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The Survivable Network Design (SND) problem seeks a minimum-cost subgraph that
satisfies prescribed node-connectivity requirements. We consider SND on both directed
and undirected complete graphs with β-metric costs when c(xz) � β[c(xy) + c(yz)] for all
x, y, z ∈ V , which varies from uniform costs (β = 1/2) to metric costs (β = 1).
For the k-Connected Subgraph (k-CS) problem our ratios are: 1 + 2β

k(1−β)
− 1

2k−1 for

undirected graphs, and 1 + 4β3

k(1−3β2)
− 1

2k−1 for directed graphs and 1
2 � β < 1√

3
. For

undirected graphs this improves the ratios β
1−β

of Böckenhauer et al. (2008) [3] and 2+β k
n

of Kortsarz and Nutov (2003) [11] for all k � 4 and 1
2 + 3k−2

2(4k2−7k+2)
� β � k2

(k+1)2−2
. We

also show that SND admits the ratios 2β
1−β

for undirected graphs, and 4β3

1−3β2 for directed

graphs with 1/2 � β < 1/
√

3. For two important particular cases of SND, so-called Subset

k-CS and Rooted SND, our ratios are 2β3

1−3β2 for directed graphs and β
1−β

for subset k-CS

on undirected graphs.
© 2010 Elsevier B.V. All rights reserved.

1. Introduction

1.1. Problems considered

For a graph H , let κH (u, v) denote the uv-connectivity in H , that is, the maximum number of pairwise internally node-
disjoint uv-paths in H . We consider variants of the following fundamental problem:

Survivable Network Design (SND)
Instance: A directed/undirected complete graph G = (V , E) with non-negative edge-cost {c(e): e ∈ E}, and integral connec-
tivity requirements {r(u, v): u, v ∈ V }.
Objective: Find a min-cost subgraph H of G satisfying κH (u, v) � r(u, v) for all u, v ∈ V .

Important particular cases of SND are:

• k-Connected Subgraph (k-CS), when r(u, v) = k for all u, v ∈ V .
• Subset k-CS, when r(u, v) = k for all u, v ∈ T ⊆ V and r(u, v) = 0 otherwise.
• Rooted SND, when there is a node s ∈ V so that r(u, v) > 0 implies u = s.
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Table 1
Approximation ratios and hardness of approximation results for SND and k-CS (recall that in the case of β-metric costs and undirected graphs we assume
1/2 � β < 1). Here k = maxu,v∈V r(u, v) denotes the maximum requirement of an SND instance.

Costs Requirements
Approximability

Undirected Directed

General General O (min{k3 log n,n2}) [8], Ω(kε) [7] Ω(2log1−ε n) for k = 1 [9]
General k-CS O (log n

n−k log k) [14] O (log n
n−k log k) [14]

General Subset k-CS O (min{k2 log k,n2}) [15], Ω(kε) [7] O (n2)

General Rooted SND O (min{k2,n}) [15] O (n)

Metric General O (log k) [6] Ω(2log1−ε n) for k = 1 [9]
Metric k-CS 2 + (k − 1)/n [11] 2 + k/n [11]
β-metric General – –
β-metric k-CS 2 + β k

n [11], β
1−β

[3], APX-hard [2] –

We consider instances of SND with β-metric costs, when the input graph is complete and for some 1/2 � β < 1 the costs
satisfy the β-triangle inequality c(xz) � β[c(xy) + c(yz)] for all x, y, z ∈ V . When β = 1

2 the costs are uniform, and we have
the “cardinality version” of the problem, when we seek a minimum-size subgraph in a complete graph that satisfies the
connectivity requirements. If we allow the case β = 1, then the costs satisfy the ordinary triangle inequality and we have
the metric version of the problem. Many practical instances of the problem may have costs which are between metric and
uniform. Let k = maxu,v∈V r(u, v) denote the maximum requirement of an SND instance. We will assume that k � |V | − 1,
as otherwise the problem does not have a feasible solution.

