have:
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EUCi (~a) = εj U+ + (1− εj) U (3.14)

EUDi (~a) = εj U− + (1− εj) U−− (3.15)

Theorem 3.11 In a socio-rational secret sharing game with two players Pi and Pj, the
expected utility of cooperation is greater than the expected utility of defection, that is,
EUCi (~a)− EUDi (~a) > 0, where εj is the probability of opponent’s cooperation.

Proof.

EUCi (~a)− EUDi (~a) =
(
εj U+ + (1− εj) U

)
−
(
εj U− + (1− εj) U−−

)
by (3.14) (3.15)

= εj (U+ − U−) + (1− εj) (U − U−−)

> 0.

We now consider the expected utilities in two independent (2, 2)-games. Let us define
EUCi (~aij) and EUCi (~aik) as the expected utilities of the two games, when player Pi cooperates
with players Pj and Pk respectively.

Theorem 3.12 Suppose Pi plays with Pj and Pk in two independent (2, 2)-games. Player
Pi then gains more utility if he collaborates with the most reputable player.

Proof. Assume Pj and Pk have different reputation values computed with the same trust
function. We make the plausible assumption that εj > εk if Pj is more reputable than
Pk. Suppose Pi receives the same unit of utility Ω in both games, and let ~aij,~aik be the
outcomes of the two games respectively. We therefore have:

EUCi (~aij)− EUCi (~aik) =
(
εj U+ + (1− εj) U

)
−
(
εk U+ + (1− εk) U

)
by (3.14)

= εj U+ − εk U+ + (1− εj) U − (1− εk) U
= (εj − εk) U+ + (εj − εk) U
> 0,

since εj > εk. As a result, EUCi (~aij) > EUCi (~aik). This means that player Pi gains more
utility if he collaborates with Pj rather than Pk.
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3.5 Comparison with Existing Techniques

Our contribution differs from rational secret sharing and social secret sharing, as shown in
Figure 3.4. Our scheme is a repeated game that addresses the problem of secret recovery
in the presence of rational foresighted parties, whereas:

• “rational secret sharing” is a one-time game with repeated rounds, and it deals with
the problem of secret recovery of a secret in the presence of rational players, and

• “social secret sharing” defines how many shares each player can hold in a weighted
secret sharing scheme with honest and malicious parties.

Selfish Unselfish Honest Malicious Reputable Non 
Reputable

Honest 
But 

Curious
Newcomer

PartiesParties Parties

Reputation Systems
Trust Modeling

Cryptography
Secret Sharing

Game Theory
Solution Concept

Social Secret Sharing
Updating players’ weights [IET’10]

Rational Secret Sharing
reconstructing a secret [STOC’04]

Socio-Rational Secret Sharing
reconstructing various secrets

Figure 3.4: Pedigree of Socio-Rational Secret Sharing

Our contribution is also different from the punishment strategy used in the repeated
prisoners’ dilemma [79] where the players penalize potential deviants. As the authors have
mentioned, the major point behind the repeated games is the fact that if each participant
believes any deviation terminates the mutual cooperation (resulting in a subsequent loss
that outweighs the short-term gain), he then prefers to cooperate. For instance, consider
the prisoners’ dilemma with Cooperation and Defection actions. Both players cooperate
until one of them deviates. Then, the other player chooses D for a specific number of
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times as a punishment. Meanwhile, the deviant rewards the punisher by selecting C as a
compensation. Finally, the game returns to a mutual cooperation. Our approach has the
following advantages over the punishment strategy:

• In our model, a player is not just an abstract entity who selects actions. He also has
a social characteristic reflected in his reputation that shows his trustworthiness. This
attribute is solely determined by the player’s actions.

• The punishment strategy is performed by selecting actions that are harmful for de-
viants whereas, in our model, punishment or reward (losing or gaining reputation
and utility) is independent of action selection.

• Our approach avoids penalizing innocent players or the punisher himself. It also
avoids being involved, to some extent, in a game with seriously selfish players who
are not reputable (due to our “invitation approach”).

• The punishment strategy does not consider that a game may have various levels of
importance and utility weights when it is repeatedly played. For instance, whether
it is a secret sharing scheme to launch a “missile” or to open a “safety box”.

• The punishment strategy has a discrete penalizing approach whereas our construction
has a continuous impact on the deviants. For example, it may take a long time for a
player to regain lost reputation.

• Our proposed approach not only considers punishment and reward but also defines
six different scenarios in order to fairly deal with various types of players, including
good players, bad players, and newcomers.

Our contribution is also different from the constructions forming histories and beliefs
such as subgame perfect equilibrium or Bayesian equilibrium [79]. In the former, players
reassess their decisions based on the past history ; i.e., a sequence of previous actions. In
the latter, the game is designed to deal with the situations in which parties are not certain
about the characteristics of each other. Therefore, they form beliefs ; i.e., probability
distributions over actions, to anticipate any future behavior.

Let Pi be a specific player, and let Pj for 1 ≤ j 6= i ≤ n denote any other player except
Pi. Our trust calculation method and social setting differs from these kinds of solution
concepts in the following aspects:
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• In forming a belief about Pi’s intentions, both parties contribute. That is, Pi is
indirectly involved by his behavior, i.e., action selections, and the other players are
directly involved by the methodology that they use in order to form the probability
distribution over actions. A belief may or may not be common knowledge, meaning
that various players may have different judgments and beliefs about Pi. On the other
hand, the reputation of Pi in a trust network is solely determined by his behavior
through a trust function, which is a commonly known function for reputation mea-
surement. That is, the reputation is a direct reflection of Pi’s attitude (there is no
misunderstanding), and he knows the impact of his decision on the other players (i.e.,
whether he is known as a good player, a bad player, or a newcomer). He can also es-
timate how much extra utility he may gain or lose after his reputation’s adjustment,
which is a strong enforcement.

• Histories and beliefs are more general compared to the reputation system in a trust
network. This means a belief as a probability distribution can be defined over any
set of actions for any types of players. On the other hand, reputation is built over
a specific set of actions, such as Cooperation and Defection (X : corruption as a
malicious behavior might be also considered in a mixed model), for specific types of
players, such as good players, bad players, and newcomers. As a result, the reputation
system is simpler and it is more suitable for cryptographic constructions.

• In the history and belief systems, all the measurements are “inside” the game-
theoretic model whereas our reputation system isolates these computations from
the game. For instance, two separate probability distributions can be defined over
the players’ types and actions by considering their past behavior1. But our publicly
known trust function combines these two measurements in a single reputation value
outside of the game-theoretic model (although these values might be interpreted simi-
lar to “types” and “beliefs”). In other words, the punishment or reward is embedded
inside of our reputation system which continuously affects the players’ utilities in
the game-theoretic model; i.e., losing utility due to the reputation’s decline or losing
reputation and not being selected in the future secret sharing games.

1For instance, suppose that Pi is good or bad, as defined in Section 1.5, with probabilities 0.7 or 0.3
respectively. Based on these values, a Pj may believe that Pi reveals or denies to reveal his share with
certain probabilities, e.g., 0.9 or 0.1 respectively.
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3.6 Conclusion

This chapter provides a multidisciplinary construction that connects three major areas
of computer science in order to propose a new solution for one of the most fundamental
cryptographic primitives.

As we stated, the social network with reputation consideration is a strong enforcement
for the participants to cooperate, for instance, a player may change his non-cooperative
approach after analyzing his reputation, or after estimating his future loss. In our social
setting, bad players can compensate for their past behavior by continuous cooperation. On
the other hand, reputable players can gain more profits as long as they act properly, and
newcomers can fairly start their social interactions.

Finally, we should note that having a trust network by considering long-term inter-
actions can be seen as a new direction in game theory itself, specifically, the theoretical
models used in social sciences such as economics and political science because elements in
those frameworks are more close to human social behavior.
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Chapter 4

Dynamic Secret Sharing

In this chapter, we first provide a comprehensive analysis of existing dynamic secret sharing
(DSS ) schemes in both the passive and active adversary models. We then provide several
new techniques where the threshold and/or the secret can be changed multiple times to
arbitrary values after the initialization. Finally, we introduce a new application of dynamic
threshold schemes, named sequential secret sharing (SQS ), in which several secrets with
increasing thresholds are shared among the players who have different levels of authority.

4.1 Introduction

In a threshold scheme, the sensitivity of the secret as well as the number of players may
fluctuate due to various reasons, for instance, mutual trust may vary or the structure of the
players’ organization might be changed. A possible solution to this problem is to modify
the threshold and/or change the secret. Moreover, a common problem with almost all
secret sharing schemes is that they are “one-time”, meaning that the secret and shares
are known to everyone after secret recovery. This problem could be resolved if the dealer
shares various secrets at the beginning, but a better solution is to dynamically generate
new secrets in the absence of the dealer. These issues are our main motivation to revisit
dynamic threshold schemes.

In the literature, a “dynamic scheme” refers to a scheme with threshold and/or access
structure changeability. To the best of our knowledge, the existing protocols update the
threshold without changing the secret. It is also worth mentioning that secret changeability
can be used in other cryptographic constructions, as we later show in Section 4.5.1.
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The goal of threshold changeability is to convert a (t, n)-threshold scheme into a (t′, n)-
threshold scheme, where we allow both t < t′ (threshold increase) and t′ < t (threshold
reduction). We should note that, in the case of threshold increase, if the decision is to keep
the same secret (a desirable property in the case where the secret is difficult or expensive
to change), it is clear that at least n− t+ 1 players have to erase their old shares honestly
(otherwise, the secret can be constructed by an unauthorized set from “old” shares). It has
been previously noted that erasing old shares is an inevitable assumption in a threshold
changeable scheme with a constant secret [62], as well as in proactive secret sharing schemes
[80, 44]. Otherwise, the secret must be changed (this issue is discussed in Section 4.5).
Here, we assume all the players erase their old shares when updating shares.

4.1.1 Motivation

We are motivated to revisit dynamic threshold schemes due to various issues. As stated by
Martin et al. [62], in a threshold scheme, the sensitivity of the secret as well as the number
of players may fluctuate due to various reasons. For instance,

(a) mutual trust might be decreased over time, perhaps because of organizational prob-
lems or security incidents, and

(b) the structure of the organization to which the players belong might be changed, for
example, new players may join the organization and need to be incorporated into the
security structure, or current parties may leave the organization while still retaining
a copy of their shares.

In both of these cases, the threshold should be adjusted accordingly. In other words,
modifying the threshold and/or changing the secret might be required throughout the
lifetime of a secret. This requirement is more significant when the lifetime is increased. In
the literature, there exist some techniques to address threshold changeability but existing
solutions suffer from one or more of the following drawbacks:

• They assume the existence of an online trusted authority.

• They have a large storage requirement because it is necessary to predistribute extra
shares relating to different thresholds.

• They are limited to predefined modifications of the thresholds.
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Another well-known problem with many secret sharing schemes is that they are one-
time, meaning that, after recovering the secret in a public computation, the secret and
the shares are known to everyone. To resolve this problem, the concept of multistage
secret sharing is proposed [43], where many secrets are shared by the dealer ahead of time.
However, a better solution is to generate new secrets in the absence of the dealer.

4.1.2 Contributions

We review previous literature on dynamic threshold schemes in Section 4.2. In later sec-
tions, we provide various techniques for dynamic secret sharing that are more general and
simpler as compared to existing solutions. Indeed, our proposed methods have various
desirable properties. We assume the existence of a dealer who initializes the scheme. How-
ever, the players can change the secret and the threshold after the scheme’s initialization
without the participation of the dealer. We note that it is possible to make the scheme
completely dealer-free if the initialization is performed by the players themselves using a
secure MPC protocol, but we do not follow this approach in this thesis.

Our protocols are unconditionally secure in that they do not rely on any computational
assumptions. They have minimum storage cost since players do not need to store extra
shares beforehand to modify the parameters of the scheme. Finally, they are flexible
because the secret and the threshold can be changed to arbitrary values multiple times.

In Section 4.3, we consider the passive adversary setting. First, we discuss a commonly-
used “re-sharing technique”, also known as 2-level sharing, that modifies the threshold to
any arbitrary value. This approach applies the Lagrange method in order to combine
the players’ shares after re-sharing. As an alternative solution, we show that this linear
combination can equivalently be carried out by using a Vandermonde matrix, as was done
in [36] in order to reduce the threshold to a desired value after performing a multiplication
of secrets. Finally, we modify a folklore method to reduce the threshold based on revealing
one or more shares. In the new variation we propose, the players first construct and then
reveal an “extra” share, and then they use this extra share to modify their existing shares
so that the threshold is decreased but the secret remains unchanged. We call this new
technique public evaluation.

In Section 4.4, we turn to the active adversary model, where the problem is more
difficult. We recall a re-sharing scheme discussed in [67] to provide two observations with
respect to this approach. This method fails to increase the threshold, and moreover, it is
not secure against a mobile adversary (a fact that was already noted in [67] without a formal
proof). Therefore, we provide two separate solutions to achieve threshold modification:
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(a) To decrease the threshold, we first extend the public evaluation method from the
previous section to the active adversary setting.

(b) To increase the threshold, we add shares of a higher-degree polynomial g (having a
zero constant term and random coefficients of all non-constant terms) to the play-
ers’ shares on the original secret sharing polynomial f . As a result, the threshold
is increased. To generate this polynomial g, we develop a protocol that we term
polynomial production, which allows a subset of players to jointly create a random
polynomial with an unknown secret in the active adversary setting. This polynomial
can then be used to generate the desired polynomial g.

In Section 4.5, we use the polynomial production protocol in order to change both the
secret and the threshold. We also motivate our approach by presenting a new application of
dynamic threshold schemes, named sequential secret sharing. In a sequential secret sharing
scheme, players progressively construct a sequence of secret sharing schemes with different
(but related) secrets and thresholds in the absence of the dealer.

