683 research outputs found

    Hamilton cycles in dense vertex-transitive graphs

    Get PDF
    A famous conjecture of Lov\'asz states that every connected vertex-transitive graph contains a Hamilton path. In this article we confirm the conjecture in the case that the graph is dense and sufficiently large. In fact, we show that such graphs contain a Hamilton cycle and moreover we provide a polynomial time algorithm for finding such a cycle.Comment: 26 pages, 3 figures; referees' comments incorporated; accepted for publication in Journal of Combinatorial Theory, series

    On Directed Feedback Vertex Set parameterized by treewidth

    Get PDF
    We study the Directed Feedback Vertex Set problem parameterized by the treewidth of the input graph. We prove that unless the Exponential Time Hypothesis fails, the problem cannot be solved in time 2o(tlogt)nO(1)2^{o(t\log t)}\cdot n^{\mathcal{O}(1)} on general directed graphs, where tt is the treewidth of the underlying undirected graph. This is matched by a dynamic programming algorithm with running time 2O(tlogt)nO(1)2^{\mathcal{O}(t\log t)}\cdot n^{\mathcal{O}(1)}. On the other hand, we show that if the input digraph is planar, then the running time can be improved to 2O(t)nO(1)2^{\mathcal{O}(t)}\cdot n^{\mathcal{O}(1)}.Comment: 20

    Tight Bounds for Maximal Identifiability of Failure Nodes in Boolean Network Tomography

    Full text link
    We study maximal identifiability, a measure recently introduced in Boolean Network Tomography to characterize networks' capability to localize failure nodes in end-to-end path measurements. We prove tight upper and lower bounds on the maximal identifiability of failure nodes for specific classes of network topologies, such as trees and dd-dimensional grids, in both directed and undirected cases. We prove that directed dd-dimensional grids with support nn have maximal identifiability dd using 2d(n1)+22d(n-1)+2 monitors; and in the undirected case we show that 2d2d monitors suffice to get identifiability of d1d-1. We then study identifiability under embeddings: we establish relations between maximal identifiability, embeddability and graph dimension when network topologies are model as DAGs. Our results suggest the design of networks over NN nodes with maximal identifiability Ω(logN)\Omega(\log N) using O(logN)O(\log N) monitors and a heuristic to boost maximal identifiability on a given network by simulating dd-dimensional grids. We provide positive evidence of this heuristic through data extracted by exact computation of maximal identifiability on examples of small real networks
    corecore