1.2. Previous work and our results

The k-CS problem (and thus also Subset k-CS, SND, and by [1] also Rooted SND) with β-metric costs is APX-hard for
k = 2 and any β > 1/2 [2]. Approximation ratios and hardness of approximation results for SND and k-CS are summarized
in Table 1. In [3] is also given a (1+ 5(2β−1)

9(1−β)
)-approximation algorithm for undirected 3-CS with β-metric costs. For a survey

on various min-cost connectivity problems see [12]. For recent work on SND problems see [7,8,14,15]. We mention a recent
result [13] that for k = n/2 + k′ the approximability of undirected SND is the same as that of directed SND with maximum
requirement k′ . This is so also for k-CS. However, the reduction in [13] does not preserve metric costs.

We analyze the algorithm of Cheriyan and Thurimella [5] originally suggested for k-CS with {1,∞}-costs, and show that
for β-metric costs it achieves the following ratios.

Theorem 1. k-CS with β-metric costs admits the following approximation ratios:

• 1 + 2β
k(1−β)

− 1
2k−1 � 1 + 1

k (
2β

1−β
− 1

2 ) for undirected graphs and 1/2 � β < 1.

• 1 + 4β3

k(1−3β2)
− 1

2k−1 � 1 + 1
k (

4β3

1−3β2 − 1
2 ) for directed graphs and 1/2 � β < 1/

√
3.

For undirected graphs, this improves the ratios β
1−β

of [3] and 2 + β k
n of [11]2 for all k � 4 and 1

2 + f (k) � β � k2

(k+1)2−2
,

where f (k) = 3k−2
2(4k2−7k+2)

� 1
2k for k � 5 and f (4) = 5

38 .

For other versions of the problem our results are as follows (see Table 2 for a summary of our results).

Theorem 2. SND with β-metric costs admits approximation ratios 2β
1−β

for undirected graphs, and 4β3

1−3β2 for directed graphs with

1/2 � β < 1/
√

3. For Subset k-CS the ratios are β
1−β

for undirected graphs and 2β3

1−3β2 for directed graphs with 1/2 � β < 1/
√

3; for

directed Rooted SND the ratio is 2β3

1−3β2 , 1/2 � β < 1/
√

3.

In our proofs, we will often use the following statement:

Lemma 3. (See [2,4].) Let e, e′ be a pair of edges in a complete graph G with β-metric costs.

(i) If G is undirected, and if e, e′ are adjacent then c(e) � β
1−β

c(e′); here 1/2 � β < 1.

(ii) If G is directed, and if 1
2 � β < 1√

3
, then c(e) � 2β3

1−3β2 c(e′).

2 In [11] is given a (2 + (k − 1)/n)-approximation algorithm for metric costs; a slight adjustment of the analysis of [11] shows that this algorithm has

ratio 2 + β k
n for β-metric costs.
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Table 2
Improvement ranges of our results.

Graph Requirements Approximability Improvement range

Undirected General 2β
1−β

1
2 � β < 1

Undirected k-CS 1 + 2β
k(1−β)

− 1
2k−1 k � 4, 1

2 + 3k−2
2(4k2−7k+2)

< β < k2

(k+1)2−2

Undirected Subset k-CS β
1−β

1
2 � β < 1

Directed General 4β3

1−3β2
1
2 � β < 1√

3

Directed k-CS 1 + 4β3

k(1−3β2)
− 1

2k−1
1
2 � β < 1√

3

Directed Subset k-CS 2β3

1−3β2
1
2 � β < 1√

3

Directed Rooted SND 2β3

1−3β2
1
2 � β < 1√

3

1.3. Notation

Given an instance G = (V , E), c, r of SND we use the following notation. Let V = {v1, . . . , vn}. For undirected graphs, the
requirement ri of vi is the maximum requirement of a pair containing vi . For directed graphs rout

i = maxv j∈V r(vi, v j) is the

out-requirement of vi , and rin
i = maxv j∈V r(v j, vi) is the in-requirement of vi . For an edge set or a graph F and a node v ,

let degF (v) denote the degree of v in F . For directed graphs, let degout
F (v) and degin

F (v) denote the out-degree and the
in-degree of v in F . Let opt denote the optimum solution value of an instance at hand.

