195 research outputs found

    Approximating survivable networks with β-metric costs

    Get PDF
    AbstractThe Survivable Network Design (SND) problem seeks a minimum-cost subgraph that satisfies prescribed node-connectivity requirements. We consider SND on both directed and undirected complete graphs with β-metric costs when c(xz)⩽β[c(xy)+c(yz)] for all x,y,z∈V, which varies from uniform costs (β=1/2) to metric costs (β=1).For the k-Connected Subgraph (k-CS) problem our ratios are: 1+2βk(1−β)−12k−1 for undirected graphs, and 1+4β3k(1−3β2)−12k−1 for directed graphs and 12⩽β<13. For undirected graphs this improves the ratios β1−β of Böckenhauer et al. (2008) [3] and 2+βkn of Kortsarz and Nutov (2003) [11] for all k⩾4 and 12+3k−22(4k2−7k+2)⩽β⩽k2(k+1)2−2. We also show that SND admits the ratios 2β1−β for undirected graphs, and 4β31−3β2 for directed graphs with 1/2⩽β<1/3. For two important particular cases of SND, so-called Subset k-CS and Rooted SND, our ratios are 2β31−3β2 for directed graphs and β1−β for subset k-CS on undirected graphs

    Cop and robber game and hyperbolicity

    Full text link
    In this note, we prove that all cop-win graphs G in the game in which the robber and the cop move at different speeds s and s' with s'<s, are \delta-hyperbolic with \delta=O(s^2). We also show that the dependency between \delta and s is linear if s-s'=\Omega(s) and G obeys a slightly stronger condition. This solves an open question from the paper (J. Chalopin et al., Cop and robber games when the robber can hide and ride, SIAM J. Discr. Math. 25 (2011) 333-359). Since any \delta-hyperbolic graph is cop-win for s=2r and s'=r+2\delta for any r>0, this establishes a new - game-theoretical - characterization of Gromov hyperbolicity. We also show that for weakly modular graphs the dependency between \delta and s is linear for any s'<s. Using these results, we describe a simple constant-factor approximation of the hyperbolicity \delta of a graph on n vertices in O(n^2) time when the graph is given by its distance-matrix

    A sharp threshold for random graphs with a monochromatic triangle in every edge coloring

    Full text link
    Let R\R be the set of all finite graphs GG with the Ramsey property that every coloring of the edges of GG by two colors yields a monochromatic triangle. In this paper we establish a sharp threshold for random graphs with this property. Let G(n,p)G(n,p) be the random graph on nn vertices with edge probability pp. We prove that there exists a function c^=c^(n)\hat c=\hat c(n) with 000 0, as nn tends to infinity Pr[G(n,(1-\eps)\hat c/\sqrt{n}) \in \R ] \to 0 and Pr [ G(n,(1+\eps)\hat c/\sqrt{n}) \in \R ] \to 1. A crucial tool that is used in the proof and is of independent interest is a generalization of Szemer\'edi's Regularity Lemma to a certain hypergraph setting.Comment: 101 pages, Final version - to appear in Memoirs of the A.M.

    Topology of random simplicial complexes: a survey

    Full text link
    This expository article is based on a lecture from the Stanford Symposium on Algebraic Topology: Application and New Directions, held in honor of Gunnar Carlsson, Ralph Cohen, and Ib Madsen.Comment: After revisions, now 21 pages, 5 figure
    • …
    corecore