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Abstract. Chemoinformatics is theame given to a body of sguter techniques that are
used to process information pertaining te two-dimensional (2D) and three-dimensional
(3D) structures of chemical molecules. This paper introduces some of these techniques,
starting with those that are used to repres@ut search for biologidgl active molecules in
the pharmaceutical and agrochemical industrif$ese industries kia created extensive
databases of both 2D and 3D structures andiatyaf data mining tools are routinely used
to support the discovery of novel pharmaceutical$ agrochemicals. Two types of tool are
considered here: molecular diversity anaysnethods, which ensa that a research
programme will consider as wide a range dfedent types of structure as possible in the
search for biological activityand virtual screening methodshich can rank a database so
that synthesis and biological testiogn be restricted to those with higlpriori probabilities

of activity.
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1 Introduction

Many different scientific discimes (such as synthetic orgaréhemistry, structural biology,
pharmacology and toxicology) are needed toalisc the new drugs that are the lifeblood of
the pharmaceutical industry. The huge cosid extended timescales that characterise the
industry mean that it is wilig and able to make verylsstantial investments in any
technology that can increatee speed with which drugse., novel chemical molecules with
beneficial biological propertiesre brought to the marketagke (and similar comments apply
to the herbicides, insecticidesd fungicides developed by thgrochemicals industry). One
such technology is what is increasingly referred toclasnoinformatics. This term was
introduced by Brown, who statddat “The use of informatin technology and management
has become a crucial part of the drug discoygocess. Chemoinformatics is the mixing of
those information resources to transform data into information and information into
knowledge for the intended purpose of making belésisions faster in the area of drug lead
identification and optimization” [1]. This islearly a very broad diaition, covering as it
does all aspects of informati technology and information management: here we focus on
one of the most important areas of chemoinfaitsathe techniques that are used to process
information pertaining to the two-dimensionaDj2and three-dimensional (3D) structures of
chemical molecules.

It is only within the last few years that chemoinformatics has come to be recognised as a
distinct topic of study [2-5]this prominence arising princilhaas a result of technological
developments in chemistry and lmgly. Specifically, the methods cdmbinatorial chemistry

and high-throughput screening allow the synthesis and biolagil testing, resgctively, of

huge arrays of molecules in pded Taken together, thesewddopments have resulted in a
data explosion that has spurred the developwiesdphisticated informatics and data analytic
methods. This paper provides an introductiorséone of the technig@s used in modern
chemoinformatics systems, focusing on tools #ratavailable for data mining in files of 2D

and 3D chemical structures.

2 Representation and sear ching of chemical structures

The principal method of representation for a 2Remical structure diagram is a labelled
graph (called @onnection table) in which the nodes and edgafsa graph represent the atoms
and bonds, respectively, of a molecule. A cloaindatabase can hence be represented by a
large number of such graphs, wibarching historicBl being carried out using two types of
graph isomorphism algorithmsStructure searching involves an exact-match search of a
chemical database for a specific query structilnis:is required, for example, to retrieve the
biological assay resultd the synthetic details associated with a particular molecule. Such a
search involves a graph isomorphism seartn which the graph describing the query
molecule is checked for isomorphism (or struakwquivalence) with the graphs of each of
the database moleculeSubstructure searching involves a partial-match search of a chemical
database to find all those molecules tltantain a user-definedjuery substructure,
irrespective of the environment in which thatibstructure occurs; for example, a user
interested in antibiotics might wish to seaecdatabase to find all molecules that contain the
characteristic penicillin ring nucleus. A tgpl search output is illustrated in Figure 1.



Figure 1. Example of a 2D substruge search. The search is for the diphenyl ether query
substructure at the top of the figure, belowickhare shown five of the hits resulting from a
search of the National Cancer Institute datalshseolecules that have been tested in the US
government anti-cancer programme (see URb://dtp.nci.nih.goy/ This database is also
used for the searches debed in Figures 2 and 3.