2. Proof of Theorem 1

Definition 2.1. An edge set F on node set V is a k-cover (of V ) if for all v ∈ V :

(i) degF (v) � k if F is undirected.
(ii) degin

F (v) � k and degout
F (v) � k if F is directed.

Lemma 4. For both directed and undirected graphs, any k-cover J contains a (k − 1)-cover F of cost c(F ) � (1 − 1
2k−1 )c( J ).

Proof. The following procedure finds M ⊆ J such that F = J − M is a (k − 1)-cover and c(M) � c( J )/(2k − 1). Start with
M = ∅, F = J , and all edges in F unmarked, and iteratively do the following, until all edges that remain in F are marked.
Among all unmarked edges in F , let e = uv be one of the maximum cost. Remove e from F and add it to M . In the case
of undirected graphs, if the degree in F of an endnode of e is exactly k − 1, mark all edges incident to this endnode. In the
case of directed graphs, if degout

F (u) = k − 1 mark all edges leaving u, and if degin
F (v) = k − 1 mark all edges entering v . It

is easy to see that during, and thus also at the end of the procedure, F = J − M is a (k − 1)-cover. At every iteration, one
edge e is moved from F to M , and at most 2k − 2 edges in F are marked; each of these edges is cheaper than e. Hence
c(M) � c( J )/(2k − 1), as required. �

Let F ⊆ E be a minimum-cost (k − 1)-cover of V . Such F of minimum-costs can be computed in polynomial time, for
both directed and undirected graphs, cf. [16]. As any feasible solution to k-CS is a k-cover, c(F ) � (1− 1

2k−1 )opt, by Lemma 4.
Now let I ⊆ E − F be an inclusion-minimal augmenting edge set so that H = (V , F + I) is k-connected. It is known that I is
a forest in the case of undirected graphs, and |I| � 2n − 1 in the case of directed graphs, cf. [5] and [12].

In the case of undirected graphs, since I is a forest, there exists an orientation D of I (namely, D is a directed graph
obtained by directing every edge of I) so that the out-degree of every node w.r.t. D is at most 1. Let Di be the set of edges
in D leaving vi , so either Di = ∅ or |Di | = 1 for all i. Let J be an optimal solution, and let J i be the set of edges in J
incident to vi . As J i � k, we have c(Di) � c( J i)

β
k(1−β)

, by Lemma 3. Hence

c(I) =
n∑

i=1

c(Di) � β

k(1 − β)

n∑
i=1

c( J i) � 2β

k(1 − β)
c( J ) = 2β

k(1 − β)
· opt.

Consequently,

c(H) = c(F ) + c(I) �
(

1 − 1

2k − 1

)
· opt + 2β

k(1 − β)
· opt =

(
1 + 2β

k(1 − β)
− 1

2k − 1

)
· opt.

In the case of directed graphs, |I| � 2n − 1. As any feasible solution has at least kn edges, we have

c(I) � 2n − 1 · 2β3

2
· opt � 4β3

2
· opt.
kn 1 − 3β k(1 − 3β )
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Consequently,

c(H) = c(F ) + c(I) �
(

1 − 1

2k − 1

)
· opt + 4β3

k(1 − 3β2)
· opt =

(
1 + 4β3

k(1 − 3β2)
− 1

2k − 1

)
· opt.

3. Proof of Theorem 2

To prove Theorem 2 we use the following statement.

Lemma 5. Let H, J be subgraphs of a complete graph with β-metric costs and let α � 1.

