308 research outputs found

    Red-blue clique partitions and (1-1)-transversals

    Get PDF
    Motivated by the problem of Gallai on (1−1)(1-1)-transversals of 22-intervals, it was proved by the authors in 1969 that if the edges of a complete graph KK are colored with red and blue (both colors can appear on an edge) so that there is no monochromatic induced C4C_4 and C5C_5 then the vertices of KK can be partitioned into a red and a blue clique. Aharoni, Berger, Chudnovsky and Ziani recently strengthened this by showing that it is enough to assume that there is no induced monochromatic C4C_4 and there is no induced C5C_5 in {\em one of the colors}. Here this is strengthened further, it is enough to assume that there is no monochromatic induced C4C_4 and there is no K5K_5 on which both color classes induce a C5C_5. We also answer a question of Kaiser and Rabinovich, giving an example of six 22-convex sets in the plane such that any three intersect but there is no (1−1)(1-1)-transversal for them

    Note on the 3-graph counting lemma

    Get PDF
    AbstractSzemerédi's regularity lemma proved to be a powerful tool in extremal graph theory. Many of its applications are based on the so-called counting lemma: if G is a k-partite graph with k-partition V1∪⋯∪Vk, |V1|=⋯=|Vk|=n, where all induced bipartite graphs G[Vi,Vj] are (d,ε)-regular, then the number of k-cliques Kk in G is dk2nk(1±o(1)). Frankl and Rödl extended Szemerédi's regularity lemma to 3-graphs and Nagle and Rödl established an accompanying 3-graph counting lemma analogous to the graph counting lemma above. In this paper, we provide a new proof of the 3-graph counting lemma

    On the strong chromatic number of random graphs

    Full text link
    Let G be a graph with n vertices, and let k be an integer dividing n. G is said to be strongly k-colorable if for every partition of V(G) into disjoint sets V_1 \cup ... \cup V_r, all of size exactly k, there exists a proper vertex k-coloring of G with each color appearing exactly once in each V_i. In the case when k does not divide n, G is defined to be strongly k-colorable if the graph obtained by adding k \lceil n/k \rceil - n isolated vertices is strongly k-colorable. The strong chromatic number of G is the minimum k for which G is strongly k-colorable. In this paper, we study the behavior of this parameter for the random graph G(n, p). In the dense case when p >> n^{-1/3}, we prove that the strong chromatic number is a.s. concentrated on one value \Delta+1, where \Delta is the maximum degree of the graph. We also obtain several weaker results for sparse random graphs.Comment: 16 page

    Defective and Clustered Choosability of Sparse Graphs

    Full text link
    An (improper) graph colouring has "defect" dd if each monochromatic subgraph has maximum degree at most dd, and has "clustering" cc if each monochromatic component has at most cc vertices. This paper studies defective and clustered list-colourings for graphs with given maximum average degree. We prove that every graph with maximum average degree less than 2d+2d+2k\frac{2d+2}{d+2} k is kk-choosable with defect dd. This improves upon a similar result by Havet and Sereni [J. Graph Theory, 2006]. For clustered choosability of graphs with maximum average degree mm, no (1−ϵ)m(1-\epsilon)m bound on the number of colours was previously known. The above result with d=1d=1 solves this problem. It implies that every graph with maximum average degree mm is ⌊34m+1⌋\lfloor{\frac{3}{4}m+1}\rfloor-choosable with clustering 2. This extends a result of Kopreski and Yu [Discrete Math., 2017] to the setting of choosability. We then prove two results about clustered choosability that explore the trade-off between the number of colours and the clustering. In particular, we prove that every graph with maximum average degree mm is ⌊710m+1⌋\lfloor{\frac{7}{10}m+1}\rfloor-choosable with clustering 99, and is ⌊23m+1⌋\lfloor{\frac{2}{3}m+1}\rfloor-choosable with clustering O(m)O(m). As an example, the later result implies that every biplanar graph is 8-choosable with bounded clustering. This is the best known result for the clustered version of the earth-moon problem. The results extend to the setting where we only consider the maximum average degree of subgraphs with at least some number of vertices. Several applications are presented
    • …
    corecore