A substructure search involves checking the graph describmgjuery substructure for
subgraph isomorphism (or structural inclusiomth the graphs of each of the database
molecules [6]. However, subgraph isomogphiis known to belong to the class of NP-
complete computational problems, and thus tsubire searching idatabases of non-trivial
size might be expected to be computationallgasible. It is made possible by the use of an
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initial screen search, where a screen is a substructuiedture, the presence of which is
necessary, but not sufficient, for a moleculeaatain the query substructure. These features
are typically small, atom-, bond- or rimgntred fragment substructures that are
algorithmically generated from a connection talleen a molecule is added to the database
that is to be searched. One common apprt@askreening involves listg the fragments that
have been chosen for use as screens in anéaigcoding dictionarywhich will typically
contain a few hundred or a few thousand carefdliected fragments. Each of the database
structures is analysed to idegitthose screens from the codingttnary that are present, and
the structure is then represented for search by a fixed-lengthihg-st which the non-zero
bits correspond to the screengttlare present. The query substure is subjected to the
same process and the screen search thatves checking the bit-strings representing each
database structure for the presence of sheeens that are encoded in the bit-string
representing the query substruetu Only a very small fraadn of a database will normally
contain all of the screens that have been asdigm a query substruety and thus only these
few molecules need to underdbe final, time-consuming gph-matching search. This
checks to see whether there is an exact sphgsmmorphism between the graph representing
the query substructure and thens representing each of thdadease structures that have
passed the screen search. Tsiple, two-stage procedurée(, screen searching and
subgraph searching) has formed the basisnfost operational 2D &structure searching
systems to date.

Similar techniques are used for 3D substructsearching [7], where there is a need to
identify molecules that contain a quergharmacophore. A pharmacophore, or
pharmacophoric pattern, is a set of atoms having some sfiegjeometric relationship to each
other (as illustrated by the anti-leukemic phacophore [8] shown in Figure 2). Here, the
nodes and edges of a chemicapjr denote the atoms and the lirgtomic distances, and the
fragments that are encoded in the bit-striggscribe pairs or tripts of atoms and the
associated inter-atomic distances. Only sempodifications to the 2D methods described
previously are required to enable searcheplf@rmacophores to be carried out, such as that
shown in Figure 2. However, significant complexities needed to be overcome before these
representations and searching methods veetended to encompass the fact that most
molecules ardlexible, i.e., they adopt not just a singfixed 3D shape but can exist in some,
many, or very many different shapes, dependimghe temperature and the external chemical
environment. This means that the separatidwdsen each pair of amns is not necessarily
fixed, but typically covers a rapgf possible distances. This increases the complexity of the
matching operations that are required; inipalar, the screeningna subgraph isomorphism
searches need an additionabnformational search, which takes account of the precise
geometries and energies of the various shapg®#th potential hit molecule can adopt [9].

Substructure searching, whether2D or in 3D, provides aimvaluable tool for accessing
databases of chemical structures when theckeaialready knows the ssrof structures that

are expected to be retrieved from the databdses is clearly very difficult at the start of an
investigation, when perhaps only one or two active structures have been identified and when it
is not at all clear which partitar feature(s) within them are responsible for the observed
activity. Smilarity searching has been developed to aess this problem, and as a
complement to substructure sesing [10]. Similarity searching requires the specification of

an entiretarget structure (oreference structure), rather than tipartial structure that is
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Figure 2. Typical hit structures for the anti-leuk& pharmacophore shown at the top of the page,
with the presence of the pharmacophore irrétigeved molecules shown by dotted lines.



required for substructure searching. The targdeoute is characterised by a set of structural
features, and this set ompared with the correspondingtssef features for each of the
database structures. Each such comparisodemntiie calculation of a measure of similarity
between the target structure andadabase structure, and the dasahia then sorted into order
of decreasing similarity with the target. Thepmitfrom the search is a ranked list, where the
structures that the system judges to be mostssito the target structarare located at the top
of the list, and are hence the fitgstbe presented to the searcher.