(i) In the case of undirected graphs and 1
2 � β < 1 the following holds:

– c(H) � α · β
1−β

c( J ) if degH (v) � α · deg J (v) for every node v, or if there are orientations H ′ of H and J ′ of J so that

degout
H ′ (v) � α · degout

J ′ (v) for every node v.

– c(H) � 2α · β
1−β

c( J ) if H has an orientation H ′ so that degout
H ′ (v) � α · deg J (v) for every node v.

(ii) In the case of directed graphs and 1
2 � β < 1√

3
we have c(H) � α · 2β3

1−3β2 c( J ) if the number of edges in H is at most α times the

number of edges in J .

Proof. Let Hi and J i be the set of edges incident to vi in H and in J , and let H ′
i and J ′

i be the set of edges leaving vi in
the orientations H ′ and J ′

i , respectively.

If |Hi | � α · | J i | then c(Hi) � α · β
1−β

· c( J i), by part (i) of Lemma 3. Thus

c(H) = 1

2

n∑
i=1

c(Hi) � α · β

1 − β
· 1

2

n∑
i=1

c( J i) = α · β

1 − β
· c( J ).

If |H ′
i | � α · | J ′

i | then c(H ′
i) � α · β

1−β
c( J ′

i), by part (i) of Lemma 3. Thus

c(H) =
n∑

i=1

c
(

H ′
i

)
� α · β

1 − β

n∑
i=1

c
(

J ′
i

) = α · β

1 − β
· c( J ).

If |H ′
i | � α · | J i | then c(H ′

i) � α · β
1−β

c( J i), by part (i) of Lemma 3. Thus

c(H) =
n∑

i=1

c(Di) � α · β

1 − β

n∑
i=1

c( J i) � 2α · β

1 − β
· c( J ).

Part (ii) of the lemma follows directly from part (ii) of Lemma 3. �
Now let J be an optimal solution for an SND instance. For both directed and undirected graphs, we will have α = 2 for

SND, and α = 1 for Subset k-CS and Rooted SND.

3.1. General SND

For general SND we use the following simple construction.

Lemma 6. Let V = {v1, . . . , vn} be a node set, and for i = 1, . . . ,n let rout
i , rin

i � n − 1 be non-negative integers. Let Aout
i be the set of

edges from vi to the first rout
i nodes in V − {vi}, and Ain

i be the set of edges from the first rin
i nodes in V − {vi} to vi . Namely:

Aout
i =

{ {vi v j: 1 � j � rout
i }, if rout

i < i,

{vi v j: 1 � j � rout
i + 1, j 	= i}, otherwise,

Ain
i =

{
{v j vi: 1 � j � rin

i }, if rin
i < i,

{v j vi: 1 � j � rin
i + 1, j 	= i}, otherwise.

Then for any i 	= j, the graph Hij = (V , Aout
i ∪ Ain

j ) contains at least min{rout
i , rin

j } internally disjoint vi v j -paths.

Proof. Note that there is a set C of min{rout
i , rin

j } − 1 nodes so that in Hij there is an edge from vi to every node in C and
from every node in C to v j ; furthermore, either vi v j ∈ Hij or there is one more node that can be added to C . The statement
follows. �
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The algorithm is as follows. In the case of directed graphs, we compute the edge sets Aout
i and Ain

i as in Lemma 6, and
output their union graph H . In the case of undirected graphs, we consider the directed problem on the bi-direction of G
(the directed graph obtained from G by replacing every edge e = uv of G by two opposite directed edges uv , vu of the
same cost as e) with the requirements r(vi, v j) ← max{r(vi, v j), r(v j, vi)} for i > j and r(vi, v j) ← 0 otherwise. Hence we
will have Ain

i = ∅ for all i. Let H ′ be the union of the sets Aout
i . The output graph H is the underlying graph of the directed

graph H ′ = ⋃n
i=1 Aout

i . For both directed and undirected graphs we have κH (vi, v j) � min{r(vi), r(v j)} � r(vi, v j), hence H
is a feasible solution. To establish the approximation ratio we will use Lemma 5, fixing J to be some optimal solution.

