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Abstract

In this paper we study rewriting techniques fapnoid semirings. B&sl on disjoint and non-
disjoint representations of the elements of monoid semirings we define two different reduction
relations. We prove that in both cases the reduction relation describes the congruence that is induced
by the underlying set of equations, and we study the termination and confluence properties of the
reduction relations.
© 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

Introduced originally by Axel Thue as a method for solving word problems,
rewriting theory has become a powerful tool in symbolic computation. We refer to
Baader and Nipkow1998 andBook and Ottq1993 for background concepts and recent
results on rewriting systems.

Onthe aher hand, semirings have been found useful for solving problems in different
areas of applied mathematics and theoretcahputer science. Recently, semirings have
been applied in graph theory, optimization, coding theory, automata theory, descriptions
of relational data bases, formal language tigeand the study of parallel computational
systems (ge, e.g.PasQipta and Sontg@001, Golan 1999 Hebish and Weinert1998.

Each semiring can be presented as a factor-semiring of a certain polynomial semiring
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modulo a congruence. In these settings onimtisrested in congruences on the monoid
semirngs that are induced by finite sets of equations (Mal'é®54 Sokratova 2001).

In Mora (1985 it is shown how string rewriting can be applied to monoid rings, in
this way extending Gabiner basis computations from commutative rings to certain non-
commutative rings. Actually, iR is a ring andX* denotes the free monoid over a sét
of free generators, then a string rewriting syst@ht X* x X* yields a reduction relation
—T1 on the free monoiK* as well as a reduction relati—T on the free monoid ring
RX*. In fact, if u,v € X* are two strings, them andv are congruent with respect to
the Thue congruencz—7} on X* that is induced by—s, if and only if the polynomial
u — v belongs to the two-sided ideal & X* that is generated by the set of polynomials
{ui —vi | (Ui, vi) € T}. Thus, string rewriting techniques can be applied to free monoid
rings. It turned out that this approach works quite well in those cases, where the underlying
monoids are presented by finite convergeribgtrewriting systems of certain restricted
forms (Madlener and Reineri.998ah).

Now the question arises of whether this approach can be extended to monoid semirings.
However, there arearious problems that must be overcome.

Any congruence relatiop on a ring is uniquely defined by an idelathat is the zero
class ofp. More piecisely, two elementa andb are congruent with respect if and
only if their differencea — b belongs tol . This dlows us to turn any element of an ideal
into a rewriting rule.

The zero class of a congruence in a semiring, however, though being an ideal, does
in general not uniquely determéracongruence. Thus, in semirings we have to deal with
relations, not ideals. For example, the Thue congrue==s} on X* translates into the
congruence on the semiririgX* that is generated by the same $et

The question arises now of how to extend this to an arbitrary finitely generated
congruence orRX*. That is,how to define a reduction relation dRX* that is based
on a (finite) set of polynomials and that represents a given congruence?

Here we undertake a first step into the direstad carrying (string) rewriting techniques
ove to monoid semirings. If

(p,q) := (riug +raug + - - - + rmUm, S1v1 + SLU2 + - - - + SHvn)

is a pair of polynomials from the free monoid semirifyX*, wherer;, s; € R~ {0} and
ui, vj € X*, and if> is a term ordering oiX*, then here is a unique term, say, that is
larger than all other terms;, vj with respect to-. Now, if Ris actually a ring, that is, it
admits the operation of subtraction, then we can replace thé paip by the pair

(riug, S1v1 + v + -+ + Shvn — U2 — - - - — rmUm),

and we can then define a reduction relatiort ikeba®d on (finite) sets of rules of this
particular form.

In this paper we will restrict ourselves to congruences on semirings that are generated
by pairs of polynomials of the form above. It appears that in this setting, we can define
reduction relations. Actually, we define and study two possible kinds of reduction relations
on monoid semirings. The important properties of the reduction relations that we are
interested in are local confloee, confluence, and termination. The reduction relations
we consider are natural extensions of string rewriting relations. This makes it possible to
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use dring rewriting techniques also in the semiring setting. In particular, we are interested
in the connection between the (string) reduction relation on a free monoid and the induced
reduction relation on a corresponding monoid semiring.

The two reduction relations studied in thispgat are based on different representations
of the elements of the monoid semirings considered. For the first reduction relation, called
weak reluction we monsider a relatiom ¢ M x RM in Section 3whereR is a semiring
and M is a monoid. We present an element of the monoid semifigl simply as a
finite sum of monomials, where several monomials containing the same term (that is,
monoid element) are allowed. A reducticz=-r replaces one of these monomials by a
polynomial. This relation is compatible with tloperations of addition and multiplication
on RM, and it captures the semiring congruenceR®N that is generated by. Herce, the
weak reduction is very natural and easy to work with. Unfortunately, it is not terminating
in many cases, e.g., if the underlying semiriRgis actually a ring, or ifR contains
idempotents with respect to addition (sgection 3.

Therefore, we study the weak reduction in detail only for the special case of free monoid
semirings over the semiring of natural numb@¥sthat is,R = N andM is afree monoid
X* over some seK of free generators. AN is the most natural @mple of a semiring
that is nota ring, NX* is probably the most basic form of a monoid semiring. For this
particular case we will see that the weak reduttielation terminates, if it is compatible
with a auitably chosen admissible well-founded partial orderingn Next, westudy the
weak reduction relation for the special case that the underlyinf eétules (or equations)
is a string rewriting systerli c X* x X*, and we show thdh this case the properties of
termination, local conflence, and confluence dHX* are inherited from the string rewrit-
ing relation—t on the free monoicK*. Findly, we present test for(local) confluence
for the weak reduction relation a\X* for the more general case thats a finite relation
of the formT < X* x NX*. Unfortunatelythis test, which is based on the notion of critical
pair, does not apply to systems that have coefficients larger than 1 on their left-hand sides.

In order to get around the aforementioned termination problem we consider a more
restricted reduction relation iBection 4 This rehtion, calledstrong reduction, is basl on
the representation of the elements of the monoid semiR¥f considered as a disjoint
sum, that is, ifp = riug +rauz + --- +rpup (rj € R~ {0}, u; € X*), thenitis
required that the monoid elementsare pairwise distinct. We concentrate again on the
case thal ¢ X* x RX*, and a eduction stepp =T g now replaces exactly one of the
distinct monomials op by a corresponding polynomial. As for a disjoint sum of the form
above the weak reductio==>, coincides with the strong reducti—T, we seethat
the difference between the two relations simply consists in the requirement that before the
strong reduction can be applied the polynomial considered is brought into the form of a
disjoint sum by applying the laws of associativity and commutativity of additioR Xi'.
Hence, the strong reduction relation can be interpreted as using the weak reduction relation
modulo associativity and commutativity of addition.

We will see that the strong reduction relati==T generates the smallest congruence on
R X* containingT . We prove thatthis reduction relation terminates if it is compatible with
an admissible well-founded partial ordering on the free mon6id Then we onsider
the special case of a string rewriting systdmc X* x X*, and wewill see that again
termination and confluence are infited from the free monoid. Finally, isection 4.3ve
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present a test for (local) confluence of the strong reduction relatidgdXinthat is defined

by a finiterelaion T c X* x RX* for the case wheréhe semiringR is commutative
with respect to multiplication. However, in contrast to the situation for weak reduction,
the mnfluence test for the strong reduction relatiequires that this reduction relation is
terminating.

Finally, we describe in shorhe structure of normal forms with respect to a convergent,
that is, terminating and confluent, reduction system on a monoid senfig and we
address the choice of a reduction strategy to compute the normal form of a given element.
The paper ends with a short discussion @& thoblems one is faced with when trying to
develop a Knuth—Bendix style completion procedure for free monoid semirings.

2. Preliminaries

Throughout the paper we use the following definitions.

Definition 2.1. A semiring(R, +, -, 0, 1) is defined to be a non-empty sBtwith binary
opeations of addition+ and multiplication- suchthat (R, +) is a ommutative monoid
with neutral element O(R, ) is a monoid with identity 1, multilication distributes over
addition from either side, and-0 =r -0 =0forallr € R.

Example 2.2. Any ring is asemring.

Example 2.3. The selN of non-negative integers with the usual operations of addition and
multiplication is a semiring.

The next example provides semirings that are idempotent with respect to addition.

Example 2.4. Exotic semirngs are certain subsets @& equipped with the binary
operations of minimum or maximum as sumdaddition as product. Two prime examples
of such structures are thigax, +)-semiring

(R U {—o00}, max +, —oo, 0)
and thetropical semiring
(N U {oo}, min, +, 0o, 0)
(see e.g.Pin, 1998.
The definition of the monoid semirgnis dmilar to that of a monoid ring.

Definition 2.5. For a monoid M, themonoid semiring R Mconsists of all finite sums of
the form "', riu;, wherer; € R, uj € M, with addition and multiplication defined by
the rules

n n n
Zl‘iui + Zl‘i/ui = Z(I‘i +rui,
i=1 i=1 i=1

n

n n
(Zriui> eruj- = Z(rirj)Uin
i=1 j=1

ij=1
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In particular, given a seX, the free monoid semirin@ X* consists of all polynomials
over R in thenon-commuting variableX.

We will use the representatiom=rius + - - - 4+ rpup, for the elements oR M in order to
emphasize that all; in p are pairwise distinct. Accordingly weall such a representation
a disjoint sum In this caser; is called thecoefficientof u; in p. We will denote the
coefficient of a monomial in p by 7(u). For a polynomialp =rquy + -+ 4 rqup, let
TERM(p) = {uy, ..., un} be the set ofermsof p.