An effective similarity searching systemqreres an appropriate way of quantifying the
degree of structural resemblance between thettatgucture and each of the structures in the
database that is to be searched [10-13]. There are mangisulehity measures but by far
the most common are those obtained by compdhiegragment bit-strings that are used for
2D substructure searching, sathwo molecules are judged bsing similar if they have a
large number of bits, and hence substmatdragments, in common. A normalised
association coefficient, typicallhe Tanimoto coefficient, is used to give a numeric value to
the similarity between the target structure aadh database structure. If these structures
have A and B bits set in their fragment bit-strings, with of these in common, then the
Tanimoto coefficient is defined to be
C

A+B-C
The value of the Tanimoto Coefficient for kiting similarities lies in the range of zero (no
bits in common) to unity (all bits the sama);more complex version of the Coefficient is
available for handling non-binary data [10]. Arample of a 2D similarity search based on
the Tanimoto Coefficient is shown in Figure 3. While fragment-based measures such as the
Tanimoto coefficient provide a simple (indeed simplistic) picture of the similarity
relationships between pairs of molecules, they both efficient (sincéhey involve just the
application of logical operation® pairs of bit-strings) andffective (since they have been
shown to be capable of bringing togetherlenales that are judged by chemists to be
structurally similar to each loér) in operation. The latter @facteristic is most surprising,
given that the fragments that are used fordhleulation of the similarities were originally
designed to maximise the efficiency of swbeture searching, not the effectiveness of
similarity searching. Moreovethey describe only the 2D sttures of molecules, and take
only implicit account of the 3D structures, st are known to be afrucial importance in
determining physical, chemical ab@logical properties.It should be notetiere that there is
much current interest in measures of 3ikrity based on fingennts that encode the
geometric arrangement of atotriplets or atom quartets [14] thus far, however, such
approaches have not, been found to be as generally effective as the simpler 2D measures for
database applications [15, 16]. Methods tfue representation and searching of molecular
surfaces and molecular fields are alswler active investigation [12, 17-20].

It will be seen from Figure 3hat there is a close familgelationship between the target
structure and its nearest neighbours. Thiofipotential value in the search for novel
bioactive molecules because of tlmilar Property Principle [21], which states that
molecules that have similar structures will have similar properties. Hence, if the target
structure has some interestingperty, e.g., it lowes a person’s cholesterol level or alleviates
the symptoms of a migraine attacken molecules that are structurally similar to it are more
likely to exhibit that property than are molecuthat have been selected from a database at
random. The Principle is clearbnly an approximation that deaot hold in all cases [22],

but it does provide a rational basis for similabased access to chemical databases.
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Figure 3. Example of a 2D similarity searchhawing a query molecule and five of its
nearest neighbours. Tkemilarity measure for the searishbased on fragment bit-strings and
the Tanimoto coefficient.

Having described the basic searching methodslable to access a datse of 2D or 3D
molecules to find those that haparticular structural charactstics, we now discuss some of
the other data mining techniques that can pgli@d to such databases. Specifically, we
discuss two techniquesiolecular diversity analysis methods [23, 24], which ensure that a
research programme will consider as wide a rarigkfferent types of structure as possible in
the search for biological activity; andgrrtual screening methods [25-28], which can rank a
database so that synthesmlaiological testing can besteicted to those with high priori
probabilities of activity.

3 Molecular diversity analysis methods

Molecular diversity analysis ithe name given to a body of tectynés that seeto enhance the
cost-effectiveness of drug discovery by maximgsthe diversity of the molecules that are
submitted for biological testing (rather thanximaising the probability of activity, which is
the main aim of the virtual seening techniques discussed gcfon 4). We have noted above
that structurally similar molecules are likely give similar biological responses; thus, to
maximise the structure-activity informationathcan be gained from a fixed number of
molecules, one should try to ensure tha tholecules submitted for testing should be as
structurally diverse as poss#bl This requirement may sound like a statement of the obvious,
but the practical realisation of thiss proved to be very difficult.

