280,510 research outputs found

    On Ranked Approximate Matching Of Large Attributed Graphs

    Get PDF
    Many emerging database applications entail sophisticated graph based query manipulation, predominantly evident in large-scale scientific applications. To access the information embedded in graphs, efficient graph matching tools and algorithms have become of prime importance. Although the prohibitively expensive time complexity associated with exact sub-graph isomorphism techniques has limited its efficacy in the application domain, approximate yet efficient graph matching techniques have received much attention due to their pragmatic applicability. Since public domain databases are noisy and incomplete in nature, inexact graph matching techniques have proven to be more promising in terms of inferring knowledge from numerous structural data repositories. Contemporary algorithms for approximate graph matching incur substantial cost to generate candidates, and then test and rank them for possible match. Leading algorithms balance processing time and overall resource consumption cost by leveraging sophisticated data structures and graph properties to improve overall performance. In this dissertation, we propose novel techniques for approximate graph matching based on two different techniques called TraM or Top-k Graph Matching and Approximate Network Matching or AtoM respectively. While TraM off-loads a significant amount of its processing on to the database making the approach viable for large graphs, AtoM provides improved turn around time by means of graph summarization prior to matching. The summarization process is aided by domain sensitive similarity matrices, which in turn helps improve the matching performance. The vector space embedding of the graphs and efficient filtration of the search space enables computation of approximate graph similarity at a throw-away cost. We combine domain similarity and topological similarity to obtain overall graph similarity and compare them with neighborhood biased segments of the data-graph for proper matches. We show that our approach can naturally support the emerging trend in graph pattern queries and discuss its suitability for large networks as it can be seamlessly transformed to adhere to map-reduce framework. We have conducted thorough experiments on several synthetic and real data sets, and have demonstrated the effectiveness and efficiency of the proposed method

    The Evaluation Of Molecular Similarity And Molecular Diversity Methods Using Biological Activity Data

    Get PDF
    This paper reviews the techniques available for quantifying the effectiveness of methods for molecule similarity and molecular diversity, focusing in particular on similarity searching and on compound selection procedures. The evaluation criteria considered are based on biological activity data, both qualitative and quantitative, with rather different criteria needing to be used depending on the type of data available

    Search Efficient Binary Network Embedding

    Full text link
    Traditional network embedding primarily focuses on learning a dense vector representation for each node, which encodes network structure and/or node content information, such that off-the-shelf machine learning algorithms can be easily applied to the vector-format node representations for network analysis. However, the learned dense vector representations are inefficient for large-scale similarity search, which requires to find the nearest neighbor measured by Euclidean distance in a continuous vector space. In this paper, we propose a search efficient binary network embedding algorithm called BinaryNE to learn a sparse binary code for each node, by simultaneously modeling node context relations and node attribute relations through a three-layer neural network. BinaryNE learns binary node representations efficiently through a stochastic gradient descent based online learning algorithm. The learned binary encoding not only reduces memory usage to represent each node, but also allows fast bit-wise comparisons to support much quicker network node search compared to Euclidean distance or other distance measures. Our experiments and comparisons show that BinaryNE not only delivers more than 23 times faster search speed, but also provides comparable or better search quality than traditional continuous vector based network embedding methods

    Evaluation of a Bayesian inference network for ligand-based virtual screening

    Get PDF
    Background Bayesian inference networks enable the computation of the probability that an event will occur. They have been used previously to rank textual documents in order of decreasing relevance to a user-defined query. Here, we modify the approach to enable a Bayesian inference network to be used for chemical similarity searching, where a database is ranked in order of decreasing probability of bioactivity. Results Bayesian inference networks were implemented using two different types of network and four different types of belief function. Experiments with the MDDR and WOMBAT databases show that a Bayesian inference network can be used to provide effective ligand-based screening, especially when the active molecules being sought have a high degree of structural homogeneity; in such cases, the network substantially out-performs a conventional, Tanimoto-based similarity searching system. However, the effectiveness of the network is much less when structurally heterogeneous sets of actives are being sought. Conclusion A Bayesian inference network provides an interesting alternative to existing tools for ligand-based virtual screening
    • …
    corecore