Definition 2.6. For a set bpairsT ¢ RM x RM, @(T) denotes theongruencef RM
that is generated by. That is, ©(T) is the smallest equivalence relation &M that
containsT, and that is closed under addition and mulitation from the left and from the
right.

It is congruences oRM of the form ©(T) that we want to stdy. For doing so we
introduce two kinds of reduction relations in the following two sections.

3. Weak reductionsfor monoid semirings

Let R be a semiring, leM be a monoid, and |eRM denote the monoid semiring &
overR.

Definition 3.1. LetT ¢ M x RM be arelation, and let, b € RM. We define thegingle-
step reduction reldion ==-; on RM as follows:

a==17b iff Ir,ri e R {0}3u,v,uj e M3I(X,2) €T:
a=ruxv+rqug +-- -+ rgUg, and Q)
b=ruzv+rqug +---+rguk.

The relation==> is theweak reluction relaion thatis induced byl . It is calledweak
to contrast it with thestrong reduction reléion that will be defined in the next section. If
a=ruxv + ryuy + --- 4 rgug is a disjoint sum, and if = ro +r’ for some elements
ro,r’ € R, rg # 0, then

a ==>7 loUZv +r'uxv +ryug + - - - + reU,

that is, the monomiatuxv of a may be replaced only partially by this reduction step.
The reflexive transitive closure ct=-, is denoted by ===, its symmetric closure is
<==>7, and the quivalence relation oR M generated by==- ; is denoted by <<= .

Our first lemma states that the relati==>7 is compatible with the operations of
addition and multiplication oR M.

Lenma32. Let T ¢ M x RM. Forall a,b,c € RM, if a == b, then a+
¢ ==7 b+c,ac == bc,and ca == cb.
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Proof. Leta andb be elements oRM suchthata == b. We may asume thah and
b are written as inX). Then it is obvious that

a+C =ruxv+riug+---+reuc+c¢
==>7 UZv+TU1+---+rUk+Cc=b+cC

holds. Thus,==>; and == are compatible with addition.
Next lets € Randw € M, andc := sw. Then

ac= (rs)uxvw + (r1s)urw + - - - + (rkS)uxw,
and
bc= (rs)uzvw + (r1s)uiw + - - - + (rkS)ukw.
If rs =0, thenac = bc, otherwiseac ==>; bc. Findly, if
C=8S1w1+ -+ SmWm,
then
ac = aswi+asw2+---+ aSawWm

==7 bswi+aswsr + .-+ asnwm
==7 bswi +bsws + - - + asnwm

=1 bsiwi+ - - + bsnwm = bc.

Hence, ==>7 is compatible with multiplication from the right, and by symmetry it
follows that it is also compatible with multiplication from the left(]

Next we will see thathe reductionelation ==~ captures the congruené&(T) on
RM that is generated by.

Theorem 3.3. Let T € M x RM. Then <<=, = O(T).

Proof. First, we veify that <<=-; is a cngruence onRM. Obviously, it is an
equivalence relation. Further, it satisfies the substitution property, that is, it is compatible
with addition and multiplication, as the reduction relati==>7 is (Lemma 3.2. Thus,
<=, is indeed a congruence relation ®&M. SinceT C <=7, it follows that
oM c <=7.

To prove that <<= is contained in@(T), we take any paita, b) with a == b.
Since©(T) is a congruence, the definitiof))(implies that(a, b) € ©(T). Since&(T) is
an equivalence relation, it follows thi<==>; < O(T). Herce, we see tha<=; =
O(T), as rguired. O

Unfortunately, the reduction relatioe==-, defined by (} does not seem to be
an appropriate tool for many monoid semgs. This is illustrated by the following
exampes.

Example3.4. Let R := Z, let X := {Xx,y}, let M be the free monoidX*, and let
T = {(x,y)}. On M the systemT geneates the string rewriting relatio=—7, which
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is defired byuxv —1 uywv for all u, v € M. Obviously, this relation is terminating, that
is, there is no infiniteseguence of the form

Wo —>T W1 —>T -+ —>T Wi —>T Wi41—>T -+

in M. However, for theeduction relation==-7 the situation is totally different, as
Y=Y+ X—X==7 Yy+tX-Yy=X==>7Y.

Thus, this relation is not terminating.

The problem with termination iExample 3.4stems from the fact that the underlying
semiring is actually a ring, that s, it provides inverse elements with respect to addition. The
next example shows that the same problem arises when the sgoritains idempotent
elements with respect to addition (Example 2.4

Example 3.5. Let R be a semiring with an elemente R . {0} that is idempotent with
respect to adton, thatis,r +r =r, let X .= {x, y}, M := X*, andT = {(X, y)}. Then

IX+1y =0 +)X+TIy =rX+rxXx+ry == rx+ry+ry
=IX+4+ T 4+ry=rx+4ry,
which shows that also in this case=- is not terminating.

Therefore we investigate this reduction relation only for the special case of free monoid
semirngs over the natural numbers.

3.1. The reduction relatior==> for free nonoid semirings oveN

For the resbf this section we only consider the semiriNgf natural numbers, and free
monoid semirings of the formyX*,

Definition 3.6. We define the set of monomialg X* as
NX*:={nu|neN-{0},ue X*}.

Due to the possibility of performing division i§X*, we are ake to consider slightly more
general relations as before.

Definition 3.7. LetT ¢ nyX* x NX*, and leta, b € NX*.
For a relgion of this form te reductionelation == is defined as follows:

a==-rb iff Ir,ri e N~ {0}3u,v,uj € X*3(nx,2) e T:
a=(r-n)uxv-+riug 4+ ---+ rgug, and (2
b=ruzv+riug +--- + reuk.

Thus, here we consider relatiomdor which the left-hand side of an elementDimay
have a coefficient larger than 1. It is easily seen that the rele==>7 is compatible with
addition and multiplication, and that it satisfiEeeorem 3.3too. In this particular setting
termination is guaranteed by the following technical result.

Recall that a partial ordering on X* is calledadmissibleif, for all u, v, X, y in X*,
u > v impliesxuy > xvy. A pattial ordering>= on X* is calledwdl-foundedif no infinite
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chains of the fornu; > uz > - - - with u; € X* exig, where> denotes the proper part of
>, thatis, u= v holds ifu > v andu # v.

Theorem 3.8. Let = be an admissible well-founded partial ordering orf,Xand let
T c nX* x NX* be a relation orlNX* such that the followinganditions are satisfied for
each pair(ru, s;vg + --- + squp) of T

e U>vj,foralli =1,...,n,and

e I > 5, Whenever u= vj;.
Then ==>r is terminating.

Proof. Notice that every polynomiatiu; + --- + rpun of NX* can be interpreted as
a mutiset over X* containingr; copies ofu;. The well-founded partial ordering on

X* induces a well-founded partial orderins on the set of multisets oveK* (see
Dershowitzand Manna1979. This multiset ordering then gives a well-founded partial
ordering » onNX*. This ordering compares two polynomials

p=riuy + --- 4 rnun

and
q=rjus 4 -~ Frpun + s+ smom#p
as follows:
p>q
iff
Vie{l,...,m3j e{l,...,n}:uj > v andr; >rjf,and
Vie{l,....,nk(ri>r{or3j e{l,...,n}uj > uj andr;j >rJf).

Itis easily seen thas~ is compatiblewith ==, thatis,p == p’impliesp> p'.
Hence,==-r is terminating. O

3.2. Restricted reduction systems

We are conerned with the properties of the reduction relatiz=s - thatis induced by
a finite relationT C nyX* x NX*. Theorem 3.8ives asufficient condition for establishing
termination of ==r. If === Iis terminating, then each elememtof NX* has one
or more normal forms with respect t==-,, wherec is called anormal formof a if
a ==>r candc is irreduciblemod ==, that is,c == d does not hold for any
d € NX*.If, in addition to being terminating==>7 is confluent, then each has a
unique normal form. Hence, we would like to characterize those relafiofes which
==>7 IS confluent.

We start this inestigation by considering the special case where a string rewriting
system onX*, that is,T c X* x X*. Then he systenT induces two reduction relations:
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the reduction relatio=">1 on X* that is defined by

Uu—tov iff Ix,y e X*3I(w,w) e T:
U= xXwy and v =xwy,

3)

and the reduction relatioe==-, onNX* that is defined by3).

Itis an immediate consequence of these definitions that the relztizr, can simply
be interpreted as an extension of the relaZ=st. This is made pecise by tle folowing
proposition.

Proposition 3.9. Let (X, T) be a string rewriting systenThen the following conditions
are equivalent for all strings w € X*:

(d) U—T vin X*,

(b) u ==>r7 v in NX*

Under what conditions does the relatiez=-, inherit properties such as termination,
local confluencegr confluence from the relatic=—1? In the fdlowing we will address
this question. Our first result deals with the termination property.

Proposition 3.10. Let (X, T) be a finite string rewriting system. Then the reduction
relation ==>7 onNX* is terminating iff— is terminating.

Proof. If ==>; is terminating, then byProposition 3.9also —7 is terminating.
Conversely, assume th=*>T is terminating. We obtain a partial orderingon X* by
defining its proper part as follows:

usv iffu—>-|“fv.