The inherently subjective concept of diversgynormally quantified using similarity-based
techniques that are a natural developmenha$é discussed previousthus, a diverse subset
of the molecules in a database is selecteddmgideration of their inter-molecular structural
similarities, typically as determined by usd# fragment bit-stigs and the Tanimoto
coefficient. There is a trivial algorith available to identify the most diversecompound
subset of anN-compound database (where, typicallys<N). This algorithm involves
generating each of the
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possible subsets and calculating their diversities usiligeasity index (some function of the
inter-molecular similarities in the chosen sulisé#ie optimal subset is then that group of
compounds that has the greatest @altithe diversity index. Thegiolem is that the factorials
in the expression above mean that there igstionomical number of possible subsets that can
be generated from a database of non-trivial size:hence infeasible toonsider all of them
so as to identify the most diverse subset. @hes thus been much interest in alternative
approaches for selecting diverse sets of mddscthat maximise theowerage of structural
space, whilst minimising the numbers of emiles put forward for testing. Here, we will
exemplify this work by consideration of two of the approaches that lbeeme used: clustering
and dissimilarity-based compound selection (DBCS).

Cluster analysis, or clustering, is the process of subdividj a group of objects (chemical
molecules in the preseabntext) into groups, alusters, of objects that exhibit a high degree
of both intra-cluster sirfarity and inter-cluster dissimilarity29, 30]. It is thus possible to
obtain an overview of #hrange of structuraypes present within a da&t by selecting one, or
some small number, of the molecules from eaicthe clusters resulting from the application
of an appropriate clustering thed to that dataset. Theepresentative molecule (or
molecules) for each cluster ighe3r selected at random or seégtts being thelosest to the
centre of that cluster, and thigspresentation is then put faavd for biological testing. Very
many different clusteringnethods have been describedhe literature, and a considerable
amount of effort has gone into comparing thffectiveness of the various methods for
clustering chemical structures (seq., [31]). Clustering methods can produmerlapping
clusters, in which each object may be in more than one clustash-averlapping clusters, in
which each object occurs in only one cluster.ti@ke, the latter are far more widely used, and
are of one of two typesierarchical methods andion-hierarchical methods. An hierarchical
clustering method produces a classification in which small clusters of very similar molecules
are nested within larger and larger clusteof less closely-related molecules. The
classification is normally generated by means odgglomerative procedure: this generates a
classification in a bottom-up marmméy a series of agglomeratis (or fusions) in which small
clusters, initially containing individual molecdleare fused together to form progressively
larger clusters.

There are many hierarchic agglomerative methali®f which can be implemented by means
of the basic algorithm shown in Figure 4, whemint is either a singlenolecule or a cluster

of molecules. This procedure is known as #mred matrix algorithm since it involves
random access to the inter-molecular similarity iedahroughout the entire cluster-generation
process. Individual hierarchical agglomeratmethods differ in the ways in which the most
similar pair of points is definednd in which the merged pairrgpresented as a single point.
Although simple in concept, the algorithmdemanding of both computer time and computer
storage and more efficient algorithms araikble for specific methods. Thus, the well-
known Ward’s method can be implemented by what is known asetiygrocal nearest
neighbour (RNN) algorithm. In this, a path is traced through the similarity space until a pair
of points is reached that are mcsimilar to each other thahey are to any other pointse.,

they are RNNs. These RNN points are fugedorm a single new point, and the search
continues until the last unfused point is reached. The basic RNN algorithm is thus as shown in
Figure 5, where NNY) denotes the nearest neighbour for the pgjr@nd the final hierarchy is
then created from the list of RNN fusions that has taken place.