In the case of directed graphs, let J out
i and J in

i be the sets of edges in J leaving and entering vi , respectively. Note that
|Aout

i | = rout
i and |Ain

i | = rin
i while | J out

i | � rout
i and | J in

i | � rin
i . Hence the number of edges in the constructed solution is

at most
∑n

i=1(r
out
i + rin

i ), while any feasible solution has at least half this number of edges. The ratio 4β3

1−3β2 follows from

part (ii) of Lemma 5.
In the case of undirected graphs, let J i be the set of edges incident to vi in J . Note that degout

H ′ (vi) = |Aout
i | = ri and that

| J i | � ri for all i. The ratio 2 β
1−β

follows from part (i) of Lemma 5.

3.2. Subset k-CS

Recall that Subset k-CS is the case of SND when for some T ⊆ V we have r(u, v) = k for all u, v ∈ T . Let t = |T |. For the
case t > k we can apply our algorithm for k-CS while ignoring the nodes in V − T , thus obtaining ratios as in Theorem 1.
We can also obtain the ratios as in Theorem 2. Such an algorithm is described in [3] for undirected graphs, and we extend
it to directed graphs using the following statement.

Lemma 7. For any integers k, n so that, n � k + 1 there exists a directed k-connected graph H on n nodes in which the out-degree of
every node is exactly k (in particular, H has exactly kn edges), and such H can be constructed in polynomial time.

Proof. Let V = {v0, . . . , vn−1}. Let Ai be the set of k edges from vi to vi+1, vi+2, . . . , vi+k , where the indices are modulo n.
Let A = ⋃n−1

i=0 Ai and let H = (V , A). Then the out-degree of every node in A is exactly k, by the construction. We will
show that H is k-connected. A theorem of Whitney states that a directed/undirected graph H = (V , A) is k-connected if,
and only if, uv ∈ A or κH (u, v) � k for all u, v ∈ V . Since the construction is symmetric, it is sufficient to show a set of
k pairwise internally disjoint paths from v0 to any node u not adjacent to v0. Consider the BFS layers Li with root v0.
We have L0 = {v0}, and there are k nodes in every other layer except of possibly the last one. Namely, L1 = {v1, . . . , vk},
L2 = {vk+1, . . . , v2k}, and in general L j = {v( j−1)k+1, . . . , v jk} (in the last layer the last index is n − 1). Let j � 1 and let
u ∈ L j+1 be arbitrary, say u = v jk+i for some 1 � i � k. Let P ′

q be the path v0 → vq → vk+q → ·· · → · · · v( j−1)k+q . Let Pq be
the v0u path obtained by adding to P ′

q: the edges v( j−1)k+q → v jk+q → u if q � i, and the edge v( j−1)k+q → u otherwise;
note that the edges we add exist in A, by the definition of A. Now it is easy to see that P1, . . . , Pk is a set of k pairwise
internally-disjoint v0u-paths, as required. �

Assume t = |T | � k + 1. Let Hk be a k-connected graph on T with the following property. In the case of directed graphs,
we require that Hk has kn edges. By Lemma 7 such directed graphs exist, and can be constructed in polynomial time. In
the case of undirected graphs, we require that the degree of every node in Hk is exactly k, except that if |T |, k are both odd
then one chosen node v has degree k + 1. Harary [10] showed that such graph exist and can be constructed in polynomial
time. If t � k + 1 then our algorithm for k-CS returns any graph Hk as above, except the case of undirected graphs when k,
|T | are both odd. In the latter case, for every v ∈ T let Hk(v) be any graph Hk so that v has degree k + 1; we return the
cheapest one among the subgraphs Hk(v), v ∈ T .