Then> is an admissible partial ordering that is well-founded. Alse- v holds for each
rule (u, v) € T. Herce,Theorem 3.§ields that==- is terminating orNX*. [

An analogous result holds for local confluence.

Theorem 3.11. Let(X, T) be a finite string rewriting system. Then the reduction relation
==>7 onNX* is locally confluent ift— is locally confluent.

Proof. The ‘only if’ part is obvious byProposition 3.9
To prove the [f’ part we take three elements b, c € NX* suchthata ==-+ b and
a ==>7 C. Leta have the following representation as a disjoint sum:

a=rqug + - F reuk.

It follows that there exist indiceisand j, natual numbers; < rj, rJV < rj, and stings
uf, uj € X* suchthatuj —7 uf, uj — u/, and

b=rgug+---+ (i —r)ui +r{uj + -+ reug,

"7

C=rup+---+ (rj —rHuj +ri'uj +-- +reuk.
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First, suppose that£ j. Then

b =riup+ -+ i —r)ui +r{uj 4+ -+ () —r{uj +riuj + - reug
==>7 MU+ -+ ¢ = U + U]+ 4 ) —1{)uj

"1

Frjuj 4 Tk,

and
",

C =raup+---+ @i — U +r{ui + -+ —rHuj +riui + - +reuk
==>7 MU+ -+ = DU U+ 4 0 —1{)u;

v

+rjuj 4o+ iUk
Thus, in this cask andc have a common descendant.
Secondly, suppose that= j. Since—7 is locally confluent, there exists a string
w € X* suchthatu] —>7 w andu/ = u/ —>7 w. We have
b = rwui+4-- 4@ —r)ui riu + -+ reui
=7 rUp 4+ @ — U Friul 4 - 4 reug
= U+ FrHu 4 -4 relg
= MU+ W+ Uk
and

"1

¢ = riur+--- @ =rOu Aol e 4k

1

=7 U4+ @ — U]+’ + -+ reuk
= rui+4---4ru 4+ reug
=g FqUp oo w4 MUk

Thus, also in this cadeandc have a common descendant. Hen=2; isindeed locally
confluent. O

Actually, we can explicitly describe the descendants of a polynomial. For a polynomial
a=rqug + -+ 4 ruk,

any descendattof a is of the following form:

r Ik
b=> uri+-+Y Ui, (4)
i=1 i=1

where, forj =1,...,k, uj1, ..., ujr,; are (not necessarily distinct) descendants;ofin
particular,b is anormal formof a if all the stringsuj 1, ..., ujr; are normal forms ob;
mod—T.

Theorem 3.12. Let(X, T) be afinite string rewriting system. Thez=.; is confluent iff
—>71 is confluent.

Proof. The ‘only if’ part is obvious byProposition 3.9
To prove the if’ part we take three elemengs=riu; + --- + rgug, andb, ¢ suchthat
a == banda ==>; c. We can writeb in the form @). Since—>t is confluent,
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we see that, foral] = 1,...,k, dl monomialaj 1, ..., ujr; have acommon descendant
u/j . Therdore,

*
b ==7 riu} +--- +rug.
Similarly,
C ==>7 U] +--- +rguy,

whereu; —>1 u/’. Since—s is confluent, there exisii € X* suchthatu! —>1 w;

andu’ —>7 wi. We obtain thatrjws + - - - + rcwg is a canmon descendant df and
cmod ==>r. Thus, ==>7 isindeed onfluent. J

By combining the above results we obtain the following.

Corollary 3.13. Let(X, T) be a finite string rewriting system.-=»1 is convergent, then
=== IS convergent as well. For a riu; + --- 4 rgug, theunigue normal form of
amod == isofthe form 01 + - - - + rkQx, where(; is the unique normal form of the
string 4, mod—7. In particular, the congruenc®(T) is decidable inNX* in this case.

For actually computing the normal form af € NX* mod ==, we propose to use
the strong reduction relatic=>7 that is introduced irSection 4 as it s contained in
==>7. On the other hand, in order to prove that two polynomalb € NX* are related
mod ©(T), we maynot have to determine and then to compare the normal fornas of
andb, but it is enough to show tha andb have a common descendant mes.. ;.

Example3.14. Let X := {x, y}, and letT := {(yx, xy?)}. Then—>t is convegent, and
S0 is ==>7. Consider the polynomiala := 2yx3 andb := yx3 + xy?x2. Thena andb
have the common normal form:= 2x3y®. The $ortest reduction sequence mez.
transbrminga into c consists of 7 steps, and the shortest sequence transfobniving c
has 7 step as well. However,

a=yxXC+yS ==; yC+xy’x?>=b
is a much borter proof for(a, b) € ©(T).
3.3. Test for (local) confluence

If (X, T) is afinite string rewriting system, then IBorollary 3.13we can usette tools
from thetheory of string rewriting systems to verify that the reduction relats=. . on
NX* is terminating and/or confent. In particular, i is terminating, then confluence
of —7 (and therevth of ==-7) is decidable by checking a finite humber of critical
situations for—7, the soealledcritical pairs.

Here we will establish a corresponding test for the more general situation of a relation
T c nX* x NX*. For doing so we first introduce the notions of overlap and of critical
pair for ==>r.

Let

(stug,ravy 4+ rave + -+ + reew)  and (U, tiwy 4+ towz + -+ F tpwp) (5)
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be two (not necessarily distinct) rules df, where s, s,ri,tj € N ~ {0} and
Uy, Uz, vj, wj € X*.

Definition 3.15. We say thathe rules in §) overlapif one of the following two cases
holds:

(a) there eist stringsx, y € X*, 0 < |X| < |uz2|, such hatuix = yup;
(b) there elst stringsx, y € X* suchthatu; = xupy.

Weillustrate this and the following definitions by the following example.

Example3.16. Let X := {x,y, z}, and letT := {(X2, y), (yX, Xy% + Xy), (ZyX X + y)}.
ThenT admits four different overlaps:

1. (x2,y) overlaps vith itself, asx? - x = x - X2,

2. (yx, xy? + xy) overlaps with(x?, y), asyx - x = y - X2,

3. (zyx x + y) overlaps with(x?, y), aszyx- x = zy- x2, and

4. (zyx X + y) overlaps with(yx, Xy? + Xy), aszyx= z- yx.

Here the first three overlaps are obtained byeda$, while the fourth overlap is obtained
by case (b) of the above definition.

Let s be the maximum o$; ands; in (5). If case (a) oDefinition 3.15holds, then both
rules of 6) can be applied to the monomgy x:

SWX = S1U1X + (S — SPHULX ==>7 11X + 202X + - - - + IkvkX + (S — Sp)U1X
and
SX =Syl = YU+ (S — )y ==>7 tiywi+ -+ +tpywp + (S — )yu2.
Analogously, if case (b) oDefinition 3.15holds, then both rules are applicable to the
monomialsuy:
Sl = S1Uy + (S —S)U1 ==>7 vy +rova+ - +rgvk + (S — Spus
and

S = SXWY = SXUY + (S — )XU2Y
==7 tiXwiy + taXway + - - - + tpXwpy + (S — L)X U2Y.

If ==>r isto be (locally) onfluent, then in both cases the two immediate descendants
of swx or of su, resgectively, need to have a common descendant. Thus, the above
situations are of particular interest for checking (local) confluenca=£ 1. This leads to
the following definition.

Definition 3.17. Lets = max(s1, S2). Each overlap of the rules irb) yields acritical pair
as follows:
if upx = yup for somex, y € X*, 0 < |x| < |uz|, then theresulting critical pair is
(r1vaX +rvaX + - - - + rgvkX + (S — SpU1X, tiyws + tayws
+--+hywp + (S—S)yuw2),
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and ifu; = xupy for somex, y € X*, then theresulting critical pair is

+- o+ tpXwpy + (S — )XU2Y).

By CP(T) we denote the set of all critical pairs 4f.
Example 3.16 (Continued). The overlaps df resultin the following set of critical pairs

CP(T) == {(yX, XY), (XY?X 4+ XyX, y2), (X2 + yX, 2%, (X + Y, ZXY? + 2xy)},
as

V- X <=7 X2 X =x-x° ==7 XY,

xy2.x—|—xy~x <=7 yx~x=y~X2 =7 Y'Y,
X-X+Y:-X <=7 zyx-x:zy-x2 ==7 ZY-Y,
X+Y <==7 ZYX=2Z -YX == z-xyz—i—z-xy.

For the special case where each element dfas coefficient one on its left-hand side
we obtain the followingcharacterization.

Theorem 3.18. Let T C X* x NX*. Then he following statements are equivalent:

(a) The relation ==~ is locally confluent.
(b) Thepolynomials p and g have a common descendaod ==, for each critical
pair (p, q) € CP(T).

Proof. Obviously, if == islocally confluent, then all the critical pairs in CP) resolve
mod ==>. Thus, it remains to prove the converse implication.

Leta, b, c be three elements oNX* suchthata == banda == c, wherea has
the following representation as a direct sum of monomials:

a=rquy + --- 4 reu.

We distinguish three cases based on the form of the reduction ste==-, b and
a == C.