1. Calculate the inter-molecular similarity matrix.

2. Find the most similar pair of points iretmatrix and fuse them into a cluster to
form a new single point.

3. Calculate the similarity betweerethew point and all remaining points.

4. Repeat Steps 2 and 3 until only a single point remiagng,intil all of the

molecules have been fused into one cluster.

Figure4. Stored matrix algorithm for hierarichagglomerative clustering methods.

1. Mark all moleculesl, as unfused.

2. Starting at an unfusddtrace a path of unfuse@arest neighbours (NN) until a
pair of RNNSs is encounterede., trace a path of the fordh:= NN(I), K := NN(J),
L := NN(K)..... until a pair is reached for whi€h= NN(P) andP = NN(Q).

3. Add the RNN<P andQ to the list of RNNs along ith the distance between them,
markQ as fused and replace the centroidPafith the combined centroid &f and
Q.

4. Continue the NN-chain from thgoint in the path prior t&, or choose another
unfused starting point P was a starting point.

5. Repeat Steps 2-4 until onbne unfused point remains.

Figure 5. Reciprocal nearest néigours algorithm for hierarchiagglomerative clustering
methods.

=

Identifythetop-K nearest neighbours for each of thenolecules in the dataset.
2. CreateanN-element arrayl,.abel, that contains a cluster label for each ofithe
molecules in the datasdnitialise Label by setting each element to its array
position, thus assigning each molkecto its own initial cluster;
3. For each pair of moleculdsandJ (I <J)
If they have at lea$t,,, of their topK nearest neighours in common
and each is in the tap-nearest-neighbolist of the other
then replace all occurrences of thabel entry forJ with theLabel entry forl.
4. The members of each cluster thééfihave the same entry in the finzdbel.

Figure 6. Algorithm for the Jarvi$atrick clustering method.

Once the cluster hierarchy has been produceudgesmeans is require identify a set of
clusters from which molecules can be seadct This is normally achieved by applying a
threshold similarity to the hierarchy and itienng the clusters present in the resulting
partition (.e., a set of non-overlapping groups having no hierarchicalioethips between
them) of the dataset.

A non-hierarchical method, conversely, generatesritipa of a dataset dectly. There is a
combinatorial number of possible partitions, making a systematic evaluation of them totally
infeasible, and many different heuristics have themsn described to allothe identification of
good, but possibly sub-optimal, partitiofz0-31]. An example is thdarvis-Patrick nearest-



neighbour method, which is much less demanding caimputational resources than the
hierarchical methods and whiblas been extensively used @bustering chemical databases.

The Jarvis-Patrick method, which is detailed in Figure 6, involves the use of a list of e top
nearest neighbours for each molecule in a datasetheK molecules that are most similar to

it. Once these lists have been produced for gaolecule in the dataset that is to be
processed, two molecules are tdued together if they aresarest neighbours of each other
and if they additionally have somemmal number of nearest neighbouks,,, in common.
The user has to specify the valuekgf,,, and it is generally necesgao experiment with a
range ofK ;. values until roughly the qaiired number of clusters abtained. May variants

of this basic approach have besdascribed in th literature.

Dissimilarity-based methods seekidientify a subset comprising tinemost diverse molecules

in a dataset containing molecules (where, typicallyy << N ). However, as noted above, the
astronomical number of such subsets meanshihatstic, and sub-optimal, approaches need
to be considered. Thusrfawo major classes of algorithm have been descritmagimum-
dissimilarity algorithms andphere-exclusion algorithms [32].