The approximation ratio is shown as follows. In the case of directed graphs, any feasible solution has at least kt edges.

The ratio of 2β3

1−3β2 now immediately follows from part (ii) of Lemma 3. In the case of undirected graphs, the degree in an

optimal solution J of every node in T is at least k, and if |T |, k are both odd then one node v has degree at least k + 1. The
ratio of β

1−β
now immediately follows from part (i) of Lemma 3.

Our construction for the case t � k is a slight extension of this construction. Note that |V | � k + 1, as otherwise the
problem has no feasible solution. We choose a set U ⊆ V − T of arbitrary k − t + 1 nodes, and obtain a graph H by adding
to a clique on T all possible edges between T and U . For any u, v ∈ T there are k internally-disjoint uv-paths in H : the
edge uv and (t − 2) + |U | = k − 1 internally disjoint paths of length 2 each through the nodes in T \ {u, v} and U . Thus H
is a feasible solution. For the analysis of the approximation ratio, we use the following simple observation.

Lemma 8. Let J be a feasible solution to a Subset k-CS instance with r(u, v) = k for all u, v ∈ T and r(u, v) = 0 otherwise, and let
t = |T |. Then:

(i) For undirected graphs, every node in T has in J at least k − t + 1 neighbors in V − T .
(ii) For directed graphs, J has at least t(t − 1) + 2t(k − t + 1) edges.
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Proof. In undirected J , every node in T has at least k neighbors. At most t − 1 of these neighbors can lie in T , hence all
the other at least k − t + 1 neighbors are in V − T . In directed J , every node has out-degree and in-degree at least k. At
most t − 1 edges can enter a node from nodes in T , or leave a node to a node in T . Hence for every v ∈ T , at least k − t + 1
edges go from v to V − T , and at least k − t + 1 edges go from V − T to v . Thus the number of edges in J is at least
t(t − 1) + 2t(k − t + 1), as claimed. �

For undirected graphs, we obtain orientations H ′ of H and J ′ of some optimal solution J as follows. Assume T =
{v1, . . . , vt}. Inside T edges go from vi to nodes v j with j > i, and all the other edges go from T to V − T . Using Lemma 8,
it is easy to see that degout

H ′ (v) � α · degout
J ′ (v) for every node v . For directed graphs our solution H has exactly t(t − 1) +

2t(k − t + 1) edges, while by Lemma 8 any feasible solution has at least this number of edges. Thus the ratios β
1−β

for

undirected graphs and 2β3

1−β2 for directed graphs follow from Lemma 3.

3.3. Directed Rooted SND

Let G = (V , E), c, r, s be an instance of directed Rooted SND where s is the root. Let T = {u ∈ V : r(s, u) > 0} be the set
of nodes with positive in-requirements.

Lemma 9. Any feasible solution J for directed Rooted SND has at least
∑

v∈T rin(v) edges if k � |T |, and at least
∑

v∈T rin(v)+k−|T |
edges if k > |T |.

Proof. Clearly, degin
J (v) � rin(v) and degout

J (r) � k. Now consider the edges in J leaving r. At most |T | of these edges can go
to nodes in T , hence if k > |T | then there are at least k − |T | edges that go to nodes in V − T . The statement follows. �

Now we show that the lower bound in Lemma 9 is achievable. Construct a graph H as follows. Let U ⊆ V \ {s} be an
arbitrary set of max{k, |T |} nodes containing T , so U = T if |T | � k. Take an edge from s to every node in U , and for every
v ∈ T take arbitrary rin(v) − 1 edges entering v from any rin(v) − 1 nodes in U \ {v}. It is easy to see that H is a feasible
solution for the directed Rooted SND instance, and the number of edges in H coincides with the lower bound in Lemma 9.

Applying Lemma 3(ii) we obtain c(H) � 2β3

1−3β2 · opt.

The proof of Theorem 2 is complete.
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