206 research outputs found

    Successive Wyner-Ziv Coding Scheme and its Application to the Quadratic Gaussian CEO Problem

    Full text link
    We introduce a distributed source coding scheme called successive Wyner-Ziv coding. We show that any point in the rate region of the quadratic Gaussian CEO problem can be achieved via the successive Wyner-Ziv coding. The concept of successive refinement in the single source coding is generalized to the distributed source coding scenario, which we refer to as distributed successive refinement. For the quadratic Gaussian CEO problem, we establish a necessary and sufficient condition for distributed successive refinement, where the successive Wyner-Ziv coding scheme plays an important role.Comment: 28 pages, submitted to the IEEE Transactions on Information Theor

    Sparse Regression Codes for Multi-terminal Source and Channel Coding

    Full text link
    We study a new class of codes for Gaussian multi-terminal source and channel coding. These codes are designed using the statistical framework of high-dimensional linear regression and are called Sparse Superposition or Sparse Regression codes. Codewords are linear combinations of subsets of columns of a design matrix. These codes were recently introduced by Barron and Joseph and shown to achieve the channel capacity of AWGN channels with computationally feasible decoding. They have also recently been shown to achieve the optimal rate-distortion function for Gaussian sources. In this paper, we demonstrate how to implement random binning and superposition coding using sparse regression codes. In particular, with minimum-distance encoding/decoding it is shown that sparse regression codes attain the optimal information-theoretic limits for a variety of multi-terminal source and channel coding problems.Comment: 9 pages, appeared in the Proceedings of the 50th Annual Allerton Conference on Communication, Control, and Computing - 201

    A Rate-Distortion Based Secrecy System with Side Information at the Decoders

    Full text link
    A secrecy system with side information at the decoders is studied in the context of lossy source compression over a noiseless broadcast channel. The decoders have access to different side information sequences that are correlated with the source. The fidelity of the communication to the legitimate receiver is measured by a distortion metric, as is traditionally done in the Wyner-Ziv problem. The secrecy performance of the system is also evaluated under a distortion metric. An achievable rate-distortion region is derived for the general case of arbitrarily correlated side information. Exact bounds are obtained for several special cases in which the side information satisfies certain constraints. An example is considered in which the side information sequences come from a binary erasure channel and a binary symmetric channel.Comment: 8 pages. Allerton 201

    Achievable Rate Regions for Two-Way Relay Channel using Nested Lattice Coding

    Get PDF
    This paper studies Gaussian Two-Way Relay Channel where two communication nodes exchange messages with each other via a relay. It is assumed that all nodes operate in half duplex mode without any direct link between the communication nodes. A compress-and-forward relaying strategy using nested lattice codes is first proposed. Then, the proposed scheme is improved by performing a layered coding : a common layer is decoded by both receivers and a refinement layer is recovered only by the receiver which has the best channel conditions. The achievable rates of the new scheme are characterized and are shown to be higher than those provided by the decode-and-forward strategy in some regions.Comment: 27 pages, 13 figures, Submitted to IEEE Transactions on Wireless Communications (October 2013
    corecore