The basic maximum-dissimilarity algorithm for selecting a siz8d4bset from a sizeN
Dataset is shown in Figure 7. This algorithpermits many variants depending upon the
precise implementation of Steps 1 and 3. Bbssnechanisms for the choice of the initial
compound in Step 1 include: choosing a compound at random; choosing that compound that is
most dissimilar to the other compounddataset; or choosing that compound that is nearest
to the centre (in some sense)DHtaset, inter alia. Step 3 in the figureequires a quantitative
definition of the dissimilarity between a single compoundDataset and the group of
compounds that compris&ubset, so that the most dissimilar molecule can be identified in
each iteration of the algorithm. There argesal ways in which “most dissimilar’ can be
defined, with each definition resulting in a diffeteversion of the algorithm and hence in the
selection of a different subset (much as difféfdgierarchic agglomative clustering methods
result from the use of differesimilarity criteria in the storedhatrix algorithm of Figure 4).

The alternative sphere-exclusion approacivolves the specification of a threshold
dissimilarity t, which can be thought of as the radafsa hypersphere in multi-dimensional
chemistry space. A compound is selected, either at random or using some rational basis, for
inclusion inSubset and the algorithm then excludes frdanther consideration all those other
compounds within the sphere centred on fled¢cted compound, as shown in Figure 8. Many
variants are again possibléepending upon the manner in whiSkage 2 is implemented.

Thus, one can choose that molecule that is most dissimilar to the e8shisey, in which

case different results will be obtained (agthwthe maximum dissimilarity algorithms)
depending upon the dissimilarityfaetion that is adopted.

Cluster-based and dissimilaritybed algorithms of the sadiscussed here are now widely
used to select structurally heterogeneous aet®mpounds for input to biological screening
programmes. Increasingly, the compounds are selected not just on the basis of chemical
diversity but also on the basis of otheradcteristics (such as cost, pharmacokinetic
properties, and ease of synthesis) that are necagsanyolecule is to be considered seriously

as a potential drug.



1. Initialise Subset by transferring a compound frobataset.

2. Calculate the dissimilarity beeen each remaining compoundiataset and the
compounds irBubset.

3. Transfer tdSubset that compound frorDataset that is most dissimilar tBubset.

4. Return to Step 2 if there are less tiniasompounds irfBubset.

Figure 7. Dissimilarity-based compound selectiomgsa maximum-dissimilarity algorithm.

Define a threshold dissimilarity,

Transfer a compound, from Dataset to Subset.

Remove fronDataset all compounds that have a dissimilarity witbf less tharn.
Return to Step 2 if there are compounds remainirigpiaset.

PwpndPRE

Figure 8. Dissimilarity-based compound selectizsing a sphere-exclusion algorithm.

1. Execute a similarity search of a chemiackdtabase for somparticular target
structure using two, or more, differeneasures of inter-molecular similarity.

2. Note the rank positior;, or the similarity scores, of each individual database
structure in the ranking selting from use of theth similarity measure.

3. Combine the various rankings using a fugiole to give a new combined score for
each database structure

4. Rank the resulting combined scores, ahdn use this ranking to calculate a
guantitative measure of the effectivenedsthe search fothe chosen target
structure.

Figure 9. Combination of similarityankings using data fusion.

1. For each bit-position identify the training-set actives and training-set inactives
that have thg-th position set and not set; use this information to calculate the
weight for bit-positiorj using the chosen weighting scheme.

2. For each moleculesum the weights for all of those bit-positions for which the bit
IS set.
3. Rank the molecules in the databasedatreasing order of the sums-of-weights

computed in Step 2.

Figure 10. Ranking compounds by meanssobstructural analysis

4 Virtual screening methods

The principal aim of discovery researgmogrammes is the identification of laad, a
compound that has the desired biological agti(&.g., lowers a person’s blood pressure, or
reduces the size of a tumouthat has appropriate pharmacokioeharacteristics (e.g., it is
soluble and does not metabolise trapidly) and that does notueany obvious side-effects.
Over the years, pharmaceutical companies Hawi# up corporate databases containing



hundreds of thousands (or millions) of drugelikompounds, and many millions of similar
compounds are now available from commercighpdiers. These repositories provide the
obvious starting place in the search for new segilven the vast numbers of compounds that
need to be considered there is much interetitaruse of techniquesatcan rapidly focus-in
on that relatively small fraction that has a highpriori probability of activity. The
identification of such candidate compoundaasmally referred t@s virtual screening.

