795 research outputs found

    Méthodologies de conception ASIC pour des systèmes sur puce 3D hétérogènes à base de réseaux sur puce 3D

    Get PDF
    Dans cette thèse, nous étudions les architectures 3D NoC grâce à des implémentations de conception physiques en utilisant la technologie 3D réel mis en oeuvre dans l'industrie. Sur la base des listes d'interconnexions en déroute, nous procédons à l'analyse des performances d'évaluer le bénéfice de l'architecture 3D par rapport à sa mise en oeuvre 2D. Sur la base du flot de conception 3D proposé en se concentrant sur la vérification temporelle tirant parti de l'avantage du retard négligeable de la structure de microbilles pour les connexions verticales, nous avons mené techniques de partitionnement de NoC 3D basé sur l'architecture MPSoC y compris empilement homogène et hétérogène en utilisant Tezzaron 3D IC technlogy. Conception et mise en oeuvre de compromis dans les deux méthodes de partitionnement est étudiée pour avoir un meilleur aperçu sur l'architecture 3D de sorte qu'il peut être exploitée pour des performances optimales. En utilisant l'approche 3D homogène empilage, NoC topologies est explorée afin d'identifier la meilleure topologie entre la topologie 2D et 3D pour la mise en œuvre MPSoC 3D sous l'hypothèse que les chemins critiques est fondée sur les liens inter-routeur. Les explorations architecturales ont également examiné les différentes technologies de traitement. mettant en évidence l'effet de la technologie des procédés à la performance d'architecture 3D en particulier pour l'interconnexion dominant du design. En outre, nous avons effectué hétérogène 3D d'empilage pour la mise en oeuvre MPSoC avec l'approche GALS de style et présenté plusieurs analyses de conception physiques connexes concernant la conception 3D et la mise en œuvre MPSoC utilisant des outils de CAO 2D. Une analyse plus approfondie de l'effet microbilles pas à la performance de l'architecture 3D à l'aide face-à-face d'empilement est également signalé l'identification des problèmes et des limitations à prendre en considération pendant le processus de conception.In this thesis, we study the exploration 3D NoC architectures through physical design implementations using real 3D technology used in the industry. Based on the proposed 3D design flow focusing on timing verification by leveraging the benefit of negligible delay of microbumps structure for vertical connections, we have conducted partitioning techniques for 3D NoC-based MPSoC architecture including homogeneous and heterogeneous stacking using Tezzaron 3D IC technlogy. Design and implementation trade-off in both partitioning methods is investigated to have better insight about 3D architecture so that it can be exploited for optimal performance. Using homogeneous 3D stacking approach, NoC architectures are explored to identify the best topology between 2D and 3D topology for 3D MPSoC implementation. The architectural explorations have also considered different process technologies highlighting the wire delay effect to the 3D architecture performance especially for interconnect-dominated design. Additionally, we performed heterogeneous 3D stacking of NoC-based MPSoC implementation with GALS style approach and presented several physical designs related analyses regarding 3D MPSoC design and implementation using 2D EDA tools. Finally we conducted an exploration of 2D EDA tool on different 3D architecture to evaluate the impact of 2D EDA tools on the 3D architecture performance. Since there is no commercialize 3D design tool until now, the experiment is important on the basis that designing 3D architecture using 2D EDA tools does not have a strong and direct impact to the 3D architecture performance mainly because the tools is dedicated for 2D architecture design.SAVOIE-SCD - Bib.électronique (730659901) / SudocGRENOBLE1/INP-Bib.électronique (384210012) / SudocGRENOBLE2/3-Bib.électronique (384219901) / SudocSudocFranceF

    Autotuning the Intel HLS Compiler using the Opentuner Framework

    Get PDF
    High level synthesis (HLS) tools can be used to improve design flow and decrease verification times for field programmable gate array (FPGA) and application specific integrated circuit (ASIC) design. The Intel HLS Compiler is a high level synthesis tool that takes in untimed C/C++ as input and generates production-quality register transfer level (RTL) code that is optimized for Intel FPGAs. The translation does, however, require multiple iterations and manual optimizations to get comparable synthesized results to that of a solution written in a hardware descriptive language. The synthesis results can vary greatly based upon coding style and optimization techniques, and typically require an in-depth knowledge of FPGAs to fully optimize the translation which limits the audience of the tool. The extra abstraction that the C/C++ source code presents can also make it difficult to meet more specific design requirements; this includes designs to meet specific resource usage or performance based metrics. To improve the quality of results generated by the Intel HLS Compiler without a manual iterative process that requires an in-depth knowledge of FPGAs, this research proposes a method of automating some of the optimization techniques that improve the synthesized design through an autotuning process. The proposed approach utilizes the PyCParser library to parse C source files and the OpenTuner Framework to autotune the synthesis to provide a method that generates results that better meet the needs of the designer's requirements through lower FPGA resource usage or increased design performance. Such functionality is not currently available in Intel's commercial tools. The proposed approach was tested with the CHStone Benchmarking Suite of C programs as well as a standard digital signal processing finite impulse response filter. The results show that the commercial HLS tool can be automatically autotuned through placeholder injection using a source parsing tool for C code and using the OpenTuner Framework to autotune the results. For designs that are small in nature and include conducive structures to be autotuned, the results indicate resource usage reductions and/or performance increases of up to 40% as compared to the default Intel HLS Compiler results. The method developed in this research also allows additional design targets to be specified through the autotuner for consideration in the synthesized design which can yield results that are better matched to a design's requirements