Case 1.Let us suppose first thdt and c are obtained frona by rewriting at different
monomials ofa, sayatu; and atup. That is, thee existstringsxi, Xo, y1, Y2 € X*, integers
S1 <1, <y, and eements¢1, v), ({2, w) € T suchthatu; = X1€1Yy1, Uz = X2€2Yo,
and

b = spxqvy1 + (r1 — sp)uz +rauz + - - - + reU,
C =Tr1U1 + SpXowy2 + (r2 — S2)u2 + - - - + rkUk.
Obviously,b andc reduce to a common descendant as follows:
b =7 rixqvyr +raus + - - - +reug
==>7 1X1vy1 + r2Xowyz + - - - + kU, and

*
C ==>7 U1+ ra2Xowyz + --- 4+ rglg
==>7 l1X1vy1 + r2Xowy2 + - - - + rUg.
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Case 2If b andc are obtained frona by rewriting at the same monomial, say, then
there are two subcases.

Case2.1. There exist rulegf1, v) and (¢2, w) in T, stringsx, y,z € X*, and irtegers
s1 < rpandsp < rq suchthatu; = x¢1yf2z and

b = sixvyloz + (r1 — S1)u1 + rauz + - - - + rgUg,

C=SXlywzZ+ (r1 — S)ur +rauz + - - - + rgUk.

As === is compatible with addition and multiplication, we see thaindc reduce to a
common descendant as follows:

b ==>7 rixvylsz+rauz + - - - + gl
==>7 [XVYWZ+ U2 + - - + Uk, and
C ==>7 [XLiYyWwZ + roUp + - - - + kU
==>7 [1XVYwWZ+2U2 + - - + IkUk.
Case2.2.The occurrences df; and{; in uj overlap. Tten there exist strings, y, z € X*
and a critical pailp1, p2) suchthatu; = xyzand integers; < r1 ands; < rp suchthat
b=sXxpiz+ (r1 — Sp)us +rauz + - - - + rgU,
C=SXPpZ+ (1 — U1 +r2u2 + -+ - + rlk.
By the hypothesis of the theorem there exists a polynomialichthat p; and p2 both
reduce tay mod ==>,. Thus, as==>7 is compatible with addition and multiplication,
we see thab andc reduce to a common descendant as follows:
b =7 rXpiz+rauz+ - +rkU ==>7 r1Xqz+rauz + - - + reu,
C ==>7 MXPZ+ToUp+ -+ +TKUk ==>7 [1XQZ+ Uz + - - - + KUk.
Thus, in each caske andc have a common descendant, implying tk=st., is indeed
locally confluent. [

Unfortunately, this characterizatiotioes not hold in general for the case that the
elements ofl have coefficients larger than one on their left-hand sides. This is illustrated
by the following example.

Example3.19. Let X .= {X, Y, z,d, €}, and letT consist of the following six ‘rules’:

(1) 3zx%y — zd+ 2e,

(2) 2yx? — 2d,

(3) 2X%yx% = 2X+ Y + z,

(4) zd¥¢ — 6X + 3z,

(5) 2ex% — 3y,

(6) zx%d — 2x + Yy + .

Using the lagth-lexicographical ordering oiX*, it is easily seen that==-> is

terminating byTheorem 3.8Thus, ==-r is confluentif and only if it is locally confluent.

Next we determine the critical pairs ©f For convenience we will label each rewriting
step with the numberfdhe ruleapplied.
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(i) The first two rules overlap. The critical paip1, 1) is obtained by rewriting the
monomial Zx2yx? with both wles:

(BzX%y)x% ==>(1y zd¥ + 2ex? = p1
and

3zx2yx2 = zx2yx2 + zx2(2yx2) ==>(2) zx2yx2 + 2z%°d = 1.
As

zdX + 2ex? ==>(4) 6X + 32+ 2ex% ==>(5) 6X + 32+ 3y

and

2%y x? + 2zx%d ==>3) 2X + Y+ z+ 22X
==>@6) 2X+ Y+ 2Z+4x+ 2y +2z2=6x+ 3y + 3z,

we see that this critical pair resolves.
(i) The first rule overlaps with the third rule. The critical p&p>, g2) is obtained by
rewriting the monomial 3x2y x? with both ules:

32XPyx% ==>(1y zd¥ + 2ex =: py
and
3zx2yx2 ==>@3) 6X+ 3y +3z=:qp.

As seen aboveX6t+3y+3zis a descadant ofp, = ps, thatis, ths pair also resolves.
(iif) The second rule overlaps with the third rule. The critical pas, gs) is obtained by
rewriting the monomial 2x%yx? with both wles:

22X2yx? = zxX2(2yx%) ==>(2) 2zx°d =: p3
and

22X°yx% ==>(3) 4X + 2y + 2z =: Qa.
As

p3 = 2z2X°d ==>(6) 4X + 2y + 2Z = Qa,
this pair also resolves.

These are all the critical pairs of. However, onsider the following reductions
corresponding to Case 2.1 in the above proof:

(BzXPy)ex’t ==>() zdexX + 26°x? ==>(5) zdeX + 3ey,
which is irreducible mod==-, and

3zx%yexX = zxyex + zxX2y(2ex?) ==>(5) zx°yex + 3zx°y?
== zx°yexX + zdy+ 2ey,

which is also irreducible mo&=->r. Thus, ==-1 is not (locally) confluent.
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The problem stems from the following fadf the left-hand side of each elementf
has coefficient one, then, for each> 1 and eaclu € X*, if n-u is reducible mod==r,
then so ism - u for eachm > 1. However, if the left-hand sides of some elementd of
have coefficients of size larger than one, this is not true anymore, as seen in the example
above. Thus, for this situation we would need a much more general definition of overlaps
and critical pairs that also takes the coefficients into account.

4. Reductionsthat are based on digoint sums

Here we return to the case of free monoid semiriiRX*, where R is an arbitrary
semiring andX* is afree monoid.

As the reduction relation==>7 is in general non-terminating, we consider a more
restricted reduction relatioihis reduction relation is based representations of elements
of the monoid semiring considered as a disjoint sum of monomials as defiSediion 2

Definition 4.1. Let T ¢ X* x RX* be a relation such that, for every paiv, w') € T,
the stringw does not appear in TERM’). We define ane-step redumn relation=—=-
on RX* as follows:

a=—Tb iff ar,ri € R~ {0}3u, v, uj € X*I(w, w') € T:
a=ruwv 4 riuy + --- + rgug, (6)
b=ruwv+ (s + --- + reuk).

As the polynomialruw’v may contain one or more of the termas, .. ., uk, thegiven
representation of the elemdnis in general not a disjoint sum. Since, in contras&zs -,
a monomial is rewritten completely in ea==T-step, we cal=T the strong reduction
relation that is induced by .

In Lemma 3.2ve have seen that the weak reduction relation is compatible with addition
and multiplication. This is not true for the strong reduction relation, however, as shown by
the following example.

Example4.2. LetR := N, X := {x,y}, andT := {(x2, y)}. Consider the polynomials
a = x%, b := y, andc := x2 Thena =7 b, buta + ¢ = 2x? does not reduce to
b+ ¢ = y 4+ x? mod =>1. Thus,= is in general not compatible with addition.

The following lemma shows that the strong reduction relation is at least compatible with
multiplication by monomials from the left and from the right.

Lemma4.3. Letabe RX*,andletr,r' € Randw, w’ € X*.
(@) fa=t b,thentw-a-r'w =trw-b-r'worrw-a-r'w =rw-b-r'w'.
* *
(b) Ifa =7 b,thenalsow-a-r'w =t rw-b-r'vw'.

Proof. Leta = rixs + --- + rmXm. Then here exist a rulgu, v) € T and strings
y, Z € X* suchthat(u, v) reduces at the monomial; x; in order to get. To simgify the
notation we asume thait = 1, thatis, x; = yuzandb = riyvz+ (roXo + -+ + rmXm).
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Nowrw-a-r'w’ = (rrir Y wxgw’ +- - -+ (rrmr Hwxmw’. As thestringsx; are pairwise
distinct, so are the stringsx; w’. Thus, the above representatiorraf- a-r'w’ is either a
disjoint sum, and so

rw-a-r'w =1rrHwyvzw’ + ((rarHwxow’ + -+ + CrmrHwxmw’)
=rw-b-r'w,

orrryr’ = 0, which imgies that

rw-b-r'w = (rirywyvzw’ + (rrarHwxow’ + -+« + (rmr)wxmw’)
=rw-a-r'w.
This proves (a). Part (b) simply follows by induction on the number of steps in the reduction
a :*>T b. O

Even though the relatio==- itself is not compatible with addition, its reflexive,
3

symmetric, and transitive closu<=T is a congruence orR X*. In fact, we have the
following resut parallelingTheorem 3.3

Theorem 4.4. Let T C X* x RX*. Theneesr = O(T).

*
Proof. First we diow that<T is a mngruence orR X*. Obviously, it is an equivalence
relation. We claim that it also satisfies the substitution property. To verify this claim, it
3

suffices to showthat, for alla,b,c € RX*, if a =T b, thena+ ¢ <=7 b+,

ac éh— bc, andca éT cbhold as well.
Assume thata =1 b, and that ) is saisfied. Letc = sjv; + --- + Sphum. The
following two cases are possible.

Case lvj #uwvforall j=1,...,m. Then

a+c =ruwv 4 (reug 4 -+ 4 reu) + (S1v1 + - + Smvm))
=t ruw'v+ (riug + -+ + reuk) + (g + -+ 4 smom) =b +c,

*
and sca+c <=7 b+c.

Case 2vj = uwv for somej = 1, ..., m. For simgicity we may assume that = uwv.
There are two subcases.