In principle, any technique #h can rank a database in ard# decreasing probability of
activity can be used for virtual screening;practice, the methods available are determined
largely by the amounts of structural and biologinédrmation that are available. At the heart
of most virtual screening metds is the Similar Property Principle that has been mentioned
previously: if some molecule or moleculage known to exhibit the biological activity of
interest then a sensible virtual screenistgategy is to find othhe molecules that are
structurally similar to theknown active(s). The most obviowpproach is hence to use
similarity searching of a database, using as tdrget structure any one molecule that is
already known to be active; theould either be a hit from itnal biological screening or a
compound from the published literature, e.g., onecifigd in a competitor's patent. As
exemplified in Figure 3, the nearest-neighlsotetrieved by the search will contain many
substructural features in common with the ¢drsfructure, and are hence obvious candidates
for biological testing [10, 15, 33]. Ware currently studying the use déta fusion to
increase the performance of similarity-basadual screening [34]. Here, we combine
rankings resulting from several different measures of structural similarity to give a single,
combined ranking as the output of the searclshasvn in Figure 9. For example, one could
carry out similarity searches using differenpag of 2D fingerprintor different types of
similarity coefficient; we havéound that such combined searcloften result in a level of
search effectiveness that is better than tkatlting from a conventional similarity search
using just a single similarity measure.

As more and more actives are identified iis tivay, it may become psible to delineate the
precise substructural charactedstthat are necessary for activitwith this information, it is
then possible to define a substural query, either in 2D or in 3D, that can be used as the
basis for a substructure search. This alternatind,more precise, forof virtual screening is
normally carried out in an itetise manner, with molecules retrieved in the initial search
being tested for activity, and the results (bptisitive and negative) of these biological tests
being used to refine the query for tleesnd and subsequent substructure searches.

Once the (in)activities of fair number of molecules V& been established, it becomes
possible to use techniques from thiea of computescience known aswachine learning.
These techniques assume the availability whiming-set, i.e., sets of both known active and
known inactive molecules that can be used to ldgva tool that can be applied to molecules
of unknown activity, thetest-set, and predict their (in)activities with a fair degree of
confidence. The best-estshed approach is callesubstructural analysis [35], which is
based on the assumption thagigen substructural feature maksome fixed contribution to
the overall activity of a molecule, irrespectivethé other substructures that are present in
that molecule. This is likely to be a veryadtic assumption but one that, if accepted, enables
the calculation of weights that relate the preseof a molecular feature to the probability that
a molecule containing it is biologically active. A (very simple) example of such a weight
might be as follows: assume that gk fragment in a 2D fragent bit-string occurs i\
active and; inactive molecules; thengausible weight would be
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There are many such schemes that have beserilbed in the literature, differing in the
precise ways that they use the fragment-occugatata for the training-set molecules [36].
Whichever weighting scheme is used, theghts are calculated for each of the fragments
present in a set of molecules. These fragments are often those encoded in the bit-strings that
are used for 2D substructure and/or similarity searching, in which case the weights are
obtained by analysis of the fingeinqis for the training-set metules. The resulting weights
are then used to select new compounds fotogical testing: specifically, the sum is
calculated of the weights for the fragment-substmas that are present in a molecule, and the
compounds are sorted into deciegrder of the sums-of-weights (see Figure 10). The top-
ranked molecules in the resulgi sorted list are those thhave the greatest likelihood of
activity (if it is assumed that the structurabchcteristics of the tesesare not too different
from those of the training-set)Substructural analysis provides a simple but surprisingly
effective way of rationalising large volumes of structural and activity information so as to
produce meaningful rankings of the as vetested compounds in a database. Many new
methods for machine learning are now beconamgilable, and some of these methods are
starting to be applied to thertual screening problem, e.g.,cemt work on support vector
machines and kernel discrimination methods [37, 38].