4.1.3 Organization

This chapter is organized as follows. Section 4.2 reviews dynamic threshold schemes. Sec-
tion 4.3 and Section 4.4 analyze threshold changeability in the passive and active adversary
models respectively. Section 4.5 illustrates how the threshold and the secret can be changed
simultaneously. Section 4.6 provides concluding remarks.

4.2 Previous Works: Dynamic Threshold Schemes

Martin et al. [62] designed a threshold changeable secret sharing scheme, in the absence
of secure channels, based on two methods. The first one was implemented by the Shamir
approach and the second one is a geometric construction. They made two assumptions.
First, the original shares must contain the required information for extracting both the
shares of the initial scheme and the shares of the future scheme, known as shares and
subshares respectively. As a result, the size of the stored shares grows linearly with the
number of required modifications to the threshold. Second, the proposed construction
assumes that shareholders behave honestly in the sense that they only use the subshares
that are relevant to the threshold in current use.

68



Using the previous approach, Maeda et al. [59] proposed an unconditionally secure
verifiable scheme where the threshold can be changed several times, say N times, but only
to values that are determined in advance. In this protocol, each player receives one full
share and extracts the subsequent subshares from it by applying a sequence of N public
functions released by the dealer during initialization. The dealer also has to distribute N
polynomials ahead of time. The authors assume that the secret is not recovered before the
threshold changes, and therefore no shares have been pooled before secret reconstruction.

Steinfeld et al. [96] constructed a dynamic threshold scheme for Shamir secret sharing.
The general idea is that players add an appropriate amount of random noise to their shares
in order to create subshares that contain incomplete information regarding the primary
shares. As a result, t subshares are not sufficient to recover the secret, but by using a
larger number of subshares, say t′ where t′ > t, the secret can be reconstructed.

Tartary and Wang [102] proposed a dealer-free threshold changeable scheme in which
the problem of secret recovery is reduced to the polynomial reconstruction problem. In
this construction, players send some fake shares along with their real shares to increase
the threshold t at the side of the combiner to a new value t′. First, the threshold stays
constant among players. Second, their algorithm does not allow any value t′ to be chosen;
i.e., it must be predefined.

In addition to the drawbacks we mentioned regarding the existing techniques, there
is one common problem with all of these solutions. That is, if an adversary attacks the
shareholders (not the combiner) then he can have access to the original shares, shares
related to various thresholds, and/or shares without any noise. In any of these situations,
the secret can be recovered by the attacker.

Other methods have been proposed in the literature to achieve threshold changeability
in a secret sharing scheme, for instance:

• re-sharing existing shares of a (t, n)-threshold scheme by a set of new polynomials of
degree t′ [30];

• redistribution of secret shares to new access structures in which participants of a
scheme send information to a new set of players in such a way that the old secret is
shared among a new access structure [27, 63]; and

• dynamic secret sharing schemes, where the dealer triggers a specific access structure
out of a given set, or enables the players to recover various secrets in different times
by sending them the same broadcast message [14].
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The paper [6] also considers schemes with changeable parameters, e.g., the threshold and
the number of players, in order to minimize the storage costs (size of shares) and the size
of broadcast messages. Finally, we assume that all players erase their old shares after
computing the new ones.

4.3 Schemes in the Passive Adversary Model

First, we discuss a re-sharing technique that modifies the threshold to any arbitrary value
using a technique based on Lagrange interpolation. We then show that re-sharing can
equivalently be done by using a Vandermonde matrix, as was done in [36]. Finally, we
present our method of public share evaluation, where we modify a folklore technique to
reduce the threshold based on revealing one or more shares. The players first construct and
then reveal an “extra” share, and then they use this extra share to modify their existing
shares so that the threshold is decreased but the secret remains unchanged.

In the passive adversary model, there are only secure private channels between each
pair of players. All computations are done in a finite field Zq where q is a prime number.

4.3.1 Threshold Modification by the Lagrange Method

The idea of re-sharing shares in secret sharing has been used in many papers through the
years. One of the first instances of this technique is found in [30] in the context of threshold
RSA. The general idea is to re-share the existing shares of a (t, n)-threshold scheme by
a set of polynomials of degree t′. We note that this method of threshold modification is
described informally in [67, Section 5].

Suppose an honest dealer initiates a Shamir secret sharing scheme and then leaves.
That is, he randomly generates f(x) ∈ Zq[x] of degree at most t− 1 in which its constant
term is the secret f(0) = α, and then sends share f(i) to player Pi for 1 ≤ i ≤ n. Then
each player re-shares his share using a new random polynomial of degree at most t′ − 1.
The detailed description of the scheme is given in Figure 4.1. We also present an example
of this scheme after describing the protocol.

Theorem 4.1 The threshold modification protocol presented in Figure 4.1 is secure under
the passive adversary model tolerating t− 1 colluders, and correctly computes the secret α.
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Threshold Modification

1. Each player Pi selects a random polynomial gi(x) of degree at most t′ − 1 such
that gi(0) = f(i). He then gives gi(j) to Pj for 1 ≤ j ≤ n, i.e., re-sharing
the original shares by auxiliary shares. The share-exchange matrix En×n, where
each player generates a row and receives a column, is as follows:

En×n =


g1(1) g1(2) . . . g1(n)

g2(1) g2(2) . . . g2(n)
...

...
. . .

...

gn(1) gn(2) . . . gn(n)

 where gi(0) = f(i). (4.1)

2. At this step, a set ∆ is determined such that it consists of the identifiers of at
least t elected players. Then, the following public constants are computed:

γ∆
i =

∏
j∈∆,j 6=i

j

j − i
where 1 ≤ i, j ≤ n represent players’ ids. (4.2)

3. Each player Pj erases his old shares, and then combines the auxiliary shares he
has received from other players to compute his new share as follows:

ϕj =
∑
i∈∆

(
γ∆
i × gi(j)

)
. (4.3)

Secret Recovery

• Now, if a set ∆′ of at least t′ players Pj cooperate, they can recover α by using
the Lagrange interpolation method:

α =
∑
j∈∆′

(
γ∆′

j × ϕj
)
. (4.4)

Figure 4.1: Threshold Modification by the Lagrange Method in the Passive Adv. Model
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Proof. It is clear that a set ∇ of colluders, where |∇| = t − 1, is not able to recover the
secret after the initial distribution of shares by the dealer. In the next stage, the players
re-share their shares using polynomials gi(x) of degree t′ − 1. As a result, t′ − 1 colluders
cannot reconstruct any of these re-sharing polynomials in order to reveal the shares of the
good players, because t′ − 1 players have no information about any of t original shares.
Since all players erase their old shares after computing the new ones, there is no way to
construct the secret by making use of the original shares. Therefore, the protocol is secure
under the passive (honest-but-curious) adversary model.

Now, we show the correctness of the scheme (where |∆| ≥ t and |∆′| ≥ t′):∑
j∈∆′

(
γ∆′

j × ϕj
)

=
∑
j∈∆′

(
γ∆′

j ×
∑
i∈∆

(
γ∆
i × gi(j)

))
by (4.3)

=
∑
i∈∆

(
γ∆
i ×

∑
j∈∆′

(
γ∆′

j × gi(j)
))

=
∑
i∈∆

(
γ∆
i × gi(0)

)
by (1.3)

=
∑
i∈∆

(
γ∆
i × f(i)

)
by (4.1)

= f(0) = α by (1.3).

Example 4.2 The dealer first distributes shares of f(x) = 3 + 2x+x2 ∈ Z19, where t = 3,
among four players: f(1) = 6, f(2) = 11, f(3) = 18, f(4) = 8.

1. Suppose the players re-share their shares with new polynomials of degree 3, i.e., t′ = 4:

f1(x) = 6 + x+ x2 + 2x3

f2(x) = 11 + 2x+ x2 + 3x3

f3(x) = 18 + 3x+ 2x2 + x3

f4(x) = 8 + 2x+ 2x2 + 2x3

Matrix E4×4, where each Pi generates a row and receives a column, is as follows:

E4×4 =


10 9 15 2

17 5 12 18

5 2 15 12

14 17 10 5

 .
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2. Players need to define a set ∆ of size 3 in order to update their shares. Suppose
∆ = {P1, P2, P3}; then we have

γ1 =
(0− 2)(0− 3)

(1− 2)(1− 3)
= 3 γ2 =

(0− 1)(0− 3)

(2− 1)(2− 3)
= −3 γ3 =

(0− 1)(0− 2)

(3− 1)(3− 2)
= 1

3. Players update their shares based on the exchanged shares, and erase their old shares:

ϕ1 = (3)10 + (−3)17 + (1)5 = −16

ϕ2 = (3)9 + (−3)5 + (1)2 = 14

ϕ3 = (3)15 + (−3)12 + (1)15 = 5

ϕ4 = (3)2 + (−3)18 + (1)12 = −17

The secret α can be reconstructed by the set ∆′ = {P1, P2, P3, P4} of size 4 as follows:

α =
(0− 2)(0− 3)(0− 4)

(1− 2)(1− 3)(1− 4)
(−16) +

(0− 1)(0− 3)(0− 4)

(2− 1)(2− 3)(2− 4)
(14)

+
(0− 1)(0− 2)(0− 4)

(3− 1)(3− 2)(3− 4)
(5) +

(0− 1)(0− 2)(0− 3)

(4− 1)(4− 2)(4− 3)
(−17)

≡ −16 mod 19

= 3.

4.3.2 Threshold Modification by a Vandermonde Matrix

In this section, we provide an alternative method for threshold modification where the
secret remains the same. The idea is to re-share the existing shares of the players and
then use a Vandermonde matrix to change the threshold from t to t′. This approach was
initially proposed in [36] (which is a simplified version of [9]) for “degree reduction”. We
present the protocol in Figure 4.2 and we then provide an example of this scheme.

We are not going to discuss this protocol in detail. Mainly we just want to point out
that this approach is basically equivalent to the protocol from the previous subsection that
uses the Lagrange method. (This equivalence is rather obvious, but it does not seem to be
explicitly stated in the existing literature.) The only difference, which is mainly a matter of
presentation, is that the Lagrange method uses the shares belonging to any set of at least
t players to compute the updated shares in the scheme, while the Vandermonde method
uses the shares of all n players.
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Threshold Modification

1. The re-sharing phase is similar to the first step of the previous protocol, which
was presented in Figure 4.1.

2. Participants then compute the first row of a publicly known matrix V−1
n×n

(mod q) to adjust the threshold, where Vn×n is the Vandermonde matrix, i.e.,
Vi,j = i(j−1) for 1 ≤ i, j ≤ n. Suppose this vector is V−1

1×n = (v1 v2 . . . vn).

3. Eventually, each player Pj computes his final share by multiplying V−1
1×n by his

vector of shares:

ϕ(j) =
(
v1 v2 . . . vn

)

g1(j)

g2(j)
...

gn(j)

 =
n∑
i=1

vi gi(j).

Secret Recovery

• To recover the secret, t′ participants Pj have to collaborate in order to construct
a polynomial of degree t′ − 1:

ϕ(x) =
t′∑
j=1

( ∏
1≤i≤t′,i 6=j

x− i
j − i

× ϕ(j)

)
.

Players then compute secret ϕ(0). Alternatively, ϕ(0) can be reconstructed
directly using the Lagrange Interpolation formula, without first computing ϕ(x).

Figure 4.2: Threshold Modification by a Vandermonde Matrix in the Passive Adv. Model

Example 4.3 Consider the polynomial f(x) from Section 4.2 with the same four players.
Since the first step is exactly the same as the first phase of the Lagrange method, we start
from the second step as follows:

2. Players compute the first row of a publicly known matrix V−1
n×n (mod q) to adjust the

threshold, where Vn×n is the Vandermonde matrix:
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Vn×n =


1 1 1 1

1 2 4 8

1 3 9 8

1 4 16 7

 V−1
n×n =


4 13 4 18

2 0 12 5

11 15 13 18

3 10 9 16


3. Eventually, each player Pj computes his final share by multiplying V−1

1×n by his vector
of exchanged shares:

ϕ(1) =
(

4 13 4 18
)


10

17

5

14

 = 1

ϕ(2) =
(

4 13 4 18
)


9

5

2

17

 = 16

ϕ(3) =
(

4 13 4 18
)


15

12

15

10

 = 0

ϕ(4) =
(

4 13 4 18
)


2

18

12

5

 = 0

The secret α can be reconstructed as follows, where the new threshold t′ = 4:

α =
(0− 2)(0− 3)(0− 4)

(1− 2)(1− 3)(1− 4)
(1) +

(0− 1)(0− 3)(0− 4)

(2− 1)(2− 3)(2− 4)
(16)

+
(0− 1)(0− 2)(0− 4)

(3− 1)(3− 2)(3− 4)
(0) +

(0− 1)(0− 2)(0− 3)

(4− 1)(4− 2)(4− 3)
(0)

≡ 212 mod 19

= 3.

4.3.3 Threshold Decrease by Public Evaluation

As we mentioned previously, a folklore method to reduce the threshold in a secret sharing
scheme consists of revealing one or more shares. However, there are some issues that make
this approach inconvenient:
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• If a player reveals his share, then he effectively removes himself as a player in the
secret sharing scheme.

• A dealer can easily construct and reveal a “new” share to the players, but this requires
an online dealer.

• In any event, the remaining players have to store the revealed share as well as their
old share.