Case 21l.r + 51 £ 0. Then

at+c = +spuwv + ((raug + -+ 4 reu) + (sv2 + -+ + Snvm))
=1 (r +spuw'v+ (raug + -+ 4 reue) + (ev2 + -+ + Smvm)
<=7 sUwv + (fuw’v +rqug + - + rKlc + U2 + - - - + Snuvm)
=b+c,

and sa+c éT b-+c. Here we use the hypothesis thatloes not appear in TERM),
and sos;uwv is a direct summand df + c.
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Case 2.r +s5 = 0. Then

a+c =g + -+ reu) + (Su2 + -+ Smom)
=(r +spuw'v+ (rug + - + rel) + (2 + -+ + Snum)
<=7 sUwv + (FUw'v 4+ 11U + - - + KUk + U2 + - - - + Snum)
=b+c,

and soca + ¢ éT b + c, too. As in Case 2.1 the hypothesis @n, w’) is usechere.
Thus, in all these cases+ ¢ éT b + ¢, and theeforeéT is compatible with
addition.
3
In order to prove thaac <=7 bc, notice first thatLemma 4.3implies that

a(sy) éT b(sy) holds for anys € Randy € X*. Since we havehown tha'éT is
compatible with addition, we obtain

ac = asivy +asvy + - - - + aSnum
%
<1 bsiv; + a2+ - + aSwum
ES
<1 bsiv; +buo + - + asnvm

%
T

*
<71 bsiv1 + -+ bShvm
= bc.

k k
It can be shownimilarly thatca <=1 cbholds. Thusé&=r is indeed a congruence
% k
relaion on R X*. Moreover, sincel C <=, it followsthat®(T) C <.

To prove thatéT is contained in@(T), take any paira, b) with a =t b. Since
O(T) is a congruence, §) implies that(a,b) € ©(T). Since ®(T) is an equialence

relaion, it follows thatéTg O(T). Herce, we see the{;hz O(T), asrguired. O

Remark 4.5. The requirement that, for each ruléetleft-hand side must not occur as

a term in the corresponding right-hand side is essential for two reasons. First of all, if
T contained a rule of the fornu,ru 4 riu; + --- 4 rguk), wherer,r; € R~ {0}
andu, u; € X*, then=7 would in general not be terminating. Secondly, without this
requirement the reduction relati==t may not even generate the correct congruence
relation. In fact, the following example shows that without this restriction the reflexive,
symmetric, and transitive closure==1 may not even be comfible with addition.

Example4.6. Let R .= N, letx,y € X, and letT = {(x,X + y)}. We clam that

X 4+ X éT (X + y) 4+ x does not hold, which shows that the relatkéh is not
compatible with addition.

For alla, b € NX*, if a==71 b, thennp(y) = ma(y) + 7a(X), andmp(z) = wa(2) for
all z e X \ {y}. Herce, for all integers > 0, if 2x + iy ==1 b, thenb = 2x + (i +2)y,
and we obtain the following reduction sequences:

X+ Yy=T2X+3y=7 22X+ 5y=7 22X+ Ty =>T ---, and
X=T 2X+ 2y =7 X+ 4y =7 2X+ 6y =7 ---.
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Only the reductions indicated above are applicable to the elements of the above
sgquences. Thatis, #=71 2x+iy, theni > 2, anda = 2x+ (i —2)y. Thus, the elements
2x 4+ y and X cannot be obtained as the result of duetion, and the other elements of
the sequences above can onlydigained by the indicated reduction steps. As the above

*
sgjuences do not have any elements in common, it followsthak <=t (X +Yy) + X
does not hold ilNX*.

In the fdlowing we are concered with the properties of the strong reduction relation
that are central to the rewriting approach: termination and confluence. We will proceed as in
Section 3 establishing first a sufficient condition for termination, consider the special case
of T beng a string rewriting system next, and finally discuss a test for (local) confluence
in the general situation. As iBection 3.3his test will be based on the notion of critical
pair.

4.1. Termination

Suppose that a well-founded, admissible partial ordekirig given onX*. By > we
denote the well-founded partial ordering on the set of subsexs' dhat is induced by-,
which is in fact the restriction of the corresponding multiset ordering.

We now define a binary relation-* on RX* as follows:

p>*q iff TERM (p) » TERM(Q). @)

From this definition and the properties of the multiset orderss) we immediately
obtain the following.

Proposition 4.7. >=* is a well-founded quasi-ordering on R*X
Based on this ordering we can easily derive the following result.

Theorem 4.8. Let = be an admissible well-founded partial ordering or,Xand let
T c X* x RX* be a relation such that

YU,siv1 + v + - FSsmum) e TVi=1,....,m:u>vj. (8)
Then=t is terminating.
Proof. Assume tha =7 b holds. Then by&)

a=rxuy -+ riug + --- 4 rpun,
and

b=(r sixviy + - + r-smXvmy) + (riug + -+ 4 rpup),

where(u, s;v1 + -+ 4+ Smum) is the rule ofT that is used in the reduction fromto b.
Thus,

TERM(a) = {xuy, us, ..., Un}
and

TERM(b) = {Xxv1Yy, ..., Xvmy}U{u1, ..., Un}.
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By thehypothesis above > v; foralli = 1,..., m, and as the mlering> is admissible,
we havexuy > xviy foralli =1,..., m. Herce,
TERM(a) > TERM(b),

that is,a =* b, which showshat the quasi-ordering* is compatible with the reduction
relgion=-. As >* is well-founded, this implies the==- is terminating. O

4.2. Restricted reduction systems

Now we turn to the special case wheFeC X* x X*. Then he reldion T induces
two reduction relations: the reduction relatic=>t on X* defined by (3 and the
strong reduction relatior=—71 on RX* defined by (§. The following observation is
straightforward.

Proposition 4.9. Let (X, T) be a string rewriting systenThen the following conditions
are equivalent for all strings w € X*:

(@ u—T v,

(b) U=t v.

Under what conditions does the reduction relat==T inherit properties such as
termination, local onfluence or confluence from the relati==>7? For the temination
property this is straightforward.

Corollary 4.10. Let (X, T) be a finite string rewriting system. Then the relat= is
terminating iff—T is terminating.

Proof. If = is terminating, then so i=—t by Proposition 4.9

Conversely, if the reduction relatic=st is terminating, then there exists an admissible
well-founded partial ordering- on X* that is compatible witk—1. Herce, Theorem 4.8
implies that=- is also terminating. O

Next we establish a technical result that we will need for our further investigations.

Lemma4.11. Let(X, T) be afinite string rewriting system, and let

a=rqus + -+ + rguk.
Forw e X* letl,(a) :={i € {1,...,k} | uy —F w}. Then

* . .
a =T Z rilw+ Z rjuj. 9)
iely (@ j¢lw@

Proof. If u, —>1 w, then alsaiu; = riw. Herce,

Yonu=r | Y ri]|w

iely(a) iely (@
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All terms (or strings)x occurring in this reduction sequence reducatdHence, none of
them coincides with any of thej, j ¢ 1,,(a). If

p=six1 + - + SnXm

is apolynomial occurring in this reduction sequence, then

sixe + o F Smxm+ DTy
j¢lw (@
is actually a disjoint sum. Thus,

a= Z riui + Z rjuj :*>T Z ri lw+ Z riuj. O

icly(a) j¢lw(@ icly (@) j¢lw@

Before continuing with the theory, we illustratemma 4.11by an example.

Example4.12. Let R := N, let X := {x, y}, and letT := {(xyX, xy)}. We mnsiderthe
polynomiala := 2xyxyx+ 3Xyxxy-+ Xyyx.
Forw := xyy, we have

XYXYX—>T XYXYy—>T XYYy  and  XYXXY—>T XYXY—>T XYY,

while xyyx does not reduce toyy, and so,

a = 2xyxyx+ 3xyxxy+ xyyx =*>T 5Xyy + Xyyx.
On the othethand, forw’ := xyyx, we havexyxyx—st XyyX, while xyxxydoes not
reduce taxyyx. Herce,

a = 2XyXyx+ 3Xyxxy-+ Xyyx :*>T 3XYyyX + 3XyxXxy.

This example shows in particular that, for different stringandw’, the ndex setd, (a)
andl,,(a) are in general incomparable under inclusion.

Actually, for the case thet—7 is confluent, we have a stronger result.
Leta = rqus + --- 4 rpun be an element oR X*. On the seof indicesl (a) =
{1, ..., n}, we definean equivalence relatior as follows:

i~ iff ui«<—7Juj.

Furthe, by Py(a) we denote the partition of (a) that is induced by this equivalence
relaion.

Example4.13. Let R:= N, let X := {x, y}, and let

T = {(XyX, Xy), (XYY, Xy), (YYX, YyXX)}

Then—T is not terminating, but it cahe shown to be confluent. Let

a:= ya3yx + 2y?x%y? + y?x%y + 3y*x + 2xy? + 4xy.
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Theny?x3yx, y?x2y?, y?x?y have the common descendarik3y, andxy?, xy have the
common descendarty, while no other two terms o& are congruent moz—. Herce,
Pr(@ = {{1,2, 3}, {4}, {5, 6}}.

Lemma4.14. Let a = rqu; + --- 4+ rpun be an element of R% and let R (a) =
{U1,...,Ux}. If the rdation —1 is confluent (on X), then there exist strings
w1, ..., wk € X*such hat

a ==1 w1 + Gowz + -+ + Gkwk
holds, where g:= 3.y, i, j = 1..... k.