    Image Processing Using FPGAs

    Get PDF
    This book presents a selection of papers representing current research on using field programmable gate arrays (FPGAs) for realising image processing algorithms. These papers are reprints of papers selected for a Special Issue of the Journal of Imaging on image processing using FPGAs. A diverse range of topics is covered, including parallel soft processors, memory management, image filters, segmentation, clustering, image analysis, and image compression. Applications include traffic sign recognition for autonomous driving, cell detection for histopathology, and video compression. Collectively, they represent the current state-of-the-art on image processing using FPGAs

    Parameterized Implementation of K-means Clustering on Reconfigurable Systems

    Get PDF
    Processing power of pattern classification algorithms on conventional platforms has not been able to keep up with exponentially growing datasets. However, algorithms such as k-means clustering include significant potential parallelism that could be exploited to enhance processing speed on conventional platforms. A better and effective solution to speed-up the algorithm performance is the use of a hardware assist since parallel kernels can be partitioned and concurrently run on hardware as opposed to the sequential software flow. A parameterized hardware implementation of k-means clustering is presented as a proof of concept on the Pilchard Reconfigurable computing system. The hardware implementation is shown to have speedups of about 500 over conventional implementations on a general-purpose processor. A scalability analysis is done to provide a future direction to take the current implementation of 3 classes and scale it to over N classes

    Proceedings of the 5th International Workshop on Reconfigurable Communication-centric Systems on Chip 2010 - ReCoSoC\u2710 - May 17-19, 2010 Karlsruhe, Germany. (KIT Scientific Reports ; 7551)

    Get PDF
    ReCoSoC is intended to be a periodic annual meeting to expose and discuss gathered expertise as well as state of the art research around SoC related topics through plenary invited papers and posters. The workshop aims to provide a prospective view of tomorrow\u27s challenges in the multibillion transistor era, taking into account the emerging techniques and architectures exploring the synergy between flexible on-chip communication and system reconfigurability

    Efficient FPGA implementation and power modelling of image and signal processing IP cores

    Get PDF
    Field Programmable Gate Arrays (FPGAs) are the technology of choice in a number ofimage and signal processing application areas such as consumer electronics, instrumentation, medical data processing and avionics due to their reasonable energy consumption, high performance, security, low design-turnaround time and reconfigurability. Low power FPGA devices are also emerging as competitive solutions for mobile and thermally constrained platforms. Most computationally intensive image and signal processing algorithms also consume a lot of power leading to a number of issues including reduced mobility, reliability concerns and increased design cost among others. Power dissipation has become one of the most important challenges, particularly for FPGAs. Addressing this problem requires optimisation and awareness at all levels in the design flow. The key achievements of the work presented in this thesis are summarised here. Behavioural level optimisation strategies have been used for implementing matrix product and inner product through the use of mathematical techniques such as Distributed Arithmetic (DA) and its variations including offset binary coding, sparse factorisation and novel vector level transformations. Applications to test the impact of these algorithmic and arithmetic transformations include the fast Hadamard/Walsh transforms and Gaussian mixture models. Complete design space exploration has been performed on these cores, and where appropriate, they have been shown to clearly outperform comparable existing implementations. At the architectural level, strategies such as parallelism, pipelining and systolisation have been successfully applied for the design and optimisation of a number of cores including colour space conversion, finite Radon transform, finite ridgelet transform and circular convolution. A pioneering study into the influence of supply voltage scaling for FPGA based designs, used in conjunction with performance enhancing strategies such as parallelism and pipelining has been performed. Initial results are very promising and indicated significant potential for future research in this area. A key contribution of this work includes the development of a novel high level power macromodelling technique for design space exploration and characterisation of custom IP cores for FPGAs, called Functional Level Power Analysis and Modelling (FLPAM). FLPAM is scalable, platform independent and compares favourably with existing approaches. A hybrid, top-down design flow paradigm integrating FLPAM with commercially available design tools for systematic optimisation of IP cores has also been developed.EThOS - Electronic Theses Online ServiceGBUnited Kingdo
    • …
    corecore