Our approach enables the players to first jointly construct and then reveal an “extra”
share, and then use this extra share to modify their existing shares so that the threshold is
decreased but the secret remains unchanged. The players can use the enrollment protocol
from Section 2.5 to publicly generate a new share at a new point different from the players’
existing ids. Each player then combines the revealed share with his own private share in
order to decrease the threshold. For instance, suppose P1, P2, P3 have three shares at points
x = 1, 2, 3 (respectively) on a polynomial f of degree 2. If they jointly construct and reveal
a share at a new point, say x = 4, they can then combine this share with their own private
shares such that the degree of f is decreased to 1 but the secret remains unchanged; we
shortly explain how to perform this combination.

Suppose f(x) ∈ Zq[x] of degree t− 1 is the secret sharing polynomial. Let Γ ⊆ Zq\{0}
denote the set of players’ ids. As a result, each Pi for i ∈ Γ receives the share f(i) ∈ Zq from
the dealer. For the sake of simplicity, suppose the players want to decrease the threshold
from t to t− 1 in the absence of the dealer (for further threshold reduction, they can just
repeat the same procedure again). The proposed protocol is presented in Figure 4.3 (the
steps (1–4) are the same as Figure 2.5). An example of the scheme is given subsequently.

Theorem 4.4 The threshold reduction approach presented in Figure 4.3 is secure under
the passive adversary model tolerating t−1 colluders, and it correctly reduces the threshold.

Proof. The security of the first four steps is provided in Theorem 2.4. We just need
to show that the new shares are on a polynomial f̂(x) of degree at most t − 2 where
f(0) = f̂(0). Assuming that the new share (j, f(j)) has been revealed, we have:

(x− j) |
(
f(x)− f(j)

)
.

Let us define f ∗(x) of degree t− 2 as follows:
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Threshold Decrease

1. The players select an id j such that j /∈ P . Subsequently, t players Pi are
selected (e.g., 1 ≤ i ≤ t). They compute Lagrange constants as follows:

γi =
∏

1≤k≤t,i 6=k

j − k
i− k

.

2. Each Pi multiplies his share f(i) by his Lagrange constant. He then randomly
splits the result into t portions, that is, f(i)×γi = ∂1i+∂2i+· · ·+∂ti for 1 ≤ i ≤ t.

3. The players exchange ∂ki’s through pairwise channels (in a fashion similar to
Figure 4.1). As a result, each player Pk holds t values. He adds them together
and reveals σk =

∑t
i=1 ∂ki to everyone.

4. The players add these values σk for 1 ≤ k ≤ t together to compute the public
share f(j) =

∑t
k=1 σk.

5. Each Pi combines his private share f(i) with the public share f(j) as follows:

f̂(i) = f(j)− j
(
f(i)− f(j)

i− j

)
. (4.5)

6. The shares f̂(i) are on a new polynomial f̂(x) ∈ Zq[x] of degree at most t − 2

where f̂(0) = f(0). Therefore, t − 1 players are now sufficient to recover the
secret.

Figure 4.3: Threshold Decrease by Public Evaluation in the Passive Adversary Model

f ∗(x)
def
=
f(x)− f(j)

x− j
. (4.6)

Using (4.6), the share of each player Pi on f ∗ is obtained as follows:

f ∗(i) =
f(i)− f(j)

i− j
. (4.7)
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Accordingly, using (4.6), the secret associated with f ∗ will be:

f ∗(0) =
f(0)− f(j)

−j
. (4.8)

Using (4.8), the relation between the old secret f(0) and the new secret f ∗(0) is obtained:

f(0) = f(j)− jf ∗(0). (4.9)

Suppose we define the new polynomial

f̂(x) = f(j)− jf ∗(x) = f(j)− j
(
f(x)− f(j)

x− j

)
. (4.10)

Then f̂(x) has degree at most t − 2 and f̂(0) = f(0). It is easy for each player Pi to
compute their new share f̂(i):

f̂(i) = f(j)− j
(
f(i)− f(j)

i− j

)
. (4.11)

Therefore, each Pi privately computes f̂(i) to update his share. As a result, the threshold
is decreased while the secret remains the same.

Example 4.5 Let t = 3 be the threshold and let f(x) = 9 + 2x+ 5x2 ∈ Z13[x] be the secret
sharing polynomial. The dealer creates the shares of players P1, P2, and P3 accordingly
(i.e., f(1) = 3, f(2) = 7, f(3) = 8) and he leaves the scheme.

Suppose the players first collaborate to compute and reveal f(4). They then combine
this share with their own private shares to decrease the threshold. Similar to Example 2.3
in Chapter 2, the players first compute and then they reveal σ1 = 7, σ2 = 4, and σ3 = 8
publicly (in Example 2.3, the players revealed σj only to P4). They then add up these values
to compute f(4) = 6. Finally, shares of the players are updated as follows:

f̂(1) = 6− 4

(
3− 6

1− 4

)
= 2 f̂(2) = 6− 4

(
7− 6

2− 4

)
= 8 f̂(3) = 6− 4

(
8− 6

3− 4

)
= 1.

The new secret sharing polynomial is f̂(x) = 9 + 6x, having the same secret 9.
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4.4 Schemes in the Active Adversary Model

First, we show how re-sharing methods fail in the active adversary setting. We then provide
two different solutions, for threshold increase and decrease respectively. Our solutions are
based on the VSS scheme in Section 1.3.3, so we assume the number of malicious players is
at most t− 1 ≤

⌊
n−1

4

⌋
. Therefore, in addition to the secure private channels between each

pair of players, a synchronous broadcast channel is also assumed to exist. All computations
are again performed in a finite field Zq, where q is a prime number.

4.4.1 Failure of the Re-sharing Method

We first consider an obvious variation of the previous re-sharing scheme (Figure 4.1) that
attempts to increase the threshold in the active adversary setting; this protocol is shown in
Figure 4.4 (the authors in [67] provide a similar construction for proactive secret sharing
in the situation where the threshold remains unchanged). We show that this technique
actually fails to change the threshold. Moreover, we clarify why this re-sharing technique
is not secure against a mobile adversary in the active adversary setting.

In a VSS scheme, such as the one presented in Figure 1.2, when the dealer uses a
symmetric polynomial to generate shares, each pair Pi and Pj can check the validity of
their shares through private channels. The (symmetric) matrix containing these values is
called a pairwise check matrix :

Cn×n =


− f1(ω2) . . . f1(ωn)

f2(ω1) − . . . f2(ωn)
...

...
. . .

...

fn(ω1) fn(ω2) . . . −

 (4.12)

where fi(ω
j) = fj(ω

i) for all i, j.

Since our focus is to construct a dealer-free protocol for changing the threshold, we
assume that the dealer who initiates the scheme is honest. Recall that the honest dealer
first initiates the secret sharing scheme using a symmetric bivariate polynomial, i.e., he
randomly generates f(x, y) ∈ Zq[x, y] of degree at most t − 1, where f(0, 0) = α is the
secret. The dealer sends the following shares to Pi for 1 ≤ i ≤ n, and then leaves:

fi(x) = f(x, ωi) where ω is a primitive element in Zq. (4.13)
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We present the (flawed) re-sharing protocol in Figure 4.4 and an example of this ap-
proach is presented subsequently. The idea is that each player Pi re-shares his share fi(x)
using the VSS scheme, by choosing a symmetric bivariate polynomial of degree at most
t′ − 1 that yields fi(x) when y = 0. Then appropriate pairwise checks are performed and
new shares are computed.

Theorem 4.6 The re-sharing protocol presented in Figure 4.4 fails to increase the thresh-
old because the constant terms of the shares remain the same after re-sharing.

Proof. In the basic VSS scheme, it suffices to use only the constant terms to reconstruct
the secret. If a set ∆ of at least t honest players combine their values fj(0) (j ∈ ∆), the
secret α = f(0, 0) is revealed. From the secret recovery steps in Figure 1.2, we have

∑
j∈∆

(
λ∆
j × fj(0)

)
= f(0, 0).

We now prove that ϕj(0) = fj(0) for every Pj:

ϕj(0) =
∑
i∈∆

(
λ∆
i × gi(0, ωj)

)
by (4.16)

=
∑
i∈∆

(
λ∆
i × gi(ωj, 0)

)
by symmetry

=
∑
i∈∆

(
λ∆
i × fi(ωj)

)
by (4.14)

=
∑
i∈∆

(
λ∆
i × fj(ωi)

)
by symmetry

= fj(0) by (1.3).

Therefore, the threshold is not increased because t players are able to reconstruct the secret
after re-sharing (using the same constant terms as before).

Remark 4.7 Although handling a mobile adversary is out of the scope of this chapter, we
should mention that the re-sharing technique (using bivariate polynomials) is not secure
against a mobile adversary due to the same reason. That is, the mobile adversary can
incrementally collect the constant terms of the players’ shares in different time periods in
order to recover the secret.
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Threshold Modification

1. Each Pi creates a symmetric polynomial gi(x, y) of degree t′ − 1 such that

gi(x, 0) = fi(x). (4.14)

2. Each player Pi sends gi(x, ω
j) to player Pj for 1 ≤ i, j ≤ n, i.e., re-sharing

the original shares by auxiliary shares. The share-exchange matrix En×n, where
each player generates a row and receives a column, is as follows:

En×n =


g1(x, ω1) g1(x, ω2) . . . g1(x, ωn)

g2(x, ω1) g2(x, ω2) . . . g2(x, ωn)
...

...
. . .

...

gn(x, ω1) gn(x, ω2) . . . gn(x, ωn)

 .

3. Players perform pairwise checks on gi(x, ω
j), which can be shown by n matrices.

They also do a pairwise check on gi(0, ω
j) to make sure that the constant terms

of the shares are consistent with the shares distributed by the honest dealer.

4. A set ∆ of size exactly t is determined such that it contains the identifiers of t
good players (this set is defined after pairwise checks, see [26, 76] for details),
and the following public Lagrange constants are computed:

λ∆
i =

∏
j∈∆,i 6=j

ωj

ωj − ωi
where 1 ≤ i, j ≤ n represent players’ ids. (4.15)

5. Each player Pj erases his old shares, and then combines the auxiliary shares he
has received from other players to compute his new share as follows:

ϕj(x) =
∑
i∈∆

(
λ∆
i × gi(x, ωj)

)
. (4.16)

Secret Recovery

• Now, if a set ∆′ of at least t′ players cooperate, they can recover α by using the
Lagrange interpolation method:

α =
∑
j∈∆′

(
λ∆′

j × ϕj(0)

)
. (4.17)

Figure 4.4: Insecure Protocol For Threshold Modification in the Active Adversary Model
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Example 4.8 Suppose that shares of f(x, y) = 9 + 4x + 4y + 7xy are distributed by the
dealer among four players, where t = 2, we are working in the field Z13 and ω = 2:

f1(x) = f(x, 21) = 4 + 5x

f2(x) = f(x, 22) = 12 + 6x

f3(x) = f(x, 23) = 2 + 8x

f4(x) = f(x, 24) = 8 + 12x

1. Suppose the players re-share their shares using gi(x, y) for 1 ≤ i ≤ 4, where t′ = 3.

g1(x, y) = (4 + 5x+ 5y) + (3xy + 7xy2 + 7x2y + 5x2y2)

g2(x, y) = (12 + 6x+ 6y) + (7xy + 8xy2 + 8x2y + 7x2y2)

g3(x, y) = (2 + 8x+ 8y) + (8xy + 5xy2 + 5x2y + 3x2y2)

g4(x, y) = (8 + 12x+ 12y) + (4xy + 9xy2 + 9x2y + 2x2y2)

2. Matrix E4×4, where each Pi generates a row and receives a column, is as follows:
1 + 8x2 11 + 12x+ 4x2 5 + 9x+ 12x2 6 + 12x+ x2

11 + 5x2 10 + 6x+ x2 8 + 2x+ 5x2 4 + 8x+ 9x2

5 + 5x+ 9x2 8 + 3x+ 3x2 1 + 2x+ 11x2 12x+ 3x2

6 + 4x 4 + 3x+ 3x2 9x+ 5x2 5 + x+ 6x2

 .

3. The players then perform pairwise checks on the shares that they have received. These
matrices must be symmetric with respect to the main diagonal:

0 2 9 0

2 0 5 0

9 5 0 5

0 0 5 0




0 7 11 11

7 0 5 0

11 5 0 7

11 0 7 0




0 12 2 3

12 0 1 4

2 1 0 7

3 4 7 0




0 6 1 2

6 0 7 4

1 7 0 2

2 4 2 0


4. The players define a set ∆ which contains the identifiers of t good players. Suppose

∆ = {P1, P2}; then we have

γ1 =
(0− 4)

(2− 4)
= 2 γ2 =

(0− 2)

(4− 2)
= −1

5. All the players update their shares and erase their old shares:
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ϕ1(x) = 4 + 11x2

ϕ2(x) = 12 + 5x+ 7x2

ϕ3(x) = 2 + 3x+ 6x2

ϕ4(x) = 8 + 3x+ 6x2

Now, we show that t = 2 players, say P2, P3, can reconstruct the secret, even though the
threshold is now supposed to be t′ = 3, as follows:

α =
(0− 8)

(4− 8)
(12) +

(0− 4)

(8− 4)
(2) = 9.

4.4.2 Threshold Decrease by Public Evaluation

The original secret sharing polynomial f(x, y) ∈ Zq[x, y] of degree at most t − 1 is a
symmetric bivariate polynomial. Each player Pi receives fi(x) = f(x, ωi) ∈ Zq[x] from
the dealer. For the sake of simplicity, suppose the players want to decrease the threshold
from t to t− 1 in the active adversary model and in the absence of the dealer (for further
threshold reduction, they can repeat the procedure). The players can first use the recovery
protocol proposed in [98, Section 4.3] to publicly generate an extra share fj(x) at a desired
point ωj where j is different from the existing players’ ids. This is similar to what we
did in Figure 4.3 in the passive adversary case. Next, the players need to combine the
revealed share with their own private shares; this is more complicated now that we are
in the active adversary model, due to the use of symmetric bivariate polynomials. The
protocol to accomplish this is presented in Figure 4.5 and an example to illustrate these
computations is presented subsequently.