Proof. From the definition of~ we see that all the strings, i € U1, are congruent
mod <1. As—-sT is confluent by our hypothesis, we see that there exists a atring

suchthatu; —st w1 holds for each string;, i € Us. Further, ifx is a stringus or any
of its descendants, whese¢ U1, thenx cannot be reduced t@1. Herce, we see from
Lemma 4.1%hat

* . .
a —T Qw1 + Z rju;j.
j¢U1
By repeating this argument for each index 2, . . ., k, we obtain the result above.[

Example 4.13 (Continued). Asy?x3yx, y?x2y2, y2x2y have the common descendant
y2x3y, andxy?, xy have the common descendaryt we obtain that

a = y>3yx + 2y?x%y? + y?x?y + 3y> + 2xy* + 4xy
o 4y?3y | 3y?x 1 6xy.
Next we turn to the propéy of local confluence.

Theorem 4.15. Let (X, T) be a finite string rewriting system. Then the reduction relation
=T on R X" is locally confluent iff— is locally confluent.

Proof. If = is locally confluat, then so i=—7 by Proposition 4.9Thus, it remains to
consider the converse implication.

Let a, b, c be thre elements oR X* suchthata =1 b anda = c, and leta have
the following represeation as a disjgit sum:

a=rquy + --- 4 reu.

First, suppose thdi andc are obtained frona by rewriting the same monomial, say.
That s, there ar&; andy; suchthatu; —T x1 andu; —1 y1, where

b=rixs+rous+ - +reug,
C=r1y1 +rauz2+ -+ rgug.
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Since—7 is locally confluent, there exists somee X* suchthatx; 51 wand
y1 —>7 w. By Lemma 4.11his yields

* .
b=1 b=|r1+ Z rlw+ Z rjuj, and
il (@\{1) j¢ly(@)

* . :
c=1 =+ Z N lw + Z riuj.
iely@\{1} il (@)

As b’ = ¢/, we sedahatb andc have a common descendant, and local confluence holds in
this case.

Secondly, suppose th&tandc are obtained frona by rewriting distinct monomials,
sayu; andup. That is, there existxy, x2 suchthatu; —sT x1 anduz; —71 X2, and

b =rix1+rou2 +rsuz+ -+ rgug,
C=Tr1Uy +roXo +r3uz+--- 4+ rgUk.
In this situation two cases are possible.
Case 1. x andx have a common descendantThen

* .
b=1t b=[ri+ro+ Z rlw+ Z rjuj, and
iely(@\{1,2} j¢ly(@)

* . _
cC=1 C=|r1+r+ Z ri fw + Z rjuj.
iely, @\{1,2} j¢ly (@)
As b’ = ¢/, local confluence also follows in this case.

Case 2. x andxz do not have a common descendant. In particular, this meansitbati,
andxz # uj hold. Hence,

b=rouy + (rixy +rsug+--- 4+ rgUx) =T r1Xg + roXs +rauz + - - - + rgli
and
C=rqu1 + (fraX2 +r3uz+ - - -+ rgUk) =T r1X1 + r2X2 +rauz + - - - + reli.

Thus, also in this cage andc have a common descendant. As this covers all possible
cases, it follows the==t is indeed locallyconfluent, if—7 is. O

By combiningCorollary 4.10andTheorem 4.1%ve obtain the following result.

Corollary 4.16. Let (X, T) be a finite string rewriting system. The=sT is convergent
iff =7 is convergent. If these lations are convergent, then the unique normal form for
a=rquy + --- + rgug is of the form 01 + - - - + r¢Qk, where(; is the unigue normal
form of the string ymod —.

Here the result on the forraf the normal forms followdrom the fact tkat a string
u € X* isirreducible mod—r iff itis irreducible mod=—t and fromLemma 4.14
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Corollary 4.17. Let (X, T) be a finite string rewriting system, and let R be a semiring
such hat computations in R can be performed effectivel—%7 is converget, then the
congruence?d (T) is decidable in R X.

Proof. By Corollary 4.16 the reduction relatio==7 is convegent onRX*. As it is
effectively computable, it follws that the equivalence relati(éT is deciddle. By
Theorem 4.4&& coincides with@(T). O

Next we gaerdize Theorem 4.1%0 the notion 6 confluence.

Theorem 4.18. Let (X, T) be a finite string rewriting system. Then the reduction relation
=7 on RX" is confluent iff—T is confluent.

Proof. If =1 is confluent, then so i=—71 by Proposition 4.9 Thus, it remains to
consider the converse implication.

So leta, b, c € RX* suchthata =*>T b anda =*>T ¢ hold. By Lemma 4.14here
exist gringsx, ..., Xk and integers, . . ., gk suchthat

* . .
b=t gixx + - + Xk
andx; is not congruentte; fori # j. Furtherg; is the sum of the coeffients of all those

monomials inb for which the terms are congruentxp mod <t Analogously, there
exist aringsys, ..., yp andintegerdiy, ..., hp suchthat

* . .
c =1 hiy1 + --- + hpyp,
andy; is not congruentty;j fori # j. Furtherh; is the sum of the coeffients of all those
monomials inc for which the terms are congruentypmod <

As a :*>T b anda :*>T ¢ both hold, we see thai = k, and thathere is a bijection
o:{1,....k} - {1,...,k} suchthatxi <—>T Y,¢) andgi = h, hold. As—>7 is
confluent, there exists a string suchthatxi, —>t wj andy,i, —->1 wi both hold,

i =1,...,k Thus,b andc both reduce ta := giw1 + --- + gkwk. Herce, with—st
also=t is confluent. O

4.3. Test for (local) confluence

For the spcial case of systems of the forin c X* x X* the results of the prgous
subsection show that local confluence of the reduction rel&=4+ on RX* is equivalent
to the local onfluence of the relatio=——t on X*, and thereuth it is characterized by
the critical pairs of the string rewriting system. In paticular, for finite terminating
systemsT, this means that (local) confluence is decidable (see, Bapk and Otto,1993
Theorem 2.3.1).

Here we want to investigatthe problem of testing (local) confluence for reduction
relaions=T on RX* that are generated by more general systems than string rewriting
systems. In fagtwe return o systens of the forml' ¢ X* x RX*, thatis, each element 6f



F. Otto, O. Sokratova / Journal of Symbolic Computation 37 (2004) 343-376 367

is of the form(u, rqvy 4 rovy + - - - + rmum), whereu, vy, ..., vm € X*,r1,....rm € R,
andm > 0.

We assume that- is an admissible well-founded partial ordering &, and thatT
satisfies conditiong). Then, byTheorem 4.8the reluction rehtion=— is terminating.
Hence, in this setting local confluence coincides with confluence. We will establish a
characterization of confluence == that is based on the notion of critical pairs.

Let

(Ui, rivy + rovp + -+« Frgv) and (Ug, sStwy + Swo + -0 F spwp) (10)

be two (not necessarily stinct) elements of .

The rules overlap in the same situation aPfinition 3.15 and the resulting critical
pairs are obtained analogouslyl@efinition 3.17 That is, ifthere exs$t stringsx, y € X*,
0 < [X| < |uz|, such hatuix = yup, then the monomiali;x can be rewritten by both
rules:

UiX =7 rv1X + ravaX + -+ 4 rrwkX
and
ULX = YU =1 Styw1 + Syws + -+ 4+ Spywp.

Also if there exist stringx, y € X* suchthatu; = xupy, then the monomiali; can be
rewritten by both rules:

Up ==t rivy + rpvz + -+ + rewk
and
U = Xy =7 SiXw1y + SpXwpy 4 -+ 4 spXwpy.
Accordingly, we obtain the critical pair
(rivaX +ravaX + - - - + rgvkX, Styws + Sywz + - -+ + Spywp),
if upx = yup for somex, y € X*, 0 < |x| < |uz|, and
(rivi +rav2 + - - - + vk, SIXw1Y + SXw2y + - - - + SpXwpy),

if up = xupy for somex, y € X*. As before CIPT ) denotes the set of all critical pairs ©f
Further, wedenote by IRR=7) the set of all irreducible elements BfX* mod=—=t.

Based on these tions we derive the following characterization of confluence. In
contrast toTheorem 3.18his characterization is obtainexhly for the special case that
the reduction relatio= is terminating. Also it is required that the underlying semiring
is commutative with respect to multiplication.

Theorem 4.19. Let R be a commutative semiring, and letZTX* x RX* be a system of
rules that satisfies conditiof8) above. Then the following statements are equivalent:

(a) The relation—=- is confluenton RX.

(b) The polynomials p and q have a common descendaod —>1 for each pair
(p,q) € CA(T).
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Proof. By Theorem 4.&he reduction relatio=>t is terminating, ad so ©nfluence is
equivalent to local confluence. Certainly= is (locally) confluent, thernp andg must
have a common descendant m==- for each critical pail(p, q) of T. Thus, it emains
to prove the converse implication.

Now assume conversely that each critical pairTofresolves. We claim that each
polynomiala € RX* has a unique irreducible descendant ==1. For proving this
we proceed by Noetherian induatidbased on the quasi-ordering® on RX* defined
in (7).

Certainly each irreducible polynomlidas a unique normal form. So lat= rix; +
.-+ + rmxm be a reducible polynomial such that each polynomisatisfyingd *< a has a
unique normal form. We will also show thathas a unique normal form. For that we have
to consider various cases.

