12 research outputs found

    On stratified regions

    Get PDF
    Type and effect systems are a tool to analyse statically the behaviour of programs with effects. We present a proof based on the so called reducibility candidates that a suitable stratification of the type and effect system entails the termination of the typable programs. The proof technique covers a simply typed, multi-threaded, call-by-value lambda-calculus, equipped with a variety of scheduling (preemptive, cooperative) and interaction mechanisms (references, channels, signals)

    A decompilation of the pi-calculus and its application to termination

    Get PDF
    We study the correspondence between a concurrent lambda-calculus in administrative, continuation passing style and a pi-calculus and we derive a termination result for the latter

    An Elementary Affine λ-Calculus with Multithreading and Side Effects

    Get PDF
    International audienceLinear logic provides a framework to control the complexity of higher-order functional programs. We present an extension of this framework to programs with multithreading and side effects focusing on the case of elementary time. Our main contributions are as follows. First, we introduce a modal call-by-value λ-calculus with multithreading and side effects. Second, we provide a combinatorial proof of termination in elementary time for the language. Third, we introduce an elementary affine type system that guarantees the standard subject reduction and progress properties. Finally, we illustrate the programming of iterative functions with side effects in the presented formalism

    Indexed realizability for bounded-time programming with references and type fixpoints

    Full text link
    The field of implicit complexity has recently produced several bounded-complexity programming languages. This kind of language allows to implement exactly the functions belonging to a certain complexity class. We here present a realizability semantics for a higher-order functional language based on a fragment of linear logic called LAL which characterizes the complexity class PTIME. This language features recursive types and higher-order store. Our realizability is based on biorthogonality, step-indexing and is moreover quantitative. This last feature enables us not only to derive a semantical proof of termination, but also to give bounds on the number of computational steps needed by typed programs to terminate

    An affine-intuitionistic system of types and effects: confluence and termination

    Get PDF
    We present an affine-intuitionistic system of types and effects which can be regarded as an extension of Barber-Plotkin Dual Intuitionistic Linear Logic to multi-threaded programs with effects. In the system, dynamically generated values such as references or channels are abstracted into a finite set of regions. We introduce a discipline of region usage that entails the confluence (and hence determinacy) of the typable programs. Further, we show that a discipline of region stratification guarantees termination

    An affine-intuitionistic system of types and effects: confluence and termination

    Get PDF
    We present an affine-intuitionistic system of types and effects which can be regarded as an extension of Barber-Plotkin Dual Intuitionistic Linear Logic to multi-threaded programs with effects. In the system, dynamically generated values such as references or channels are abstracted into a finite set of regions. We introduce a discipline of region usage that entails the confluence (and hence determinacy) of the typable programs. Further, we show that a discipline of region stratification guarantees termination

    An Elementary affine λ-calculus with multithreading and side effects (extended version)

    Get PDF
    Linear logic provides a framework to control the complexity of higher-order functional programs. We present an extension of this framework to programs with multithreading and side effects focusing on the case of elementary time. Our main contributions are as follows. First, we provide a new combinatorial proof of termination in elementary time for the functional case. Second, we develop an extension of the approach to a call-by-value lambdalambda-calculus with multithreading and side effects. Third, we introduce an elementary affine type system that guarantees the standard subject reduction and progress properties. Finally, we illustrate the programming of iterative functions with side effects in the presented formalism

    Causal computational complexity of distributed processes

    Get PDF
    This article studies the complexity of π-calculus processes with respect to the quantity of transitions caused by an incoming message. First, we propose a typing system for integrating Bellantoni and Cook's characterisation of polytime computable functions into Deng and Sangiorgi's typing system for termination. We then define computational complexity of distributed messages based on Degano and Priami's causal semantics, which identifies the dependency between interleaved transitions. Next, we apply a necessary syntactic flow analysis to typable processes to ensure a computational bound on the number of distributed messages. We prove that our analysis is decidable; sound in the sense that it guarantees that the total number of messages causally dependent of an input request received from the outside is bounded by a polynomial of the content of this request; and complete, meaning that each polynomial recursive function can be computed by a typable process
    corecore