Theorem 4.9 The threshold reduction protocol presented in Figure 4.5 is secure under
the active adversary model tolerating t − 1 ≤

⌊
n−1

4

⌋
colluders, and it correctly reduces the

threshold.

Proof. If at most t−1 malicious parties reveal incorrect values in the first step, the players
can correctly compute fj(x) in the second step through an error correction technique (see
Section 1.3.3 for details). It is also easy to show that all the bivariate polynomials remain
symmetric during the third and fourth steps. As a result, the players can perform pairwise
checks in order to detect any malicious behavior. We just need to show that the new shares
are on a polynomial f̂(x, y) of degree at most t− 2, where f̂(0, 0) = f(0, 0). We know that
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Threshold Decrease

1. The players randomly select a new id j such that j /∈ P . Each player Pi then
computes and reveals fi(ω

j) to all the other players.

2. Subsequently, the players compute the new share fj(x) by using points (i, fi(ω
j))

(see [98, Section 4.3]).

3. Each Pi combines his private share fi(x) with the new share fj(x) as follows:

f̂i(x) = f̂(x, ωi) = (ωj)2

(
fi(x)− fj(x)− fj(ωi) + fj(ω

j)

(x− ωj)(ωi − ωj)

)
+ 2fj(0)− fj(ωj). (4.18)

4. Shares f̂i(x) ∈ Zq[x] correspond to a symmetric bivariate polynomial f̂(x, y) ∈
Zq[x, y] of degree t − 2 that has the same secret as before. Therefore, t − 1
players are now sufficient to recover the secret.

Figure 4.5: Threshold Decrease by Public Evaluation in the Active Adversary Model

(y − ωj) |
(
f(x, y)− fj(x)

)
and

(y − ωj) |
(
fj(y)− fj(ωj)

)
.

Now, it is clear that, if a | b and a | c, then a | (b− c). As a result, we obtain:

(y − ωj) |
(
f(x, y)− fj(x)− fj(y) + fj(ω

j)
)
.

Since the right hand side of the above equation remains symmetric, (x − ωj) also divides
it. Now, if a | c, b | c, and gcd(a, b) = 1, then ab | c. Moreover, (x − ωj) and (y − ωj) do
not have a common divisor. Therefore, we obtain

(x− ωj)(y − ωj) |
(
f(x, y)− fj(x)− fj(y) + fj(ω

j)
)
.

Let define a symmetric polynomial f ∗(x, y) of degree t− 2 as follows:
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f ∗(x, y)
def
=
f(x, y)− fj(x)− fj(y) + fj(ω

j)

(x− ωj)(y − ωj)
. (4.19)

Accordingly, using (4.19), the secret associated with f ∗ will be:

f ∗(0, 0) =
f(0, 0)− fj(0)− fj(0) + fj(ω

j)

(ωj)2
. (4.20)

Using (4.20), the relation between the old secret and the new one is obtained:

f(0, 0) = (ωj)2f ∗(0, 0) + 2fj(0)− fj(ωj). (4.21)

Suppose we define another symmetric polynomial f̂(x, y), of degree at most t−2, as follows:

f̂(x, y) = (ωj)2f ∗(x, y) + 2fj(0)− fj(ωj) (4.22)

= (ωj)2

(
f(x, y)− fj(x)− fj(y) + fj(ω

j)

(x− ωj)(y − ωj)

)
+ 2fj(0)− fj(ωj). (4.23)

From (4.23), we see that each player Pi can privately compute f̂i(x) = f̂(x, ωi) to update
his share:

f̂(x, ωi) = (ωj)2

(
f(x, ωi)− fj(x)− fj(ωi) + fj(ω

j)

(x− ωj)(ωi − ωj)

)
+ fj(x) + fj(ω

i)− fj(ωj).

Furthermore, from (4.22) and (4.21), it is clear that f(0, 0) = f̂(0, 0), so the secret remains
the same.

Example 4.10 Let t = 3 be the threshold and let the secret sharing polynomial f(x, y) ∈
Z13[x, y] be defined as f(x, y) = 5 + 11x+ 11y + 9x2 + 9y2 + xy2 + x2y + xy + 3x2y2. The
dealer creates shares fi(x, ω

i) of P1, P2, P3, where ω = 2 is a primitive element in the field:

f1(x) = 11 + 4x+ 10x2 f2(x) = 11 + 5x+ 9x2 f3(x) = 6 + 5x+ x2

Subsequently, players collaborate to reveal f4(x) publicly. They then combine this share
with their own private shares in order to decrease the threshold. According to Figure 4.5,
the procedure is as follows:
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1. The players compute fi(ω
j) where j = 4. They reveal f1(24) = 9, f2(24) = 3, and

f3(24) = 4 accordingly.

2. They then compute the new share f4(x) = 2 + 10x by interpolating points (21, 9),
(22, 3), and (23, 4). The pairwise check matrix for all four shares is as follows:


0 5 7 9

5 0 3 3

7 3 0 4

9 3 4 0

 .

3. Each Pi combines his private share fi(x) with the revealed share f4(x) as follows:

f̂1(x) = (24)2

(
(11 + 4x+ 10x2)− (2 + 10x)− (2 + 10(21)) + (2 + 10(24))

(x− 24)(21 − 24)

)
+ 2(2)− (2 + 10(24)) = x+ 3

f̂2(x) = (24)2

(
(11 + 5x+ 9x2)− (2 + 10x)− (2 + 10(22)) + (2 + 10(24))

(x− 24)(22 − 24)

)
+ 2(2)− (2 + 10(24)) = 3x+ 1

f̂3(x) = (24)2

(
(6 + 5x+ x2)− (2 + 10x)− (2 + 10(23)) + (2 + 10(24))

(x− 24)(23 − 24)

)
+ 2(2)− (2 + 10(24)) = 7x+ 10

After the share recombination, the pairwise check matrix is as follows:
0 7 11

7 0 12

11 12 0

 .

4. Now two players are sufficient to interpolate f̂i(x) and recover a new symmetric
bivariate polynomial f̂(x, y) of degree one with the same secret 5 as before. Suppose
the first two players want to recover the secret. They can compute:
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f̂(x, y) =
y − 22

21 − 22
(x+ 3) +

y − 21

22 − 21
(3x+ 1)

= xy + 12x+ 12y + 5.

4.4.3 Threshold Increase by Zero Addition

The idea of the next protocol we present is to increase the threshold by constructing shares
of a polynomial that corresponds to a secret having the value zero and threshold t′ > t,
and adding these new shares to the players’ current shares. We call this threshold increase
by zero addition. The first part of this process involves a straightforward protocol, which
we call polynomial production, that enables the players to collectively generate shares of an
unknown secret δ without a dealer. This idea can be found in various early papers (e.g.,
[5], but security against active adversaries is not discussed there). In our version of the
protocol, shown in Figure 4.6, we assume that at most t− 1 players are actively malicious.
If we use the VSS scheme from Section 1.3.3, then we require that t− 1 ≤

⌊
n−1

4

⌋
.

Polynomial Production

1. Initially, t+ 1 players Pi are selected at random in order to act as independent
dealers; they each might be honest or malicious.

2. Each Pi shares a secret, say δi, among all the players using a VSS scheme where
the degree of the secret sharing polynomial is t− 1. If the sharing is accepted,
then all good players have consistent shares of the secret δi.

3. Each Pi adds shares of the accepted δi’s together. As a result, each player Pi
has a share on a symmetric polynomial g(x, y) of degree t − 1 with a constant
term δ =

∑
δi.

Figure 4.6: Generating Shares of a Random Number δ in the Active Adversary Model

In the first step of polynomial production, each of t + 1 participants Pi acts as an
independent dealer and distributes shares of a secret δi using a VSS. Each of these Pi’s
may be honest or dishonest. However, a dishonest Pi can successfully corrupt at most t−1
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shares; otherwise, he will be disqualified. If a player is disqualified in the second step, the
other players simply discard the shares that he has distributed.

Suppose there are τ1 dealers who are disqualified in step 2 and suppose there are τ2

dealers who are dishonest but who distribute shares of their secret correctly (note that
τ1 + τ2 ≤ t − 1 by assumption). Now, the final secret δ is the sum of t + 1 − τ1 accepted
δi’s. Under the assumptions of the VSS that is being used, we know that each accepted δi
has been shared correctly and can ultimately be reconstructed.

It is possible that τ2 of the accepted δi’s might be revealed (correctly or incorrectly)
by malicious players. However, these players cannot prevent the successful reconstruction
of δ. Furthermore, there are at least n + 1− τ1 − τ2 ≥ 2 accepted δi’s that have not been
revealed. Therefore, δ remains secret to everyone even if τ2 malicious dealers reveal their
δi’s before reconstruction.

Suppose each player initially has a share of the secret α on a polynomial of degree
t−1. We will show how to use the polynomial production protocol in order to increase the
threshold without changing the secret α. Our zero addition protocol for threshold increase
is presented in Figure 4.7.

The trick used in this protocol is to adjust the (symmetric) polynomial g(x, y) that
is used to share the unknown secret value δ so that the participants instead have shares
of 0. This can be done using a simple technique described in [26, p. 357]. If we define
ĝ(x, y) = (x+ y)g(x, y), then ĝ(0, 0) = 0. Furthermore, each player can adjust his share in
an appropriate way: ĝ(x, ωi) = (x+ ωi)g(x, ωi).

Threshold Increase

Suppose f(x, ωi) is the share of α belonging to Pi (see Figure 1.2).

1. Players use the VSS of [98] to generate shares of an unknown secret δ on a
symmetric polynomial g(x, y) of degree t′ − 2 using polynomial production.

2. Each Pi multiplies his share g(x, ωi) by (x+ ωi). Now, each Pi has a share of 0
on the symmetric polynomial ĝ(x, y) = (x+ y)g(x, y) of degree t′ − 1.

3. Each player adds his share f(x, ωi) of α to his share (x+ ωi)g(x, ωi) of 0. As a
result, each player has a share of α where the new threshold is t′ > t.

Figure 4.7: Increasing the Threshold by Zero Addition in the Active Adversary Model
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After executing Protocol 4.7, the secret remains the same while the threshold is in-
creased to t′. Since the polynomials remain symmetric during every single step of the pro-
posed protocol, the players can detect any malicious behavior by pairwise checks through
secure channels, as was done in the VSS presented in Figure 1.2.

Remark 4.11 Threshold increase by zero addition can also be achieved in the passive
adversary model by appropriately modifying the approach of Figure 4.7.

4.5 Changing Both the Threshold and the Secret

In this section, we discuss how to increase threshold t to a new threshold t′ > t and
simultaneously update the secret α to a new value α′ that depends on α in some specified
way, i.e., α′ = αβ + δ where β, δ ∈ Zq are unknown constants and q is prime. The
updating should take place in the absence of the dealer who initially created the scheme.
The methods we describe are based on verifiable secret sharing schemes and thus they
are secure in the active adversary setting. To motivate our ideas, let’s first adapt some
well-known “folklore” methods (e.g., [9]) to combine shares of two existing secrets to form
shares of a new secret. However, note that we are using these techniques in conjunction
with a threshold increase, which is not usually considered in most previous works. Here,
we suppose that an unknown secret α has been shared among n players using a Shamir
scheme with threshold t. We have the following operations, where we assume t′ > t:

• Let δ be an unknown secret that has been shared among the same n players, again
using a Shamir scheme with threshold t′. If every player computes the sum of their
two shares, then the result is a sharing of α′ = α + δ. Here, the threshold value is
increased to t′.

• Let β be another unknown secret that has been shared among the same n players,
again using a Shamir scheme with threshold t′ − t + 1. If every player computes
the product of their two shares, then the result is a sharing of α′ = αβ. Here, the
threshold value is also increased to t′. However, it should be noted that the resulting
secret sharing polynomial of degree t′−1 is not a “random” polynomial ([9]) because
it can be factored into two smaller polynomials of degrees t− 1 and t′− t, a property
that will not hold for “random” polynomials. Therefore, we should not use this
product construction in isolation; we should always follow it by an addition operation
that increases or maintains the threshold, to guarantee that the final secret sharing
polynomial is random.
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The above methods of forming shares of the sum or products of two secrets assume
that the players already have shares of two secrets. Here, we consider a slightly different
setting, where the players have shares of one secret, α, and they want to obtain shares
of a new secret, α′ = αβ + δ. The values of β and δ are unknown random numbers that
are determined interactively by the set of players. Earlier, we showed how the players can
collectively generate shares of an unknown secret δ without a dealer, shown in Figure 4.6.
Once the players have shares of β and δ, they can first compute shares of αβ using the
product protocol described above. They can then compute shares of αβ+ δ using the sum
protocol described above. Here is a more detailed description of a process that will change
the secret α to α′ = αβ + δ, while simultaneously increasing the threshold from t to t′.

1. Use polynomial production protocol to create shares of an unknown secret β with
threshold t′ − t+ 1.

2. Each player multiplies his share of α with his share of β. As a result, the new
threshold is t′ (however, at this point, the secret sharing polynomial is not random).

3. Use polynomial production protocol to create shares of an unknown secret δ with
threshold t′.

4. Each player adds his share of αβ and his share of δ. Now each player has a share of
α′ with threshold t′ (and the secret sharing polynomial is random).

4.5.1 Application: Sequential Secret Sharing

In this section, we present an application of dynamic threshold schemes (where the secret is
changed based on an unknown linear combination of previous secrets) by describing a new
scheme that we term sequential secret sharing. In this construction, players progressively
construct a sequence of secret sharing schemes with different (but related) secrets and
thresholds in the absence of the dealer, i.e., they will modify the threshold while generating
multiple secrets. For the sake of simplicity, we just use the addition operation in order to
change the secret. Let’s first start with an example to make this protocol clear.

