604 research outputs found

    Towards 3-Dimensional Rewriting Theory

    Full text link
    String rewriting systems have proved very useful to study monoids. In good cases, they give finite presentations of monoids, allowing computations on those and their manipulation by a computer. Even better, when the presentation is confluent and terminating, they provide one with a notion of canonical representative of the elements of the presented monoid. Polygraphs are a higher-dimensional generalization of this notion of presentation, from the setting of monoids to the much more general setting of n-categories. One of the main purposes of this article is to give a progressive introduction to the notion of higher-dimensional rewriting system provided by polygraphs, and describe its links with classical rewriting theory, string and term rewriting systems in particular. After introducing the general setting, we will be interested in proving local confluence for polygraphs presenting 2-categories and introduce a framework in which a finite 3-dimensional rewriting system admits a finite number of critical pairs

    Cyclic rewriting and conjugacy problems

    Full text link
    Cyclic words are equivalence classes of cyclic permutations of ordinary words. When a group is given by a rewriting relation, a rewriting system on cyclic words is induced, which is used to construct algorithms to find minimal length elements of conjugacy classes in the group. These techniques are applied to the universal groups of Stallings pregroups and in particular to free products with amalgamation, HNN-extensions and virtually free groups, to yield simple and intuitive algorithms and proofs of conjugacy criteria.Comment: 37 pages, 1 figure, submitted. Changes to introductio

    Coherent Presentations of Monoidal Categories

    Get PDF
    Presentations of categories are a well-known algebraic tool to provide descriptions of categories by means of generators, for objects and morphisms, and relations on morphisms. We generalize here this notion, in order to consider situations where the objects are considered modulo an equivalence relation, which is described by equational generators. When those form a convergent (abstract) rewriting system on objects, there are three very natural constructions that can be used to define the category which is described by the presentation: one consists in turning equational generators into identities (i.e. considering a quotient category), one consists in formally adding inverses to equational generators (i.e. localizing the category), and one consists in restricting to objects which are normal forms. We show that, under suitable coherence conditions on the presentation, the three constructions coincide, thus generalizing celebrated results on presentations of groups, and we extend those conditions to presentations of monoidal categories

    Partial monoids: associativity and confluence

    Full text link
    A partial monoid PP is a set with a partial multiplication ×\times (and total identity 1P1_P) which satisfies some associativity axiom. The partial monoid PP may be embedded in a free monoid PP^* and the product \star is simulated by a string rewriting system on PP^* that consists in evaluating the concatenation of two letters as a product in PP, when it is defined, and a letter 1P1_P as the empty word ϵ\epsilon. In this paper we study the profound relations between confluence for such a system and associativity of the multiplication. Moreover we develop a reduction strategy to ensure confluence and which allows us to define a multiplication on normal forms associative up to a given congruence of PP^*. Finally we show that this operation is associative if, and only if, the rewriting system under consideration is confluent

    Reduction relations for monoid semirings

    Get PDF
    AbstractIn this paper we study rewriting techniques for monoid semirings. Based on disjoint and non-disjoint representations of the elements of monoid semirings we define two different reduction relations. We prove that in both cases the reduction relation describes the congruence that is induced by the underlying set of equations, and we study the termination and confluence properties of the reduction relations

    Reduction Operators and Completion of Rewriting Systems

    Get PDF
    We propose a functional description of rewriting systems where reduction rules are represented by linear maps called reduction operators. We show that reduction operators admit a lattice structure. Using this structure we define the notion of confluence and we show that this notion is equivalent to the Church-Rosser property of reduction operators. In this paper we give an algebraic formulation of completion using the lattice structure. We relate reduction operators and Gr\"obner bases. Finally, we introduce generalised reduction operators relative to non total ordered sets

    Cyclic Datatypes modulo Bisimulation based on Second-Order Algebraic Theories

    Full text link
    Cyclic data structures, such as cyclic lists, in functional programming are tricky to handle because of their cyclicity. This paper presents an investigation of categorical, algebraic, and computational foundations of cyclic datatypes. Our framework of cyclic datatypes is based on second-order algebraic theories of Fiore et al., which give a uniform setting for syntax, types, and computation rules for describing and reasoning about cyclic datatypes. We extract the "fold" computation rules from the categorical semantics based on iteration categories of Bloom and Esik. Thereby, the rules are correct by construction. We prove strong normalisation using the General Schema criterion for second-order computation rules. Rather than the fixed point law, we particularly choose Bekic law for computation, which is a key to obtaining strong normalisation. We also prove the property of "Church-Rosser modulo bisimulation" for the computation rules. Combining these results, we have a remarkable decidability result of the equational theory of cyclic data and fold.Comment: 38 page
    corecore