1,741 research outputs found

    Multiphoton Radiation in Leptonic W-Boson Decays

    Get PDF
    We present the calculation of multiphoton radiation effects in leptonic W-boson decays in the framework of the Yennie-Frautschi-Suura exclusive exponentiation. This calculation is implemented in the Monte Carlo event generator WINHAC for single W-boson production in hadronic collisions at the parton level. Some numerical results obtained with the help of this program are also presented.Comment: 26 pages, 16 Postscript figure

    The Euler-Heisenberg Lagrangian beyond one loop

    Full text link
    We review what is presently known about higher loop corrections to the Euler-Heisenberg Lagrangian and its Scalar QED analogue. The use of those corrections as a tool for the study of the properties of the QED perturbation series is outlined. As a further step in a long-term effort to prove or disprove the convergence of the N photon amplitudes in the quenched approximation, we present a parameter integral representation of the three-loop Euler-Heisenberg Lagrangian in 1+1 dimensional QED, obtained in the worldline formalism.Comment: 11 pages, 2 figures, talk given by Christian Schubert at QFEXT11, Benasque, Spain, Sept. 18-24, 2011, to appear in the conference proceeding

    Comments on gluon scattering amplitudes via AdS/CFT

    Full text link
    In this article we consider n gluon color ordered, planar amplitudes in N=4 super Yang Mills at strong 't Hooft coupling. These amplitudes are approximated by classical surfaces in AdS_5 space. We compute the value of the amplitude for a particular kinematic configuration for a large number of gluons and find that the result disagrees with a recent guess for the exact value of the amplitude. Our results are still compatible with a possible relation between amplitudes and Wilson loops. In addition, we also give a prescription for computing processes involving local operators and asymptotic states with a fixed number of gluons. As a byproduct, we also obtain a string theory prescription for computing the dual of the ordinary Wilson loop, Tr P exp[ i\oint A ], with no couplings to the scalars. We also evaluate the quark-antiquark potential at two loops.Comment: 27 pages, 9 figures,v3:minor correction

    Comments on gluon scattering amplitudes via AdS/CFT

    Full text link
    In this article we consider n gluon color ordered, planar amplitudes in N=4 super Yang Mills at strong 't Hooft coupling. These amplitudes are approximated by classical surfaces in AdS_5 space. We compute the value of the amplitude for a particular kinematic configuration for a large number of gluons and find that the result disagrees with a recent guess for the exact value of the amplitude. Our results are still compatible with a possible relation between amplitudes and Wilson loops. In addition, we also give a prescription for computing processes involving local operators and asymptotic states with a fixed number of gluons. As a byproduct, we also obtain a string theory prescription for computing the dual of the ordinary Wilson loop, Tr P exp[ i\oint A ], with no couplings to the scalars. We also evaluate the quark-antiquark potential at two loops.Comment: 27 pages, 9 figures,v3:minor correction

    Regge behavior saves string theory from causality violations

    Get PDF
    Higher-derivative corrections to the Einstein-Hilbert action are present in bosonic string theory leading to the potential causality violations recently pointed out by Camanho et al. [1]. We analyze in detail this question by considering high-energy string-brane collisions at impact parameters b ≤ l s (the string-length parameter) with l s ≫ R p (the characteristic scale of the D p -brane geometry). If we keep only the contribution of the massless states causality is violated for a set of initial states whose polarization is suitably chosen with respect to the impact parameter vector. Such violations are instead neatly avoided when the full structure of string theory — and in particular its Regge behavior — is taken into account

    Instanton Contribution to the Quark Form Factor

    Full text link
    The nonperturbative effects in the quark form factor are considered in the Wilson loop formalism. The properties of the Wilson loops with cusp singularities are studied taking into account the perturbative and nonperturbative contributions, where the latter are considered within the framework of the instanton liquid model. For the integration path corresponding to this form factor -- the angle with infinite sides -- the explicit expression for the vacuum expectation value of the Wilson operator is found to leading order. The calculations are performed in the weak-field limit for the instanton vacuum contribution and compared with the one- and two-loop order results for the perturbative part. It is shown that the instantons produce the powerlike corrections to the perturbative result, which are comparable in magnitude with the perturbative part at the scale of order of the inverse average instanton size. It is demonstrated that the instanton contributions to the quark form factor are exponentiated to high orders in the small instanton density parameter.Comment: Version coincident with the journal publication. LaTeX, 15 pages, 1 figur
    • …
    corecore