Example 4.12 Suppose the goal is to create a three-level sequential secret sharing scheme
among a set of thirteen players. Consider the following subsets of players:

P = {P1, . . . , P13}, P1 = {P1, P2, P3},
P ′ = {P4, . . . , P13}, P2 = {P4, P5, P6, P7},

P3 = {P8, P9, P10, P11, P12, P13}.
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Secret Sharing

1. The dealer first shares a master secret α1 with the players in P using a (2, 13)-
threshold scheme. We denote this sharing by the following notation:

α1 : P = {P1, . . . , P13}t0=2.

2. (a) The players Pi ∈ P use polynomial production to create shares of an unknown
secret β1 having a threshold t1 = 3.

(b) They add their shares locally to obtain the shares of α2 = α1 + β1 which has a
threshold of t1 = 3. All the players erase the shares of α1.

(c) {P1, . . . , P3} only keep the shares of β1, and {P4, . . . , P13} keep the shares of α2.
Using the notation defined above, the result is denoted by:

β1 : P1 = {P1, P2, P3}t1=3 and α2 : P ′ = {P4, . . . , P13}t1=3.

3. (a) The players Pi ∈ P ′ use polynomial production to create shares of an unknown
secret β2 having a threshold t2 = 4.

(b) They add their shares locally to obtain the shares of α3 = α2 + β2 which has a
threshold of t2 = 4. The players Pi ∈ P ′ erase the shares of α2.

(c) {P4, . . . , P7} only keep the shares of β2, and {P8, . . . , P13} increase the threshold
from t2 = 4 to t3 = 6 and keep the shares of α3. We denote this by:

β2 : P2 = {P4, . . . , P7}t2=4 and α3 : P3 = {P8, . . . , P13}t3=6.

Secret Recovery

1. In the first step, the players P3 = {P8, . . . , P13} recover the secret α3.

2. Subsequently, P2 = {P4, . . . , P7} recover the secret β2. As a result, α2 is revealed
since α3 = α2 + β2.

3. Finally, P1 = {P1, . . . , P3} recover the secret β1. As a result, the master secret α1 is
revealed since α2 = α1 + β1.
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As a realization of this example (hierarchical authority), we could imagine the president and
vice president as the set P1, ministers as the set P2, and senators as the set P3 accordingly.
Any decision on troops by the president and vice president is subject to the confirmations
of ministers and senators. On the other hand, even having those confirmations, the final
decision is made by the president and vice president, i.e., recovering the master secret α1.

We now provide the definition of sequential secret sharing and then we present our
protocol in Figure 4.8. Observe that Example 4.12 has l = 3 levels, and thresholds t0 = 2,
t1 = 3, t2 = 4, and t3 = 6.

Definition 4.13 Sequential secret sharing is a secret sharing scheme where secrets α1, . . . ,
αl are shared among the players with monotonically increasing thresholds t0 < t1 < · · · < tl.
Let P be a set of n players and assume P is composed of l disjoint levels

P =
l⋃

i=1

Pi,

where Pi ∩ Pj = ∅ for all 1 ≤ i < j ≤ l and |Pi| ≥ ti for all i. The secret αk (in level

k) can be then recovered only if players in Rk =
⋃l
i=k Pi cooperate and first recover their

secrets sequentially, i.e., from the highest level l down to level k.

Comparison with Existing Hierarchical Secret Sharing Schemes

Simmons [95] first proposed disjunctive multilevel secret sharing, and then Tassa [103]
extended that construction to conjunctive multilevel secret sharing. They both use a single
secret to construct their hierarchical threshold secret sharing schemes, whereas we generate
several secrets in our access structure.

To explain how our sequential secret sharing (as shown in Figure 4.8) differs from these
schemes, consider Example 4.12, where t1 = 3, t2 = 4, and t3 = 6. In the case of the
disjunctive multilevel secret sharing, players from P1 can recover the secret without the
contributions of other players, i.e., cooperations of all levels are not required. In the case
of the conjunctive multilevel secret sharing, all the players from P1, one player from P2 and
two players from P3 can recover the secret. In both cases, there exists only a single secret,
whereas, in our sequential secret sharing, we have several secrets.
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Secret Sharing

1. A dealer uses a Shamir scheme to distribute shares of an initial secret α1 with
threshold t0 among players P = {P1, . . . , Pn}, and then leaves the scheme.

2. Subsequently, players perform the following steps for 1 ≤ i ≤ l − 1:

(a) The players in P use polynomial production to generate shares of a random
secret βi with threshold ti, where ti−1 < ti.

(b) They compute shares of αi+1 = αi + βi mod q; the threshold of αi+1 is ti.
Then they erase their shares of αi.

(c) A subset of players, say Pi ⊂ P where |Pi| ≥ ti, only keep shares of βi and
the rest of the players, i.e., P − Pi, only keep shares of αi+1.

(d) If i = l − 1 (i.e., the last step of the protocol is being executed), they
increase the threshold from tl−1 to tl. Otherwise (if i < l − 1), they set
P ← P\Pi.

Secret Recovery

1. Appropriate subsets of players first cooperate to recover αl and βl−1, . . . , β1.

2. They then solve the following system of linear congruences: αi+1 ≡ αi + βi
mod q for i = l − 1 down to i = 1. (It is clear that each congruence has a
unique solution for αi given αi+1 and βi.) Therefore, αl, . . . , α1 are recovered.

Figure 4.8: Sequential Secret Sharing Scheme

4.6 Conclusion

In this chapter, various dynamic threshold schemes were discussed. We illustrated how
to increase or decrease the threshold in the passive and active adversary models when
the dealer is not involved in the scheme after the scheme’s initialization. In addition, we
showed how to change the secret and increase the threshold at the same time. Finally,
sequential secret sharing was proposed as a new application of the dynamic threshold
schemes. Table 4.1 summarizes secure threshold modification techniques in the passive
and active adversary models.
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Threshold Passive Adversary Active Adversary

Decrease

Figure 4.1: Lagrange Method

Figure 4.2: Vandermonde Matrix

Figure 4.3: Public Evaluation

Figure 4.5: Public Evaluation

Increase

Figure 4.1: Lagrange Method

Figure 4.2: Vandermonde Matrix

Remark 4.11: Zero Addition

Figure 4.7: Zero Addition

Table 4.1: Summary of Secure Threshold Modification Techniques
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Chapter 5

Multicomponent Commitment

In this chapter, we develop a new multicomponent commitment scheme in order to con-
struct sealed-bid auction protocols (SAP) similar to the proposed solutions in [91, 90, 99].
Our protocols are auctioneer-free and unconditionally secure whereas previous protocols
rely on computational assumptions and use auctioneers. We first propose a multicompo-
nent commitment scheme (MCS ), that is, a commitment scheme with multiple committers
and verifiers. Later, three secure first-price auction protocols are proposed, each of which
has its own properties.

5.1 Introduction

Commitment schemes were introduced by Blum [12] in order to solve the coin flipping
problem. In a commitment scheme, the first party initially commits to a value while
keeping it hidden; that is the commitment phase. Subsequently, he reveals the committed
value to the second party such that it can be verified; that is the reveal phase. Our
intention is to construct an unconditionally secure commitment scheme suitable for secure
auction settings where we have multiple committers, i.e., the bidders who commit to their
sealed-bids, and multiple verifiers.

Rivest [88] proposed an unconditionally secure commitment scheme in which the sender
and receiver are both computationally unbounded. He assumes the existence of a trusted
initializer, Ted, and a secure private channel between each pair of parties. We quickly
review this protocol in Figure 5.1 since it is the only commitment scheme in the literature
with unconditional security at both “commitment” and “reveal” phases. All operations
are in Zq where q is a prime number.

95



Three-Step Commitment Scheme

1. Initialize: Ted randomly selects a and b which define a line y = ax+ b, where
a ∈ Z∗q and b ∈ Zq, and securely sends values a and b to Alice. He then selects
a point (x1, y1) on this line and sends it to Bob securely.

2. Commit: Alice computes y0 = ax0 + b as a commitment and sends it to Bob,
where x0 is her secret.

3. Reveal: Alice discloses the pair (a, b) as well as x0 to Bob. Finally, Bob checks
that points (x0, y0) and (x1, y1) are both on the line y = ax + b. If so, Bob
accepts x0, otherwise, he rejects it.

Figure 5.1: Unconditionally Secure Commitment Scheme with a Trusted Initializer

As stated in [13], there exists a minor problem with this scheme. In a scenario where
y0 = y1 (e.g., the committed value y0 is equal to the second value that Bob receives from
Ted), Bob learns x0 before the reveal phase. That is, if y0 = y1 then x0 = x1, because
y = ax+ b is a one-to-one function. This problem is fixed in [13] by replacing y0 = ax0 + b
with y0 = x0 + a in the commitment phase.

Definition 5.1 A commitment scheme satisfies the following two properties, where Alice
is the “committer” and Bob is the “verifier”:

1. Binding: Alice must not be able to alter her commitment after she has made it.

2. Hiding: Bob must not be able to find out the commitment without Alice revealing it.

We briefly review computation costs of polynomial evaluation and interpolation for
complexity analysis of our protocols. Using a naive approach to evaluate f(x) = a0 +a1x+
a2x

2 + · · ·+an−1x
n−1 at a single point α, we need 3n−4 operations in the finite field. First

we require n−2 multiplications to compute α2 = α×α, α3 = α×α2, . . . , αn−1 = α×αn−2.
Then, computing terms aix

i requires a further n − 1 multiplications. Finally, adding all
terms together takes n−1 additions. (This approach can be improved slightly by Horner’s
method but it will not change the complexity of the operation.) Therefore, the total
cost of the evaluation for a polynomial of degree at most n− 1 at a single point α is O(n),
consequently, the evaluation at n points takes O(n2). To interpolate n points and construct
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a polynomial of degree at most n − 1, we need O(n2) operations using Lagrange/Newton
interpolation [34].

These techniques can be improved by using the fast multipoint evaluations (n points)
and the fast interpolation of a polynomial of degree at most n − 1. These methods take
O(C(n) log n), where C(n) is the cost of multiplying two polynomials of degree at most
n−1. Therefore, the multipoint evaluation and the fast interpolation take O(n log2 n) arith-
metic operations using fast Fourier transform, which requires the existence of a primitive
root of unity in the field.

C(n) :


O(n2) classical method

O(n1.59) Karatsuba’ s method

O(n log n) Fast Fourier Transform

5.1.1 Motivation

The growth of e-commerce technologies has created a remarkable opportunity for sealed-bid
auction protocols in which bidders’ valuations are kept private while defining the auction
outcomes, that is, the winner and selling price. The main motivation for privacy is the
fact that bidders’ valuations can be used in future auctions and negotiations by different
parties, say auctioneers, to maximize their revenues, or competitors to win the auction.
As an example, suppose a bidder proposes his bid on a specific item. If this valuation is
released and the bidder loses the auction, then the other parties can use this information
in future auctions (or negotiations) of similar items. This problem can be resolved by
creating privacy-preserving protocols for the determination of the auction outcomes.

Most of the current sealed-bid auction protocols are not unconditionally secure, i.e.,
their security relies on computational assumptions such as hardness of factoring or discrete
logarithm. Our motivation therefore is to propose an unconditionally secure multicompo-
nent commitment scheme for the construction of new secure first-price auction protocols.
Our intention is to enforce the verifiability in the sense that all the parties can verify the
correctness of the auction outcomes.

In our protocols, bidders first commit to their bids before the auction starts. They
then apply a decreasing price mechanism to define the winner and selling price. That is,
each protocol starts with the highest price and decreases the price step by step until the
auction outcomes are determined. This is similar to the approach in [91, 90, 99].
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The authors in [91] use undeniable signature schemes, in [90] they apply public-key en-
cryption schemes, and in [99] they use collision intractable random hash functions. To show
how our constructions differ from these solutions, we can highlight the following improve-
ments. First, previous solutions are only computationally secure whereas our protocols are
unconditionally secure. Second, they use an auctioneer to define auction outcomes whereas
our protocols only use a trusted initializer.

The main difference between all the stated constructions and the Dutch-style auction
(where the auction begins with a high price which is lowered until a buyer accepts it) is the
early commitments where bidders decide on their bids ahead of time and independent of
whatever information they may gain during the auction. Moreover, bidders cannot change
their minds while the auction is running. Finally, we can better deal with a rushing attack.
In an electronic Dutch-style auction, it might be difficult to determine which of two bids
received in close succession was actually made first. Therefore, a malicious bidder might
be able to wait and bid immediately after the bid of another party in order to win the
auction with a best possible price. Our solution prevents such a rushing attack.

5.1.2 Contributions

As our main contribution, we initially construct a multicomponent commitment scheme
where multiple committers and verifiers act on many secrets. After that, several uncondi-
tionally secure first-price auction protocols are constructed based on this new commitment
scheme. Each of these protocols consists of a trusted initializer and n bidders. The security
holds under the honest majority assumption.

Our first construction is a verifiable protocol without the non-repudiation property. This
protocol has a low computation cost. Our second construction is a verifiable protocol
with the non-repudiation property. The computation cost of this protocol has an extra
multiplicative factor based on the price range. Our last construction is an efficient verifiable
protocol with the non-repudiation property and partial privacy. This protocol preserves the
privacy of losing bids by a security relaxation with a lower computation cost.

5.1.3 Organization

This chapter is organized as follows. Section 5.2 provides the required preliminaries for
further technical discussions. Section 5.3 reviews the literature of the sealed-bid auctions.
Section 5.4 present our new commitment scheme in an unconditionally secure setting.
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Section 5.5 provides three sealed-bid first-price auction protocols based on our commitment
scheme. Finally, Section 5.6 provides concluding remarks.