Case 1.There is only a single possible reduction that applies.t®hen here is a unique
polynomialb suchthata = b. By (8), b *< a, and sob has a unique normal form by
our induction hypothesis, which then is also the unique normal fora of

Case 2There are two or more reductions that applyato

Case2.1.Assume thahisa rmnqmial, thatisa = rquy. Further, leta=—=t b :*>T be
IRR(==>T). We reed to show thdi is the only irreducible descendantafSo leta==7 ¢
be another reduction step.

Case 21.1. The stepsa =1 b anda =7 c rewrite non-overlapping factors of the
termus. More peecisely, there exist rulegg1, v1) and(¢2, v2) in T and strings, y, z € X*
suchthatu; = x¢1y£2z. Then the monomiatiu; has the two immediate descendants
riXviy£2z andriXx£1yvsz.

Assume that

v1 =S1v11 + -0+ Lk
and

vp =tivp1 + -+ + thvan
for some integerk, n > 0. Hence,

rixviy€oz = (r1s1)xv11y€oz + - -+ + (risk)xvyky€zz
and

rix€1yvez = (rity))x€1yvz 1z + -+ + (ratn)x€1yvz nz.

As these representations are disjoint sums, it is easily seen that

*
riXviy€oz ==t (r1S1)Xvy1yvozZ + - - - + (r1S)Xvy kyvoz

k n
=YY (istp)xviiyvzjz

i=1j=1
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and
*
rix€iyvez ==t (faty)Xxviyvz1z+ - - - + (fitn)Xviyvz nZ
k n
=)D (rtjs)xviiyvz jz.
i=1j=1
As the semiringR is commutative, we havgt; = tjs, and theefore, the two

immediate desendants of1u; have a common descendant. Howebetr< a andc *< a,
and sab andc each only have a single normal form. Thus, they both have the same normal
form, which is the polynomidb.

Case 21.2.The stepsa =71 b anda =1 ¢ form an instance of a critical pair, that is,
b=rix-p-yandc = rix-q -y for somex,y € X* andp,q € RX* suchthat
(p, q) € CP(T). By condition (b), the critical paitp, q) resolves to a common descendant
d € RX*. Then lased orLemma 4.3t follows thatb andc have a common descendant,
rix - d - y, whichas in the subcase above implies thas the unique normal form of both

b andc.

Thus, we see that in this caadas the unique normal forin
Case2.2.Assume thaat = rju; + --- + rxuk for somek > 1. Again let
a=1 b=% b € IRR(=>T)
and leta =T ¢ be another reduction step.

Case 22.1.Let us suppose first thétandc are obtained frona by rewriting at different
monomials, say; anduy. That is, there exist polynomials= Y sv andw = >_tjw;
suchthatu; =T v andu, =71 w and

b=riv+rouz+--- 4 reu,

C=rqus+row+4--- 4 rgug.

If ux ¢ TERM(v) andu; ¢ TERM(w), thenrausy is a direct summand ddf, andryu; is

a direct summand of, andhence

b=t rw+row+---+rkux =rcC.

Assume nw thatup; € TERM(v), sayuz = v for somei. It follows that(ro + r15)uz
is a direct summand df, and weget the following:

b =@2+ris)us + rlZSjUj +r3uz+ -+ gl
j#
=7 (f2 +1S)w + rleJ’UJ’ +rauz+---+reug | = b
j#
On the othehand, sincel, = vj, condition @) impliesus > uy, because the ordering
> is admissible. It follows thati; ¢ TERM(w), and soriu; is a direct summand df.
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Therefore we obtain the following:

C =rug + (row +--- +rguk)
=7 v+ (2w + - - - + rey)

= (rasvi) + rlZSjUj +row +rauz + - -+ + rgui
i#i

=71 (Nsw) + rlZSjUj + 2w +r3uz + - -+ + Uk
j#i

=@2+ris)w+ rlZSjUj +r3uz + - - - + gk
j#
=D
Hence,b and ¢ have a common descendant, whenever they are obtainedafrioyn

rewriting at different monomials. However, &s*<a andc *<a, we obtain from the
induction hypothesis théitandc each have a unique normal form, whiclbis

Case 22.2. The two reductions =1 b anda = ¢ rewrite the same monomial of
a, sayrius. If there is another monomial @f that is reducible, then by considering the
polynomiald obtained in a single step by reduciagat one such monomial we obtain
from the Case 2.2.1 thatandd have the same unique normal form, and thabdd have
the same unique normal form. Thus, all these polynomials have the unique normabform

If no other monomial ofa is reducible, them := roux + --- + rgu is irreducible.
Furtherb = riv+d andc = riw +d, wherer v andriw are the polynomials obtained by
reducing the monomiakui. Nowriu; *<a, and sa1u; has a unique normal form by
our |nduct|on hypothe3|s which is also the unique normal form ofand ofryw. Thus,

riv :>T u andriw =>T u. Asd is a aum of irreducible monomials, We see that the
monomials ofd do not interfere with these reductions, thatdss riv +d :>T u+d

andc =rjw+d :*>T u+ d. Thus, also in this cadeandc have a common descendant,
and therewith we can again apply the induction hypothesis which yieldb #radc have
the sameinique normal fornb.

As this covers all cases we see thdtas a unique normal form, and so by Noetherian
induction it follows that each polynomial fromR X* has a unique normal form. Thus, the
reduction relatio=—7 is indeed onfluent. [

We close lhis subsection with two short examples.

Example4.20. Let R:= Z, X := {X, Y, z}, andT consist of the following four ‘rules’:

DX —>y+z

(2) yx = xy+ 3x,

(3) zx — xz— 3Xx,

(4) zy — yz— 6y — 62.
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If > is the lengh-lexicographical ordering iiX* that is induced by thénear odering
z > y > x on X, then we se thafl satisfies conditiorl). There are four overlaps between
the rules ofT, resulting in four critical pairs:

XY+ Xz=) x - X% = x% - x =1 yX + 2X,

Y2+ yze=) y - X2 = yx- x =) Xyx+ 3x%,

2 = zX- x =3 xzx— 3x2,

Zy+ 722 =1 z-Xx
ZXY+ 3ZX =) Z- YX = ZY - X =>4) YZX— ByX — 6ZX.
These critical pairs resolve as follows. The first paiy + xz yx + zX) resolves, as
YX 4 ZX=>2) XY 4+ 3X + ZX=3) XYy + 3X + XZ— 3X = Xy + Xz
The second paify? + yz, xyx+ 3x?) resolves, as
XyX+ 3x% =) X2y + 6x% =) y* + 2y + 6x°
=) Y2+ yz— 6y — 62+ 6x2 =) Y2 + yz
The third pair(zy + z2, xzx — 3x?) resolves, as
XZX— 3x% =3, X%z — 6x2 =y, yz + 2% — 6x°
=>1) yZ+ 2> — 6y — 62 =4y 2y + 2%,
and the fourth paitzxy+ 3zx, yzx— 6yx — 6zXx) resolves, as

ZXY+ 3ZX=>3) XZY— 3XY + 3ZX==>(4) XYZ— XYy — 6XZ+ 3zX
= @) XyZ— 9Xy — 3XxZ— 9X
and

YZX— BYyX — 6ZX =>(3) YXZ— 9yX — 6zX
=) XyZ+ 3XzZ— 9yx — 62X
= @) XyZ— 9yX — 3xz+ 18x
=) XyZ— 9Xy — 3Xxz— 9X.

Thus, the reduction relatic—T is convergent.

The commutativity of the semiring is essential for ensuring that it suffices to resolve
all the critical pairs in order to guarantee confluence of the reduction relation. This is
illustrated by the following example.

Example 4.21. Let R be a semiring, let, s € R suchthatrs # sr, letx, x'y,y’ € X
be distinct elements oK, and letT := {(x,rx’), (y,sY)}. Then CRT) = @, but the
reduction relatior—=-T is not confluent, as the elemexy has two different irreducible
descendants:

Xy=7 rx'y =1 rsx'y’ and xy=rt sxy =t srx'y’.

5. Computing normal forms

If T ¢ X* x RX*is afinite set of rules such that the weak reduction relatsz. ;
or the strong reduion relation==7 is convergent, then the congruené&T) can be
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characterized as follows: two polynomiglsg € RX* are congruent mod (T) iff the
uniqgue normal forms of p and§ of g with respect to==->7 or =T, resgectively,
coincide. Hence, if compations in the semiringR can be performed effectively, the
membership problem for the congruené&T) reduces to the problem of computing
normal forms.

Analogously, ifT is terminating, theiflocal) confluence ot==- (Theorem 3.1Band
of =1 (Theorem 4.1Phas been characterized by the technical condition that, for each
critical pair (p, q) of T, p andq have a common descendant, provided some additional
restrictions apply. However, instead of determining all the descendamtsnfl ofg and
then to check whether these sets have a non-empty intersection, it suffices to determine
arbitrary normal formg of p andq of g. If thesenormal forms coincide, then obviousfy
andq have a common descendant; otherwigés certainly not (locly) confluent. Thus,
also the task of checking (local) confluence reduces to the problem of computing normal
forms.

If T is terminating, then an arbitrary reduction strategy can be used to reduce a
given polynomial to normal form. However, as this process can be very time consuming,
one isinterested in strategies that are as efficient as possible. Certaintiethational
complexityof T gives a lower bound for the complexity of the process of computing
normal forms. Here, with a terminating systéim we asocate itscomplexity function
Dt : N — N, which isdefined by

Dt (n) :== max{dr(p) | pe RX*, |p| <n},
wheredr : RX* — Nis defined as

dr(p) :=min{k | 3po, ..., P! P= Po=T P1=T - ==T Pk € IRR(T)},

and| p| denotes thaizeof p in some natudeenmding. For example, ip =rqu; + --- +
rnun, wherer; € Nandu; € X*, then

n
Pl =D (Ibin(r)] + |uil)
i=1
is an olvious choice, where bin;) is the binary acoding of the coefficient; and|u;|
denotes the length of the string.