Substructural analysiequires information about the 2D (or 3D) structures of known active
and known inactive molecules. The final vittsareening approach tioe discussed here,
docking, additionally requires information aboome of the biological pathways that is
associated with the illness for which a therapgequired. Specifically, docking assumes that

a 3D structure has been obtained, typicddly X-ray crystallography, of the biological
receptor that is involved in the pathway, suchh&sactive site of an enzyme. The “lock-and-
key” theory of drug actio assumes that a drug fits into albgical receptor in much the same
way as a key fits a lock; thus, if the shape of the lock is known, one can identify potential
drugs by scanning a 3D databas®e find those molecules that have shapes that are
complementary to the shape of the receptor.

Shape matching is a computatally demanding task for which many algorithmic approaches
have been suggested [39The original descripin of docking, by Kuntzet al. [40],
considered the fitting glist a single molecule into a proteactive site; however, it was soon
realised that if this fitting operation was repeated for all of the molecules in a database then
docking could provide a highly sophated approach to virtual reening. In fact, two types

of computational procedure arequired for docking: a search algorithm that can explore the
space of possible protein-ligand geometries; and a scoring function that is used to evaluate the
likelihood of each possible geometry, so asdentify the most probable geometries, and
hence (hopefully) the true binding mode. Thmeacoring function caalso be used to rank
geometries from different potential ligands, that a database can be ranked in order of
decreasing goodness of fit wittie active site, and hencedacreasing likelihood of activity.

Modern docking systems involve not just niang the geometric chacteristics, such as
inter-atomic distances, of the database mdéscand the target protein, but also chemical
considerations such as the extent to which atofrone type in the drug are compatible with
the atoms that they are mapped to in the receg®ar This brings added complexity, in terms
of both mechanistic knowledgand the computational powehat is required. The
computational requirements are increased #&iither when, as is increasingly the case,



account is taken of the fact that moleculed @mnoteins can adopt different shapes; thus,
adopting the lock-and-key metaphor, rather thgimdrto fit a metallic kg into metallic lock,

one is actually trying to fit together two noigid objects. Current systems for virtual
screening enable the docking of databases of flexible molecules into a rigid receptor; efficient
and effective processing of badijpes of flexibility is stillprobably some years away.

It will be realised that the various data mining tools that are used for virtual screening vary
considerably in their sophistication and time associated information and computational
requirements. It is thus conom for the approaches to hesed in sequence: similarity
searching is used initially to identify a few actives; these actives are then analysed to generate
a pharmacophore model for 3D searching; onceramfaount of testindias been carried out,

it is possible to build a training-set for maahiearning; and then doclg can be used once a

3D structure is available for thmological target. It is also camon to use an initial filtering

step to eliminate from furtheonsideration any moleculegose physicochemical properties

are such as to rendereth unlikely to be able to act as a drug [41, 42]. Examples of such
drug-likeness or drugability filters include substructureearches to eliminate molecules
containing reactive or toxic suibgctures and analyses of tlalues of simple properties
(such as molecular weight, the octanol-watetifpan coefficient and the numbers of rotatable
bonds, hydrogen-bond donors and acceptarknown drug molecules.

5. Conclusions

Public and private databases contain the maetéadable structurepeesentations (normally
in 2D but increasingly also in 3D) of many millions of chemical molecules.

Chemoinformatics provides a rangetobls that can be used fortdanining in these files, so
as to assist directly in thiiscovery of novel bioactive moleles. With the increasing costs
of drug discovery, it is likely thanhore use will be made of suttols, with the availability of
more powerful software and hardware enablingenvaxcurate predictions of activity, and thus
enhancing the cost-effectiveness of research.
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