5.2 Preliminary: Sealed-Bid Auctions

In an auction mechanism, the winner is a bidder who submitted the highest bid. To define
the selling price, there exists two major approaches: first-price auction and second-price
auction. In the former, the winner pays the amount that he has proposed, i.e., the highest
bid. In the latter, the winner pays the amount of the second-highest bid.

There are other types of auctions such as (M + 1)st-price auction and combinatorial
auctions. In the former, the highest M bidders win the auction and pay a uniform price
defined by the (M + 1)-price. The second-price auction is a special case of this type of
auction where M = 1. In the latter, multiple items with interdependent values are sold at
the same time while bidders are able to bid on any combination of items.

In the first-price auction, a bidder potentially is able to define the winner as well as the
selling price at the same time. On the other hand, in the second-price auction, a bidder
potentially is able to define either the winner or the selling price for the winner. As a
consequence, he proposes the actual highest value, say κ, he can afford to pay, which is
also a profitable price for him [104]. Suppose the proposed bid is less than κ. In this case,
the bidder decreases his chance of winning. If the proposed bid is bigger than κ, the bidder
might win with an unprofitable price.

This property of the second-price auction forces bidders to propose their true valuations;
this is an interesting and useful characteristic. At the same time, there are some deficiencies
with second-price auctions. For instance, bidders may be reluctant to reveal their actual
valuations, or the auctioneer may use a fake second-highest bid for more revenue [89, 92].

Sealed-bid auction models have many fundamental characteristics [85]. Some of the
most important properties are as follows:

• Correctness : determining the winner and selling price correctly.

• Privacy : preventing the release of private bids, that is, losing bids.

• Verifiability : verifying auction outcomes by bidders and auctioneers.

• Non-Repudiation: preventing bidders from denying their bids.
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5.3 Previous Works: Sealed-Bid Auction Protocols

In the initial construction of the first-price sealed-bid auction protocols, the authors in
[31] implemented a secure auction service by using verifiable secret sharing as well as
verifiable signature sharing. At the end of the bidding time, auctioneers open bids to
define outcomes, therefore, they all know the losing bids. Subsequently, various types of
secure auction protocols were proposed in the literature.

The proposed first-price auction protocol in [50] (which is modified in [51]) demon-
strated a multi-round scheme in which winners from an auction round take part in a
subsequent tie-breaking round. The authors used the addition operation of multiparty
computation in a passive adversary model. Later, the authors in [84] detected some short-
comings in this scheme, such as the lack of verifiability. They then improved the scheme
in various ways.

We can mention other first-price secure auction protocols with computational security.
In [83], the authors designed a sealed-bid auction protocol based on a homomorphic secret
sharing scheme. Their construction relies on the hardness of computational problems and
does not depend on any trust. They also showed that the proposed protocol is secure
against different kinds of attacks. In [46], the authors applied secure function evaluation
via ciphertexts and presented a Mix-and-Max auction protocol. In [18], the authors used
homomorphic encryption such as the ElGamal cryptosystem to construct various crypto-
graphic auction protocols.

The authors in [42] presented protocols for sealed-bid auctions using secure distributed
computation. The bidders’ valuations are never revealed to any party, even after the
auction is completed. Their protocol supports first-price and second-price auctions. The
general idea of their approach is to compare bids digit by digit using secret sharing tech-
niques. This protocol is expensive from computational and communication points of view.

The authors in [49] presented a protocol for the (M + 1)st-price auction, where the
highest M bidders win the auction and pay a uniform price. They used a new method in
which bidders’ valuations are encoded by the degree of many distributed polynomials. The
construction requires only two rounds of computations; one round for the bidders and one
round for the auctioneers. This auction protocol utilizes the verification approach proposed
in [82]. The proposed scheme in [16] is a fully private (M + 1)st-price auction protocol in
which only the winners and the seller learn the selling price. This construction also applied
verifiable secret sharing of [82]. It has two major shortcomings. First, the scheme is not
able to handle ties among multiple winners. Second, it is not an efficient construction.

Finally, the authors in [19, 20] investigated the possibility of unconditional full privacy
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(i.e., considering a collusion of size n−1 among n bidders without using any auctioneers) in
sealed-bid auctions. They demonstrated that first-price sealed-bid auctions can be achieved
with full privacy; however, the protocol’s round complexity is exponential in the bid size.
On the other hand, they proved the impossibility of full privacy for second-price sealed-
bid auctions having more than two bidders. For secure second-price and (M + 1)st-price
auction protocols using other cryptographic techniques, see [46, 17, 1, 56, 77, 18]. For
secure combinatorial auction protocols, where multiple items with interdependent values
are sold simultaneously, see [100, 109, 110, 81].

5.4 Multicomponent Commitment Scheme

We initially provide the formal definition of a multicomponent commitment scheme, that
is, a construction with several commitments. We also assume that all participants are
computationally unbounded.

Definition 5.2 A multicomponent commitment scheme has multiple committers as well
as verifiers, and is said to be unconditionally secure if the following conditions hold:

1. Hiding: each receiver cannot learn anything about the secrets before the reveal phase
except with a small probability ε1.

2. Binding: each sender cannot cheat (with the colluders’ help) in the reveal phase by
sending a fake secret except with a small probability ε2.

3. Validating: assuming the sender is honest, the other honest players should be able to
correctly validate each secret during the reveal phase in the presence of the colluders.

In the following constructions, we have n players P1, P2, . . . , Pn, as well as a trusted
initializer T who leaves the scheme before starting the protocols. We consider the existence
of a secure private channel between each pair of parties, and an authenticated public
broadcast channel. We also assume the majority of players are honest.

For the sake of simplicity, first a scheme with one committer, say Pi, and several
verifiers P1, . . . , Pi−1, Pi+1, . . . , Pn is presented in Figure 5.2. We then extend our approach
to a protocol with multiple committers and several verifiers (i.e., n independent instances
of the previous scheme), as shown in Figure 5.3.
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Multicomponent Commitment Scheme

1. Initialize: T randomly selects g(x) ∈ Zq[x] of degree n− 1 (where q is prime),
and privately sends g(x) to committer Pi. He then selects n− 1 distinct points
(xj, yj) uniformly at random (without replacement) on this polynomial, and
sends (xj, yj) to Pj (for 1 ≤ j ≤ n and j 6= i) through private channels:

y1 = g(x1), y2 = g(x2), . . . , yn = g(xn).

2. Commit: Player Pi first selects the secret xi and computes yi = g(xi) as a
committed value. He then broadcasts yi to the other players.

3. Reveal: Pi discloses the polynomial g(x) and his secret xi to the other parties
through the public broadcast channel. First of all, the other players verify that
yi = g(xi), where yi is the value that Pi has already committed to. After that,
each Pj checks to see if his point is on g(x), i.e., yj = g(xj) for 1 ≤ j ≤ n and
j 6= i. If yi = g(xi) and the majority of players confirm the validity of g(x)
(or an equal number of confirmations and rejections are received), then xi is
accepted as the secret of Pi, otherwise, it is rejected.

Figure 5.2: Unconditionally Secure MCS with a Trusted Initializer

Theorem 5.3 The multicomponent commitment scheme shown in Figure 5.3 is an un-
conditionally secure protocol under the honest majority assumption in an active adversary
setting, i.e., it satisfies the hiding, binding, and validating properties of Definition 5.2 with
ε1 = n/q and ε2 = n2/q.

Proof. We will provide the proof when n−1 is even; the proof when n−1 is odd is similar.
Malicious participants might be able to provide fake polynomials and consequently reveal
incorrect secrets, or disrupt the voting result.

Hiding: when a player Pi commits to a value, each player Pj for 1 ≤ j ≤ n and j 6= i
only knows his pair (xij, yij) and the committed value yi in the first two phases. In the
worst case scenario, even if n−1

2
players Pj collude, they are not able to construct gi(x) of

degree n− 1 to reveal xi. In the case where the committed value yi of Pi is equal to some
yij, Pj might be able to infer some information about the secret xi. This occurs with the
following probability:
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Generalized Multicomponent Commitment Scheme

1. Initialize: T randomly selects n polynomials g1(x), g2(x), . . . , gn(x) ∈ Zq[x]
of degree n − 1, and privately sends gi(x) to Pi for 1 ≤ i ≤ n. He then selects
n − 1 distinct points (xij, yij) uniformly at random (without replacement) on
each polynomial gi(x), and sends (xij, yij) to Pj for 1 ≤ j ≤ n and j 6= i through
private channels. The following matrix shows the information that each player
Pj receives, i.e., all entries in the jth row:

En×n =


g1(x) y21 = g2(x21) . . . yn1 = gn(xn1)

y12 = g1(x12) g2(x) . . . yn2 = gn(xn2)
...

...
. . .

...

y1n = g1(x1n) y2n = g2(x2n) . . . gn(x)

 .

2. Commit: each player Pi computes yi = gi(xi) as a committed value and broad-
casts yi to the other players, where xi is the secret of player Pi. In other words,
y1, y2, . . . , yn are the committed values and x1, x2, . . . , xn are the secrets of the
players accordingly.

3. Reveal: each player Pi discloses gi(x) and his secret xi to the other parties
through the public broadcast channel.

(a) First, the other players verify that yi = gi(xi), where yi is the value that
Pi has already committed to.

(b) In addition, they check to see if the n−1 points corresponding to gi(x) are
in fact on this polynomial (that is, yij = gi(xij) for 1 ≤ j ≤ n and j 6= i).

If yi = gi(xi) and the majority of players confirm the validity of gi(x) (or an
equal number of confirmations and rejections are received), then xi is accepted
as a secret, otherwise, it is rejected.

Figure 5.3: Generalization of the Multicomponent Commitment Scheme
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Pr[yi = yij] ≤
n− 1

q
for some j ∈ [1, n] and j 6= i. (5.1)

Consequently, with the probability ε1 = Pr[yi = yij ∧ xi = xij], player Pj may know the
secret xi before the reveal phase, where

ε1 ≤
n− 1

q
by (5.1).

Binding: if a player Pi changes his mind and decides to cheat by revealing a fake secret x′i,
he needs to provide a fake polynomial g′i(x) of degree n− 1 such that yi = g′i(x

′
i), since he

has already committed to yi, and yij = g′i(xij) for 1 ≤ j ≤ n and j 6= i, meaning that gi(x)
and g′i(x) must pass through n− 1 common points, that is, Pi needs to guess all points of
the other players. The alternative solution for Pi is to collude with malicious players and
change the voting result such that a sufficient number of players accept the fake secret x′i.
It is clear that two distinct polynomials gi(x) and g′i(x) of degree n − 1 agree at most on
n− 1 points, therefore, for a randomly selected point (xij, yij) we have:

Pr[yij = gi(xij) ∧ yij = g′i(xij)] ≤
n− 1

q
. (5.2)

Suppose we have the maximum number of colluders to support Pi and assume n − 1 is
an even number. To satisfy the honest majority assumption, there are always two more
honest voters, that is, (

n− 1

2
+ 1

)
−
(
n− 1

2
− 1

)
= 2.

Since the committer Pi is dishonest, he can only change the voting result if he guesses
at least one point of honest players, which leads to an equal number of confirmations
and rejections. As a consequence, the probability of cheating with respect to the binding
property is as follows:

ε2 ≤
(
n− 1

2
+ 1

)
×
(
n− 1

q

)
≤ n2

q
by (5.2).

Validating: suppose the committer Pi is honest and n− 1 is an even number. To satisfy
the honest majority assumption, there is an equal number of honest and dishonest voters

104



Pj for 1 ≤ j ≤ n and j 6= i. Therefore, gi(x) and consequently xi are accepted since an
equal number of confirmations and rejections is achieved.

Theorem 5.4 The multicomponent commitment scheme presented in Figure 5.3 takes
three rounds of communications and O(n2 log2 n) computation cost.

Proof. It can be seen that every stage takes one round of communications which comes to
three rounds in total. To achieve a better performance, suppose we use a primitive element
ω in the field to evaluate polynomials, i.e., yij = gi(ω

xij). As a consequence, in the first two
stages, each gi(x) of degree n−1 is evaluated at n points with O(n log2 n) computation cost.
This procedure is repeated for n polynomials, consequently, the total cost is O(n2 log2 n).
In the third stage, everything is repeated with the same computation cost of the first two
steps, therefore, the total computation cost is O(2n2 log2 n) = O(n2 log2 n).

5.5 Application: Sealed-Bid Auction Protocols

Now, three secure first-price auction protocols based on the multicomponent commitment
scheme are presented. Our constructions are auctioneer-free in an unconditionally secure
setting; i.e., bidders define auction outcomes themselves.

Our protocols consist of a trusted initializer T and n bidders B1, . . . , Bn where bidders’
valuations βi ∈ [η, κ]. Let θ = κ − η denote the price range. An initializer leaves the
scheme before running the protocols. This is preferable to a trusted party who remains in
the scheme. In the literature, trusted parties are assumed in many secure auction protocols,
for instance, semi-trusted third party [22, 7], trusted third party [107, 66], trusted centers
[90], trusted authority [1, 101], trustee [105]. It is worth mentioning that by paying an
extra computational and communication cost, a trusted party or initializer can be replaced
by a secure multiparty computation protocol.