If T is a string rewriting system, that i$, ¢ X* x X*, then he compleiy of actually
computing a normal form of a string depends linearly on the length of the reduction
segquence fromu to the nomal form G computed (see, e.d3ook and Ottp 1993 Sedion
2.2). The length of this sequence, on theesthand, depends on the reduction strategy
used. However, an upper bound can be obtained from the partial ordering that is used to
verify the termnation of T. If T is weight-relucing, thendt (u) < g(u), whereg is the
correspondingveight-function, if T is compatible with a lengtkexicographical ordering,
thendr (u) < cYl for some constartt > 1, but much higher bounds are possible, and in
many cases these bounds are actually shtaofbauer 19929.

For systemsof the form T C X* x RX*, the stuation is even more involved,
as a reduction step =T q replaces a monomialu of p by a sum of monomials
rsjuy + --- + rshup, and subsequently all these monomials have to be reduced to
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normal form. This makes it clear that in general the process of reducing a polynomial
to normal form is very time consuming. This has also been observed in many experiments
with Buchberger’s algorithm for computing Groebner bases, where it turned out that the
most time was spent in normal form computations (see, @ghauer and Mler, 1988.

To conclude this discussion we present a particular reduction strategy for free monoid
semirigs. For such a strategy we must make several choices:

(1) If p=ryus + --- + rpun is thepolynomial that is to be reduced to normal form,
then we have to choose a monomigl; from among all the reducible monomials
of p.

(2) Once we have chosen a mononmial;, we have to choose a rul€u,q) € T from
among all the rules that are applicable to this monomial.

(3) Once we have chosen a mononrial; and a rule(u, q) € T, we have to choose
a factorization ofu; of the formu; = xuy (x,y € X*) from among all such
factorizations.

Of course, the first two choices can be made in reverse order, choosing first a Tulleadf
applies to one or more monomials pfand then pick one of these monomials. Also other
orders are possible.

Our strategy is obtained by choosing specific instantiations of the choices above:

(1) From among the reducible monomialsmfwe choose a maximal one with respect
to the partial ordering- that is used for proving termination df. That is, if the
monomialrju; is chosen, then for alf # i, rju; is either irreducible, otj > ui
does not hold.

(2) From among the rules df that apply to the chosen monomrall;, we choose a rule
(u, g) such trat TERM(q) is minimal with respect to the induced multiset ordering
>,

(3) From among the various factorizations of the farm= xuy, we choose the leftmost
one. Thatis, ifu; = xuy = vuw, wherex, y, v, w € X* and(u,q) € T, then we
choosexuyif |X] < |v].

The rationale behind these choices is as follows.

(1) By reducing a large term, we obtain allection of smaller terms. Some of these
terms may coincide with other terms that already occur in the polynomiabssibly
cancelling them. Further, if we were to reduce a small terdirst, then a later
reduction step that replaces a larger term may reintroduce a monomial with term
u, thus necessitang additional reduction steps.

(2) The motvation for this choice of the ruléu, q) to be applié is thedesire to reduce
the monomialrju; by this one step as much as possible. The effect is measured in
terms of the partial orderings- .

(3) It appears reasonable to perform reductions within a tereither strictly from left
to right or from right to left. We have chosen the first alternative in accordance with
the way in which traditionally finitestate acceptors process strings.

We illustrate this strategy with an example.
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Example5.1. LetR :=7Z, X := {X, Y, z}, and letT be the system frorexample 4.2@hat
consists of the following four ‘rules’:
Dx*>y+z
(2) yx — xy+ 3x,
(3) zZXx — Xz — 3X,
(4) zy — yz— 6y — 62.
Further, letp := zyx+ 9yx. Both terms of p are reducible, but with respect to the

length-lexicographical ordering induced by- y > X, zyxis the maximal reducible term.
Rules (2) and (4) are both applicable to this term, but

TERM(yz— 6y — 62) = {yz Vv, z} >> {xy, X} = TERM(xy + 3x),
and so we choose rule (2). Hence, the first step according to our strategy is
P = ZyX+ 9yX =) ZXY+ 3zX+ 9yX =: p1.

All three terms ofp; are reducible, bugzxy is the maximal one. Only one rule is
applicable to it, that is, the next reduction step is

p1 = zZXy+ 32X+ 9yXx =>(3) X2y — 3XYy + 3zX+ 9yX =: po.

The maximal reducible term of, is xzy. As only rule (4) applies to it, the next
reduction step yelds

p2 = xzy— 3xy+ 3zx+ 9yx
=) XyzZ— 6Xy — 6xz— 3xy+ 3zx+ 9yx
= XYyzZ— 9Xy — 6Xz+ 3zX+ 9yx = p3.

The polynomialpz contains two terms that are still reduciblxandyx. Asz > vy, zx
is the maximal reducible term, and so the next reduction step is

p3 = Xyz— 9xy — 6Xz+ 3zX+ 9yx
=>@3) XYZ— 9XYy — 6XZ+ 3XxZ— 9X + 9yx
= XyzZ— 9Xy — 3XZ— 9X + 9yX =: pa.

Finally, yx is the only remaining term that is reducible, and so the final reduction step
is
Pa = Xyz— 9xy — 3xz— 9X 4 9yx
=) XyzZ— 9Xy — 3Xxz2— 9X + 9Xy + 27x
= Xyz— 3Xz+ 18x =: ps,

which yields he normal formps = xyz— 3xz+ 18x of p.

Itis conceivable that instead of choosing the rwleq) of T to be applied to thelosen
monomialrju; based on the set TERM), one could also take into account the effect of
applying that rule. For example, one could choose a(uile) and a factorizatioxuy of
uj in such a way that the set TERMQy) is minimal with respect to the induced multiset
ordering > . This, however, amounts essentially to the process of applying all possible
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reduction geps to the ternu; and then choosing the one that yields the best (that is,
minimal) resit, which appears to be quite an expensive strategy in terms of time efficiency.

6. Conclusion

We have introduced two different reduction relations on monoid semirings: the weak
reduction (SectionBand the song reduction $ection 4, and we have seen that they
both define the congruence that is generated by the underlying set of equations. As the
weak reduction is terminating only in very restricted cases, we have considered it in detail
only for the special case of free monoid semirings over the natural numbers. For a string
rewriting systemT on X*, we hae ®en that the induced weak reduction relatior™Nox*
inherits the termination and confluence properties from the string rewriting re’==sn
on X*, and wehave obtained a confluence test for more general systems of the form
T c X* x NX* that is based on the notion of critical pairs.

For the strong reduction relation corresponding results have been obtained in less
restricted cases. In particular, a confluence test has been derived for finite terminating
systems of the fornm C X* x RX*, whereR is a commutative semiring.

Finally, we have presented a particular reduction strategy for terminating systems of
the formT C X* x RX*. Bagd on this reduction strategy the membership problem for
the congruence® (T) can be solved algorithmically, if the systemis terminating and
confluent, and if the operations on the underlying semiring can be performed effectively.

Now if the given systemT is terminating, bunot confluent, then those critical pairs
(p, q) € CP(T) that do not resolve can be interpret@s minmal points of divergence. In
the setting of string rewriting systems (in fact, in the more general setting of term rewriting
systems) the Knit-Bendix completion procedur&iuth and Bendix 1970 proposes
to create additionalules from such critical pairs in order to resolve these divergencies.
However, care must be taken in introducing these rules as the resulting system must be
guaanteed to still be terminating. As additional rules may result in additional unresolved
critical pairs, this process must be iterated. This iteration will result in one of the following
three situations:

(1) Afinite system is reached for which all critical pairs resolve. THEIs convergent,
and it is equivalent t@, that is,0(T) coincides witho(T).

(2) An unresolvable critical paitp, q) is obtained, from which no rule can be created
without destroying the termination property of the actual system. Then one either
postpones this pair, hoping that everlya situation will bereached in which it
resolves, opne terminates the procedure with failure. )

(3) The iteration does not mainate at all. Then an infinite convergent systémnis
enumerated that is equivalentTo

Unfortunately, it isnot at all clear how this process can be carried over to the reduction
relations considered in this paperTifc X* x RX* is a finite terminating system over a
commutative semiringR, say, and ifT is not confluent, then some of the critical pairs of
T do not resolve moe=T. Unfortunately as gen inExample 4.20thesecritical pairs
will in general be polynomials that are not monomials. Thus, they cannot simply be turned
into rules of the formu, q) with u € X* andq € RX*. This means that the technique of
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the Knuth—Bendix completion procedure carries over to the reduction relations considered
here only in very special instances. In orderhandle finite and terminating systems of

the formT C X* x RX* in general, we would need a more general form of reduction
relation, a reduction relation that is induced by systems of the fofrnt RX* x RX*.

This, however, we have to leave for future work.

For the stong reduction relation considered rbe it remains toinvestigate the
confluence property for the case of non-commutative semirings. Further, it remains to
consider the confluence property for the siioia that the strong reduction relation is not
terminating. In that case confloee will in general be undecidable, and therefore sufficient
conditions for confluence would be of interest.
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