7 research outputs found

    On the computational tractability of a geographic clustering problem arising in redistricting

    Get PDF
    Redistricting is the problem of dividing a state into a number kk of regions, called districts. Voters in each district elect a representative. The primary criteria are: each district is connected, district populations are equal (or nearly equal), and districts are "compact". There are multiple competing definitions of compactness, usually minimizing some quantity. One measure that has been recently promoted by Duchin and others is number of cut edges. In redistricting, one is given atomic regions out of which each district must be built. The populations of the atomic regions are given. Consider the graph with one vertex per atomic region (with weight equal to the region's population) and an edge between atomic regions that share a boundary. A districting plan is a partition of vertices into kk parts, each connnected, of nearly equal weight. The districts are considered compact to the extent that the plan minimizes the number of edges crossing between different parts. Consider two problems: find the most compact districting plan, and sample districting plans under a compactness constraint uniformly at random. Both problems are NP-hard so we restrict the input graph to have branchwidth at most ww. (A planar graph's branchwidth is bounded by its diameter.) If both kk and ww are bounded by constants, the problems are solvable in polynomial time. Assume vertices have weight~1. One would like algorithms whose running times are of the form O(f(k,w)nc)O(f(k,w) n^c) for some constant cc independent of kk and ww, in which case the problems are said to be fixed-parameter tractable with respect to kk and ww). We show that, under a complexity-theoretic assumption, no such algorithms exist. However, we do give algorithms with running time O(cwnk+1)O(c^wn^{k+1}). Thus if the diameter of the graph is moderately small and the number of districts is very small, our algorithm is useable

    Solving Hard Stable Matching Problems Involving Groups of Similar Agents

    Get PDF
    Many important stable matching problems are known to be NP-hard, even when strong restrictions are placed on the input. In this paper we seek to identify structural properties of instances of stable matching problems which will allow us to design efficient algorithms using elementary techniques. We focus on the setting in which all agents involved in some matching problem can be partitioned into k different types, where the type of an agent determines his or her preferences, and agents have preferences over types (which may be refined by more detailed preferences within a single type). This situation would arise in practice if agents form preferences solely based on some small collection of agents' attributes. We also consider a generalisation in which each agent may consider some small collection of other agents to be exceptional, and rank these in a way that is not consistent with their types; this could happen in practice if agents have prior contact with a small number of candidates. We show that (for the case without exceptions), several well-studied NP-hard stable matching problems including Max SMTI (that of finding the maximum cardinality stable matching in an instance of stable marriage with ties and incomplete lists) belong to the parameterised complexity class FPT when parameterised by the number of different types of agents needed to describe the instance. For Max SMTI this tractability result can be extended to the setting in which each agent promotes at most one `exceptional' candidate to the top of his/her list (when preferences within types are not refined), but the problem remains NP-hard if preference lists can contain two or more exceptions and the exceptional candidates can be placed anywhere in the preference lists, even if the number of types is bounded by a constant.Comment: Results on SMTI appear in proceedings of WINE 2018; Section 6 contains work in progres

    Stable Matchings with Restricted Preferences: Structure and Complexity

    Get PDF
    In the stable marriage (SM) problem, there are two sets of agents–traditionally referred to as men and women–and each agent has a preference list that ranks (a subset of) agents of the opposite sex. The goal is to find a matching between men and women that is stable in the sense that no man-woman pair mutually prefer each other to their assigned partners. In a seminal work, Gale and Shapley showed that stable matchings always exist, and described an efficient algorithm for finding one. Irving and Leather defined the rotation poset of an SM instance and showed that it determines the structure of the set of stable matchings of the instance. They further showed that every finite poset can be realized as the rotation poset of some SM instance. Consequently, many problems–such as counting stable matchings and finding certain “fair” stable matchings–are computationally intractable (NP-hard) in general. In this paper, we consider SM instances in which certain restrictions are placed on the preference lists. We show that three natural preference models?k-bounded, k-attribute, and (k1, k2)-list–can realize arbitrary rotation posets for constant values of k. Hence even in these highly restricted preference models, many stable matching problems remain intractable. In contrast, we show that for any fixed constant k, the rotation posets of k-range instances are highly restricted. As a consequence, we show that exactly counting and uniformly sampling stable matchings, finding median, sex-equal, and balanced stable matchings are fixed-parameter tractable when parameterized by the range of the instance. Thus, these problems can be solved in polynomial time on instances of the k-range model for any fixed constant k

    Stable Matchings with Restricted Preferences: Structure and Complexity

    Get PDF
    It is well known that every stable matching instance II has a rotation poset R(I)R(I) that can be computed efficiently and the downsets of R(I)R(I) are in one-to-one correspondence with the stable matchings of II. Furthermore, for every poset PP, an instance I(P)I(P) can be constructed efficiently so that the rotation poset of I(P)I(P) is isomorphic to PP. In this case, we say that I(P)I(P) realizes PP. Many researchers exploit the rotation poset of an instance to develop fast algorithms or to establish the hardness of stable matching problems. In order to gain a parameterized understanding of the complexity of sampling stable matchings, Bhatnagar et al. [SODA 2008] introduced stable matching instances whose preference lists are restricted but nevertheless model situations that arise in practice. In this paper, we study four such parameterized restrictions; our goal is to characterize the rotation posets that arise from these models: kk-bounded, kk-attribute, (k1,k2)(k_1, k_2)-list, kk-range. We prove that there is a constant kk so that every rotation poset is realized by some instance in the first three models for some fixed constant kk. We describe efficient algorithms for constructing such instances given the Hasse diagram of a poset. As a consequence, the fundamental problem of counting stable matchings remains #\#BIS-complete even for these restricted instances. For kk-range preferences, we show that a poset PP is realizable if and only if the Hasse diagram of PP has pathwidth bounded by functions of kk. Using this characterization, we show that the following problems are fixed parameter tractable when parametrized by the range of the instance: exactly counting and uniformly sampling stable matchings, finding median, sex-equal, and balanced stable matchings.Comment: Various updates and improvements in response to reviewer comment

    Solving hard stable matching problems involving groups of similar agents

    Get PDF
    Many important stable matching problems are known to be NP-hard, even when strong restrictions are placed on the input. In this paper we seek to identify structural properties of instances of stable matching problems which will allow us to design efficient algorithms using elementary techniques. We focus on the setting in which all agents involved in some matching problem can be partitioned into k different types, where the type of an agent determines his or her preferences, and agents have preferences over types (which may be refined by more detailed preferences within a single type). This situation would arise in practice if agents form preferences solely based on some small collection of agents' attributes. We also consider a generalisation in which each agent may consider some small collection of other agents to be exceptional, and rank these in a way that is not consistent with their types; this could happen in practice if agents have prior contact with a small number of candidates. We show that (for the case without exceptions), several well-studied NP-hard stable matching problems including Max SMTI (that of finding the maximum cardinality stable matching in an instance of stable marriage with ties and incomplete lists) belong to the parameterised complexity class FPT when parameterised by the number of different types of agents needed to describe the instance. For Max SMTI this tractability result can be extended to the setting in which each agent promotes at most one “exceptional” candidate to the top of his/her list (when preferences within types are not refined), but the problem remains NP-hard if preference lists can contain two or more exceptions and the exceptional candidates can be placed anywhere in the preference lists, even if the number of types is bounded by a constant
    corecore