We assume the existence of secure private channels between the initializer and each
bidder, as well as between each pair of bidders. There also exists an authenticated public
broadcast channel on which information is transmitted instantly and accurately to all
parties. Finally, we assume the majority of the bidders are honest, and at most n/2 of the
bidders may collude to disrupt the auction outcomes or learn the losing bids. Let Zq be
a finite field, where q is a prime number, and let ω be a primitive element in this field.
All computations are performed in Zq. We need n2/q to be very small in order for the
multicomponent commitment scheme to be secure, as stated in Theorem 5.3. Therefore, q
must be large enough to satisfy this requirement.
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5.5.1 Verifiable Protocol with Repudiation Problem

The new protocol, which is shown in Figure 5.4, has many useful properties. First of
all, it is a verifiable scheme in which bidders are able to verify the correctness of auction
outcomes while preserving the privacy of losing bids. Second, it is a simple construction
with a low computation cost. Finally, bidders are able to define auction outcomes without
any auctioneers in an unconditionally secure setting. However, it has a shortcoming in the
sense that a malicious player may refuse to acknowledge being the winner of the auction
when his bid is equal to the current price γ, that is, it suffers from the repudiation problem.

Theorem 5.5 Excluding the repudiation problem, the auction protocol VR presented in
Figure 5.4 determines auction outcomes correctly under the honest majority assumption
with a small probability of error, as computed in Theorem 5.3, and it also protects the
losing bids.

Proof. Under the honest majority assumption and the proof in Theorem 5.3, the scheme
protects the losing bids with a negligible probability of error and only reveals the highest
bid. Moreover, bidders are able to verify the claim of the winner and consequently define
the selling price with a negligible probability of cheating. It is worth mentioning that the
protocol has definitely a winner since more than half of the players are honest. In other
words, in the case of “repudiation” (where a malicious bidder refuses to claim his bid), the
first honest bidder who claims as the winner is the ultimate winner of the auction.

Theorem 5.6 The auction protocol VR takes at most O(θ) rounds of communications and
O(n2 log2 n) computation cost.

Proof. There exist two rounds of communication for the first two stages. In addition,
the third phase takes at most θ rounds, which comes to O(θ) in total. To compute the
computation cost, each gi(x) of degree n− 1 is evaluated at n points in the first two steps
with O(n log2 n) computation cost, i.e, n−1 evaluations in the first step and one evaluation
in the second step. This procedure is repeated for n bidders, as a consequence, the total
cost is O(n2 log2 n). In the third stage, a constant number of polynomials equivalent to
the number of winners are evaluated, therefore, the total computation cost for the entire
protocol is O(n2 log2 n). Even if all players propose a common value and we have n winners,
the computation cost has the same complexity.
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VR: Sealed-Bid First-Price Auction

1. Initialize: The trusted initializer T first provides the following private data
through secure pair-wise channels, and then he leaves the scheme:

(a) He randomly selects n polynomials g1(x), g2(x), . . . , gn(x) ∈ Zq[x] of degree
n− 1, and sends gi(x) to Bi for 1 ≤ i ≤ n.

(b) He then selects n− 1 distinct points (ωxij , yij) uniformly at random (with-
out replacement) on each polynomial gi(x), and sends (ωxij , yij) to Bj for
1 ≤ j ≤ n and i 6= j through the secure channels.

2. Start: when the auction starts, each Bi commits to his bid βi by computing
αi = gi(ω

βi) and broadcasting αi to the other bidders. There is a specific time
interval in which bidders are required to commit to their bids.

3. Close: after the closing time, bidders set the initial price γ to be the highest
possible price, i.e., γ = κ, and then define winners as follows:

(a) The bidder Bk who has committed to γ claims that he is the winner.
Consequently, he must prove βk = γ. Ties among multiple winners can
be handled by assigning a specified priority to the bidders or by a random
selection after valid proofs by different winners have been given.

(b) Bk also reveals gk(x) so that the other bidders are able to verify that
αk = gk(ω

βk). They then check to see if all these n−1 points are on gk(x).
If these conditions hold, then Bk is accepted as the winner, otherwise, his
claim is rejected.

(c) If no one claims to be the winner or the bidder who claimed as a potential
winner could not prove his plea, then bidders decrease the selling price by
one, i.e., γ = κ− 1, and the procedure from stage (a) is repeated.

Figure 5.4: Verifiable Secure Auction Protocol with Repudiation Problem
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5.5.2 Verifiable Protocol with Non-Repudiation

To handle the repudiation problem, we modify our earlier construction such that all the
losers must prove that their bids are less than the winning price at the end of the protocol.
This scheme is presented in Figures 5.5 and 5.6. We also provide an example of this scheme.

Example 5.7 Suppose each βi ∈ [0, 7] and all computations are performed in the field Z13

where q = 13. Assume βi = 7 − 5 = 2 and the winning price is βk = 5 or βk = 3 in two
different scenarios. Here Mi(x) ∈ [0, 7) if x = 0; otherwise, Mi(x) ∈ [7, 13). We then
have the following possible vectors for the bids:

Bi = (1, 0, 1, 1, 0, 1, 1) and B′i = (12, 6, 10, 7, 3, 11, 9).

• Suppose the winning bid is βk = 5. The loser Bi reveals 7 − 5 + 1 = 3 values larger
than q/2 in order to prove he has at least three 1’s in Bi, which shows his bid is less
than the winning price.

• Suppose the winning bid is βk = 3. The loser Bi reveals 7 − 3 + 1 = 5 values larger
than q/2 to prove that his bid is less than the winning price.

Remark 5.8 By a simple modification, it is feasible to catch malicious bidders before
determining the winner. In this modification, as we decrease the price one by one, each
bidder Bi must reveal one new b′ij ∈ [q/2, q) (i.e., bij = 1) at each round, otherwise, he is
removed from the scheme.

Theorem 5.9 The proposed auction protocol VNR presented in Figures 5.5 and 5.6 de-
termines auction outcomes correctly under the honest majority assumption with a small
probability of error, as computed in Theorem 5.3, and protects the losing bids. It also
satisfies the non-repudiation property.

Proof. We can follow the same proof in Theorem 5.3 for the verifiability and privacy.
Moreover, it is required to show that losers do not reveal any unnecessary information
about their bids in part (c) of stage 3, beyond the fact that their bids are less than the
winning bid. As shown in Figure 5.5, each bidder Bi commits to θ values, where θ = κ−η.
According to Equation 5.5, a loser Bl reveals κ− βk + 1 commitments of 1’s in part (c) of
stage 3. This has two meanings:
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VNR-a: Sealed-Bid First-Price Auction

1. Initialize: The trusted initializer T first provides some private data through
secure pair-wise channels and then leaves the scheme:

(a) He randomly selects θ polynomials gi1(x), gi2(x), . . . , giθ(x) ∈ Zq[x] of de-
gree n − 1 for each Bi, and privately sends these polynomials to Bi for
1 ≤ i ≤ n, where θ is the price range.

(b) He then selects n − 1 distinct points (ωx
k
ij , ykij) for 1 ≤ k ≤ n and k 6= i

uniformly at random on each gij(x), where 1 ≤ j ≤ θ. He finally sends
these points to Bk, i.e., each Bk receives the entries in kth row of En×θn:

En×θn =


g11(x) . . . g1θ(x) . . . (ωx

1
n1 , y1

n1) . . . (ωx
1
nθ , y1

nθ)

(ωx
2
11 , y2

11) . . . (ωx
2
1θ , y2

1θ) . . . (ωx
2
n1 , y2

n1) . . . (ωx
2
nθ , y2

nθ)
...

. . .
...

. . .
...

. . .
...

(ωx
n
11 , yn11) . . . (ωx

n
1θ , yn1θ) . . . gn1(x) . . . gnθ(x)

 .

2. Start: when the auction starts, there is a specific time interval in which bidders
are allowed to commit to their bids.

(a) Each bidder Bi first defines his bid βi as follows:

βi = κ−
θ∑
j=1

bij. (5.3)

Here, bij ∈ {0, 1} and we write them as a vector Bi = (bi1, bi2, . . . , biθ).

(b) Each Bi then applies a random mapping Mi(x) : {0, 1} → Zq to convert
Bi to a new vector B′i so that its elements b′ij ∈ Zq. We require that
Mi(x) ∈ [0, q/2) if x = 0; otherwise, Mi(x) ∈ [q/2, q).

(c) Finally, each bidder Bi for 1 ≤ i ≤ n commits to b′ij by αij = gij(ω
b′ij) for

1 ≤ j ≤ θ and broadcasts all αij to the other bidders.

Figure 5.5: a. Verifiable Secure Auction Protocol with Non-Repudiation
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VNR-b: Sealed-Bid First-Price Auction

3. Close: after the closing time, bidders set the initial price γ to be the highest
possible price, i.e., γ = κ, and then define winners as follows:

(a) Bk who has committed to γ claims he is the winner. Consequently, he
must prove βk = γ. Therefore, he reveals gkj(x) and b′kj for 1 ≤ j ≤ θ. By
using the inverse mappings [0, q/2)→ 0 and [q/2, q)→ 1, bkj for 1 ≤ j ≤ θ
are recovered and βk is computed as follows:

βk = κ−
θ∑
j=1

bkj. (5.4)

(b) If βk = γ, the other bidders then verify that αkj = gkj(ω
b′kj) for 1 ≤ j ≤ θ.

They also check to see if each set of n− 1 points (ωx
i
kj , yikj) for 1 ≤ i ≤ n

and i 6= k are on gkj(x)’s. If these conditions hold, Bk is accepted as the
winner, otherwise, his claim is rejected.

(c) Each loser Bl must prove βl < βk. Therefore, each Bl reveals any subset
J of his commitments b′lj such that the following condition holds:∑

j∈J

blj = κ− βk + 1. (5.5)

where blj = 1 is the inverse mapping of b′lj. Obviously, Bl needs to provide
valid proofs for b′lj’s.

(d) If no one claims to be the winner or the bidder who claimed to be the
winner could not prove his plea, then bidders decrease the selling price by
one, i.e., γ = κ− 1, and the procedure from stage (a) is repeated.

Figure 5.6: b. Verifiable Secure Auction Protocol with Non-Repudiation
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1. Up to this time of the auction, the revealed portion of his bid is:

βl = κ− (κ− βk + 1) by (5.3) and (5.5)

= βk − 1.

2. The number of commitments that have not been yet revealed is:

θ − (κ− βk + 1) = (κ− η)− (κ− βk + 1)

= βk − η − 1.

If unrevealed commitments are all commitments of “0”, then the losing bid is βk − 1,
whereas if they are all commitments of “1”, then the losing bid is

βl = (βk − 1)− (βk − η − 1) = η.

This means that a losing bid can be any value in the range [η, βk − 1], that is, while the
losers do not reveal any extra information regarding their bids, the losing bids are less than
the winning bid βk.

Theorem 5.10 The auction protocol VNR takes at most O(θ) rounds of communications
and O(θn2 log2 n) computation cost where θ denotes the price range.

The analysis is similar to the computation cost of the protocol VR except that here we
have θn polynomials gij(x) of degree n− 1 to be evaluated at n points for n bidders.

5.5.3 Efficient Verifiable Protocol with Non-Repudiation

We now modify our previous approach in order to construct a more efficient protocol that
provides partial privacy of bids. Let λ = dlog2 θe where θ denotes our price range. This
scheme is presented in Figures 5.7 and 5.8. We also provide an example of this scheme.

Example 5.11 Suppose each βi ∈ [0, 7] and all computations are performed in the field
Z13. Assume βi = 7 − (101)2 = 7 − 5 = 2 and the winning price is βk = 5 or βk = 3 in
two different scenarios. Here Mi(x) ∈ [0, 7) if x = 0; otherwise, Mi(x) ∈ [7, 13). Here,
the binary representation (1, 0, 1) has the corresponding mapping (11, 5, 9).
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EVNR-a: Sealed-Bid First-Price Auction

1. Initialize: The trusted initializer T first provides some private data through
pair-wise channels and then leaves the scheme.

(a) He randomly selects λ polynomials gi1(x), gi2(x), . . . , giλ(x) ∈ Zq[x] of de-
gree n− 1 for each bidder Bi, and privately sends these polynomials to Bi

for 1 ≤ i ≤ n.

(b) He then selects n − 1 distinct points (ωx
k
ij , ykij) for 1 ≤ k ≤ n and k 6= i

uniformly at random on each gij(x), where 1 ≤ j ≤ λ. He finally sends
these points to Bk. The following matrix shows the information that each
Bk receives, i.e., all entries in kth row:

En×λn =


g11(x) . . . g1λ(x) . . . (ωx

1
n1 , y1

n1) . . . (ωx
1
nλ , y1

nλ)

(ωx
2
11 , y2

11) . . . (ωx
2
1λ , y2

1λ) . . . (ωx
2
n1 , y2

n1) . . . (ωx
2
nλ , y2

nλ)
...

. . .
...

. . .
...

. . .
...

(ωx
n
11 , yn11) . . . (ωx

n
1λ , yn1λ) . . . gn1(x) . . . gnλ(x)

 .

2. Start: when the auction starts, there is a specific time interval in which bidders
are allowed to commit to their bids.

(a) Each Bi first defines his bid βi as shown below, where (biλ . . . bi2 bi1)2 is
the binary representation of κ− βi and bij ∈ {0, 1}:

βi = κ−
λ∑
j=1

bij2
j−1. (5.6)

(b) Each bidder Bi then applies a random mapping Mi(x) : {0, 1} → Zq to
convert list (biλ , . . . , bi2 , bi1) to a new list (b′iλ , . . . , b′i2 , b

′
i1) so

that each b′ij ∈ Zq. We require that Mi(x) ∈ [0, q/2) if x = 0; otherwise,
Mi(x) ∈ [q/2, q).

(c) Finally, each bidder Bi for 1 ≤ i ≤ n commits to b′ij by αij = gij(ω
b′ij) for

1 ≤ j ≤ λ and broadcasts all αij to the other bidders.

