97,552 research outputs found

    Parallel generation of c[r]yptographically strong pseudo-random sequences

    Get PDF
    The operational disadvantages of perfectly secure cipher systems has led to the development of practically secure stream cipher systems. The security of such cipher systems depend on the strength of the keystream. In order to examine the strength of a sequence two different types of criteria are considered. Statistical tests, are designed to assess how a sequence with a particular property behaves randomly. Complexity measures, are applied to determine the complexity, or equivalently the unpredictability of a sequence. Sequences obtained by LFSR are considered as building blocks of pseudo-random (PR) sequence generators. Transformations on the decimal expansion of irrational numbers is an alternative method for generating PR sequences, which are studied and some encouraging results are reported

    Pseudo-Random Bit Generator Using Chaotic Seed for Cryptographic Algorithm in Data Protection of Electric Power Consumption

    Get PDF
    Cryptographic algorithms have played an important role in information security for protecting privacy. The literature provides evidence that many types of chaotic cryptosystems have been proposed. These chaotic systems encode information to obviate its orbital instability and ergodicity. In this work, a pseudo-random cryptographic generator algorithm with a symmetric key, based on chaotic functions, is proposed. Moreover, the algorithm exploits dynamic simplicity and synchronization to generate encryption sub-keys using unpredictable seeds, extracted from a chaotic zone, in order to increase their level of randomness. Also, it is applied to a simulated electrical energy consumption signal and implemented on a prototype, using low hardware resources, to measure physical variables; hence, the unpredictability degree was statistically analyzed using the resulting cryptogram. It is shown that the pseudo-random sequences produced by the cryptographic key generator have acceptable properties with respect to randomness, which are validated in this paper using National Institute of Standards and Technology (NIST) statistical tests. To complement the evaluation of the encrypted data, the Lena image is coded and its metrics are compared with those reported in the literature, yielding some useful results

    On the use of a Modified Latin Hypercube Sampling (MLHS) approach in the estimation of a Mixed Logit model for vehicle choice

    Get PDF
    Quasi-random number sequences have been used extensively for many years in the simulation of integrals that do not have a closed-form expression, such as Mixed Logit and Multinomial Probit choice probabilities. Halton sequences are one example of such quasi-random number sequences, and various types of Halton sequences, including standard, scrambled, and shuffled versions, have been proposed and tested in the context of travel demand modeling. In this paper, we propose an alternative to Halton sequences, based on an adapted version of Latin Hypercube Sampling. These alternative sequences, like scrambled and shuffled Halton sequences, avoid the undesirable correlation patterns that arise in standard Halton sequences. However, they are easier to create than scrambled or shuffled Halton sequences. They also provide more uniform coverage in each dimension than any of the Halton sequences. A detailed analysis, using a 16-dimensional Mixed Logit model for choice between alternative-fuelled vehicles in California, was conducted to compare the performance of the different types of draws. The analysis shows that, in this application, the Modified Latin Hypercube Sampling (MLHS) outperforms each type of Halton sequence. This greater accuracy combined with the greater simplicity make the MLHS method an appealing approach for simulation of travel demand models and simulation-based models in general

    An alternative method to the scrambled Halton sequence for removing correlation between standard Halton sequences in high dimensions

    Get PDF
    Halton sequences were first introduced in the 1960s as an alternative to pseudo-random number sequences, with the aim of providing better coverage of the area of integration and negative correlation in the simulated probabilities between observations. This is needed in order to achieve variance reduction when using simulation to approximate an integral that does not have a closed-form expression. Such integrals arise in many areas of regional science, for example in the evaluation and estimation of certain types of discrete choice models. While the performance of standard Halton sequences is very good in low dimensions, problems with correlation have been observed between sequences generated from higher primes. This can cause serious problems in the estimation of models with high-dimensional integrals (e.g., models of aspects of spatial choice, such as route or location). Various methods have been proposed to deal with this; one of the most prominent solutions is the scrambled Halton sequence, which uses special predetermined permutations of the coefficients used in the construction of the standard sequence. In this paper, we conduct a detailed analysis of the ability of scrambled Halton sequences to remove the problematic correlation that exists between standard Halton sequences for high primes in the two-dimensional space. The analysis shows that although the scrambled sequences exhibit a lower degree of overall correlation than the standard sequences, for some choices of primes, correlation remains at an unacceptably high level. This paper then proposes an alternative method, based on the idea of using randomly shuffled versions of the one-dimensional standard Halton sequences in the construction of multi-dimensional sequences. We show that the new shuffled sequences produce a significantly higher reduction in correlation than the scrambled sequences, without loss of quality of coverage. Another substantial advantage of this new method is that it can, without any modifications, be used for any number of dimensions, while the use of the scrambled sequences requires the a-priori computation of a matrix of permutations, which for high dimensional problems could lead to significant runtime disadvantages. Repeated runs of the shuffling algorithm will also produce different sequences in different runs, which nevertheless maintain the same quality of one-dimensional coverage. This is not at all the case for the scrambled sequences. In view of the clear advantages in its ability to remove correlation, combined with its runtime and generalization advantages, this paper recommends that this new algorithm should be preferred to the scrambled Halton sequences when dealing with high correlation between standard Halton sequences.

    Improvement and analysis of a pseudo random bit generator by means of cellular automata

    Get PDF
    In this paper, we implement a revised pseudo random bit generator based on a rule-90 cellular automaton. For this purpose, we introduce a sequence matrix H_N with the aim of calculating the pseudo random sequences of N bits employing the algorithm related to the automaton backward evolution. In addition, a multifractal structure of the matrix H_N is revealed and quantified according to the multifractal formalism. The latter analysis could help to disentangle what kind of automaton rule is used in the randomization process and therefore it could be useful in cryptanalysis. Moreover, the conditions are found under which this pseudo random generator passes all the statistical tests provided by the National Institute of Standards and Technology (NIST)Comment: 20 pages, 12 figure

    Random digital encryption secure communication system

    Get PDF
    The design of a secure communication system is described. A product code, formed from two pseudorandom sequences of digital bits, is used to encipher or scramble data prior to transmission. The two pseudorandom sequences are periodically changed at intervals before they have had time to repeat. One of the two sequences is transmitted continuously with the scrambled data for synchronization. In the receiver portion of the system, the incoming signal is compared with one of two locally generated pseudorandom sequences until correspondence between the sequences is obtained. At this time, the two locally generated sequences are formed into a product code which deciphers the data from the incoming signal. Provision is made to ensure synchronization of the transmitting and receiving portions of the system

    A novel pseudo-random number generator based on discrete chaotic iterations

    Full text link
    Security of information transmitted through the Internet, against passive or active attacks is an international concern. The use of a chaos-based pseudo-random bit sequence to make it unrecognizable by an intruder, is a field of research in full expansion. This mask of useful information by modulation or encryption is a fundamental part of the TLS Internet exchange protocol. In this paper, a new method using discrete chaotic iterations to generate pseudo-random numbers is presented. This pseudo-random number generator has successfully passed the NIST statistical test suite (NIST SP800-22). Security analysis shows its good characteristics. The application for secure image transmission through the Internet is proposed at the end of the paper.Comment: The First International Conference on Evolving Internet:Internet 2009 pp.71--76 http://dx.doi.org/10.1109/INTERNET.2009.1
    • …
    corecore