Figure 5.7: a. Efficient Verifiable Protocol with Non-Repudiation
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EVNR-b: Sealed-Bid First-Price Auction

3. Close: after the closing time, bidders set the initial price γ to be the highest
possible price, i.e., γ = κ, and then define winners as follows:

(a) Bk who has committed to γ claims he is the winner. Consequently, he
must prove βk = γ. Therefore, he reveals gkj(x) and b′kj for 1 ≤ j ≤ λ. By
using the inverse mappings [0, q/2)→ 0 and [q/2, q)→ 1, bkj for 1 ≤ j ≤ λ
are recovered and βi is computed as follows:

βi = κ−
λ∑
j=1

bij2
j−1. (5.7)

(b) If βk = γ, the other bidders then investigate the validity of αkj = gkj(ω
b′kj)

for 1 ≤ j ≤ λ. They also check to see if each set of n− 1 points (ωx
i
kj , yikj)

for 1 ≤ i ≤ n and i 6= k are on gkj(x)’s. If these conditions hold, Bk is
accepted as the winner, otherwise, his claim is rejected.

(c) Each loser Bl must prove βl < βk. Therefore, Bl reveals a minimal subset
J of his commitments b′lj such that the following condition holds:∑

j∈J

(blj × 2j−1) > κ− βk. (5.8)

where blj is the inverse image of b′lj. Obviously, Bl needs to provide valid
proofs for the b′lj’s. (The protocol still works even if J is not minimal.
However, this would reveal more information about a loser’s bid.)

(d) If no one claims to be the winner or the bidder who claimed to be the
winner could not prove his plea, then bidders decrease the selling price by
one, i.e., γ = κ− 1, and the procedure from stage (a) is repeated.

Figure 5.8: b. Efficient Verifiable Protocol with Non-Repudiation
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• Suppose the winning bid is βk = 5. The loser Bi reveals his 3rd commitment to prove
(1 × 22) > 7 − 5. This shows his bid is at most 7 − 4 = 3, which is less than the
winning price.

• Suppose the winning bid is βk = 3. The loser Bi reveals his 3rd and 1st commitments
to prove (1× 22 + 1× 20) > 7− 3. This shows his bid is at most 7− 5 = 2, which is
less than the winning price.

Theorem 5.12 The proposed auction protocol EVNR, presented in Figures 5.7 and 5.8,
defines auction outcomes correctly under the honest majority assumption with a small
probability of error, as computed in Theorem 5.3. This protocol partially protects the losing
bids and satisfies the non-repudiation property.

Proof. Similar to the previous theorem, we analyze part (c) of stage 3. Here we show
a partial information leakage that occurs. As presented in Figure 5.7, each bidder Bi

commits to λ values, where λ = dlog2 θe. According to Equation (5.8), a loser Bl reveals
|J | commitments of 1’s in part (c) of stage 3. This has two meanings:

1. Up to this time of the auction, the revealed portion of his bid is:

βl = κ−
∑
j∈J

(blj × 2j−1) by (5.6) and (5.8),

where βl < βk.

2. The number of commitments that have not been yet revealed is:

λ− |J | = |J ′|.

where J ′ is the complement of J . If unrevealed commitments are all commitments of “0”,
then the losing bid is κ −

∑
j∈J (blj × 2j−1), whereas if they are all commitments of “1”,

then the losing bid is:

βl =

(
κ−

∑
j∈J

(blj × 2j−1)

)
−
∑
j∈J ′

(blj × 2j−1)

= κ−
λ∑
j=1

(blj × 2j−1) where blj = 1

= κ− θ

= η.
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This means that a losing bid can be some values in the range [η, βl], since only certain bit
combinations are possible. That is, the losers reveal upper bounds of their bids, and also
they prove that the losing bids are less than βk.

Theorem 5.13 The auction protocol EVNR takes at most O(θ) rounds of communications
and O(λn2 log2 n) = O(log2 θ×n2 log2 n) computation cost where θ denotes the price range.

The analysis is similar to the computation cost of the protocol VNR, except that here we
have λn polynomials gij(x) of degree n− 1 where λ = dlog2 θe.

5.6 Conclusion

We initially illustrated the lack of unconditional security in sealed-bid auction protocols,
and then proposed three unconditionally secure schemes. We constructed a multicompo-
nent commitment scheme MCS and proposed three secure first-price auction protocols base
on that construction. Table 5.1 represents outlines of our contributions.

Assumption Rounds Cost Private Verify Non-Rep

VR honest O(n2 log2 n) yes yes no

VNR majority O(θ) O(θn2 log2 n) yes yes yes

EVNR assumption O(n2 log2 θ log2 n) partial yes yes

Table 5.1: Unconditionally Secure First-Price Auction Protocols Using MCS

We should note that the last two protocols are still secure without using the random
mapping Mi(x) : {0, 1} → Zq, as shown in Figures 5.5 and 5.7; step 2(b). In other words,
bidders Bi can simply commit to “0” or “1” by using gij(x). In this case, committing
to “0” means commitment only to the constant term of gij(x), but we prefer to use the
entire coefficients of gij(x) for each commitment. This provides a better protection from a
system-level perspective, where the attacker might be able to read one word of the bidder’s
memory but not lots of words. However, this is outside the scope of our threat model.

Our unconditionally secure sealed-bid auction protocols have full privacy, that is, (n−1)
participants cannot learn a committed value. The honest majority assumption (i.e., less
than n/2 players are compromised by an active adversary) guarantees the correctness of
the protocols.
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Chapter 6

Conclusion and Future Directions

In this thesis, four new cryptographic primitives were introduced, that is, social secret
sharing, socio-rational secret sharing, dynamic secret sharing, and multicomponent com-
mitment. Our proposed schemes were constructed in different models ranging from “social”
to “adversarial” settings. Moreover, each scheme was motivated with a new application,
for instance, self-organizing clouds, repeated sealed-bid auctions, sequential secret sharing,
and first-price sealed-bid auctions.

Although cryptography has a large and diverse impact, there still exist many untouched
areas that need to be explored, specially from a multidisciplinary perspective. Moreover,
innovative applications can be developed through constructions of novel cryptographic
building blocks. Therefore, it is constructive to approach and modify the existing primitives
from diverse angles for new development.

6.1 Future Extensions

In the context of social secret sharing, we would like to perform experiments on various
trust functions and also consider other reputation management systems. For instance,
schemes that use a referral chain, where two players who are interacting for the first time
can gain some information with respect to each other’s reputation through other parties
or common friends. In addition, we are interested in deploying such a construction over
the cloud for an experimental analysis.

In the context of socio-rational secret sharing, we are interested in working on more
complicated models. For instance, we would like to scrutinize the impact of a situation in
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which a player is involved in various social games while he is holding different reputation
values associated with each society. It would be also interesting to construct a hybrid model
in which both reputation and belief are considered. In this case, reputation can be seen as
a consequence of the past behavior whereas belief can be viewed as an anticipation of the
future behavior.

In the context of dynamic secret sharing, we are interested in exploring other techniques
for threshold modification and a player’s enrollment. We also would like to extend our
sequential secret sharing scheme to an active adversary setting. As a final extension, we
intend to propose new protocols for second-price and combinatorial sealed-bid auctions.

6.2 Future Research Agenda

The growth of e-technology and online services has created a remarkable opportunity for
secure multiparty computation. As our future agenda, we would like to propose new
applications of multiparty computation in the context of “financial engineering”. Indeed,
the recent economic downturn raised many concerns in research communities. Scientists
would like to scrutinize this phenomenon by analyzing the existing computational models
of financial schemes. For this reason, our future research intends to explore potential
solutions in this direction through a new cryptographic infrastructure.

We intend to extend the current computational model of multiparty computation to a
more general financial paradigm, named securely computable economic model. It is worth
mentioning that “sealed-bid auctions” are just an instance of these kinds of financial func-
tionalities. Our intention is to study various economic frameworks to introduce a novel
financial paradigm where parameters and computations are injected in and modeled by
secure multiparty computation protocols. In fact, “lack of transparency” and consequently
“economic frauds” are believed to be the major reasons for such economic crashes. This
problem can be approached by constructing a new computational infrastructure, in which
information leakage is minimized while enforcing transparency.

As a strategic decision-making scenario, consider a situation in which a private sector
P wants to get financial support from an investment institution I. The intention of P is
to keep its private information secure from other competitors in the market. On the other
hand, before approving the investment, I would like to make sure that:

(a) Certain constraints on savings, budgets, and cash flows of P are satisfied.

(b) Information related to ongoing secure negotiations with potential buyers is truthful.

118



Other parties such as banks or the tax bureau, or governmental agencies, might be involved
in this mutual agreement. It is not hard to show that the agreement functionality can be
modeled as a privacy-preserving computation with transparency enforcement so that any
inconsistency can be detected.

We first have to model the proposed paradigm in a theoretical setting. For each prob-
lem instance, we would like to analyze the constructed model from various aspects, e.g.,
efficiency and complexity. Our objective is to focus on real-world problem instances such
as investment agreement, stock exchange, strategic negotiations, etc. We do believe that
this research agenda provides a better understanding of cryptographic constructions, and
it expands the application of theoretical cryptography to other computational fields such
as financial engineering.

119





References

[1] Masayuki Abe and Koutarou Suzuki. M+1-st price auction using homomorphic
encryption. In 5th International Workshop on Practice and Theory in Public Key
Cryptography, PKC’02, volume 2274 of LNCS, pages 115–124. Springer, 2002.

[2] Ittai Abraham, Danny Dolev, Rica Gonen, and Joseph Y. Halpern. Distributed
computing meets game theory: robust mechanisms for rational secret sharing and
multiparty computation. In 25th Annual ACM Symposium on Principles of Dis-
tributed Computing, PODC’06, pages 53–62, 2006.

[3] Gilad Asharov, Ran Canetti, and Carmit Hazay. Towards a game theoretic view of
secure computation. In 30th Annual International Conference on the Theory and Ap-
plications of Cryptographic Techniques EUROCRYPT, volume 6632 of LNCS, pages
426–445. Springer, 2011.

[4] Gilad Asharov and Yehuda Lindell. Utility dependence in correct and fair rational
secret sharing. In 29th Annual International Cryptology Conference, CRYPTO’09,
volume 5677 of LNCS, pages 559–576. Springer, 2009.

[5] Judit Bar-Ilan and Donald Beaver. Non-cryptographic fault-tolerant computing in
constant number of rounds of interaction. In 8th Annual ACM Symposium on Prin-
ciples of Distributed Computing, PODC, pages 201–209, 1989.

[6] Susan G. Barwick, Wen Ai Jackson, and Keith M. Martin. Updating the parameters
of a threshold scheme by minimal broadcast. IEEE Transactions on Information
Theory, 51(2):620–633, 2005.

[7] Olivier Baudron and Jacques Stern. Non-interactive private auctions. In 5th Inter-
national Conference on Financial Cryptography, FC’01, volume 2339 of LNCS, page
364377. Springer, 2001.

121



[8] Donald Beaver. Multiparty protocols tolerating half faulty processors. In 9th Annual
International Cryptology Conference, CRYPTO’89, volume 435 of LNCS, pages 560–
572. Springer, 1989.

[9] Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Completeness theorems
for non-cryptographic fault-tolerant distributed computation. In 20th Annual ACM
Symposium on Theory of Computing, STOC’88, pages 1–10, 1988.

[10] Josh Cohen Benaloh and Jerry Leichter. Generalized secret sharing and monotone
functions. In 8th Annual International Cryptology Conference, CRYPTO’88, volume
403 of LNCS, pages 27–35. Springer, 1988.

[11] G. R. Blakley. Safeguarding cryptographic keys. In National Computer Conference,
NCC’79, pages 313–317. AFIPS Press, 1979.

[12] Manuel Blum. Coin flipping by telephone: a protocol for solving impossible problems.
SIGACT News: a special issue on cryptography, 15:23–27, 1983.

[13] C. Blundo, B. Masucci, DR Stinson, and R. Wei. Constructions and bounds for
unconditionally secure non-interactive commitment schemes. Designs, Codes and
Cryptography, 26(1):97–110, 2002.

[14] Carlo Blundo, Antonella Cresti, Alfredo De Santis, and Ugo Vaccaro. Fully dynamic
secret sharing schemes. Theoretical Computer Science, 165(2):407–440, 1996.

[15] Dan Boneh and Matthew Franklin. Efficient generation of shared RSA keys. Journal
of ACM, 48(4):702–722, 2001.

[16] F. Brandt. A verifiable, bidder-resolved auction protocol. In 5th International Work-
shop on Deception, Fraud and Trust in Agent Societies, Special Track on Privacy and
Protection with Multi-Agent Systems, pages 18–25, 2002.

[17] Felix Brandt. Cryptographic protocols for secure second-price auctions. In 5th In-
ternational Workshop on Cooperative Information Agents, CIA’01, volume 2182 of
LNCS, pages 154–165. Springer, 2001.

[18] Felix Brandt. How to obtain full privacy in auctions. International Journal of Infor-
mation Security, 5(4):201–216, 2006.

[19] Felix Brandt and Tuomas Sandholm. (Im)possibility of unconditionally privacy-
preserving auctions. In 3rd ACM International Joint Conference on Autonomous
Agents and Multiagent Systems, AAMAS’04, volume 2, pages 810–817, 2004.

122



[20] Felix Brandt and Tuomas Sandholm. On the existence of unconditionally privacy-
preserving auction protocols. ACM Transactions on Information and System Secu-
rity, 11(2):1–21, 2008.

[21] James Broberg, Srikumar Venugopal, and Rajkumar Buyya. Market-oriented grids
and utility computing: The state-of-the-art and future directions. Journal of Grid
Computing, 6(3):255–276, 2008.

[22] Christian Cachin. Efficient private bidding and auctions with an oblivious third party.
In 6th ACM Conference on Computer and Communications Security, CCS’99, pages
120–127, 1999.
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