129,849 research outputs found

    A family of parametric schemes of arbitrary even order for solving nonlinear models

    Full text link
    [EN] Many problems related to gas dynamics, heat transfer or chemical reactions are modeled by means of partial differential equations that usually are solved by using approximation techniques. When they are transformed in nonlinear systems of equations via a discretization process, this system is big-sized and high-order iterative methods are specially useful. In this paper, we construct a new family of parametric iterative methods with arbitrary even order, based on the extension of Ostrowski' and Chun's methods for solving nonlinear systems. Some elements of the proposed class are known methods meanwhile others are new schemes with good properties. Some numerical tests confirm the theoretical results and allow us to compare the numerical results obtained by applying new methods and known ones on academical examples. In addition, we apply one of our methods for approximating the solution of a heat conduction problem described by a parabolic partial differential equation.This research was partially supported by Ministerio de Economia y Competitividad MTM2014-52016-C02-2-P and FONDOCYT 2014-1C1-088 Republica Dominicana.Cordero Barbero, A.; Torregrosa Sánchez, JR.; Vassileva, MP. (2017). A family of parametric schemes of arbitrary even order for solving nonlinear models. Journal of Mathematical Chemistry. 55(7):1443-1460. https://doi.org/10.1007/s10910-016-0723-7S14431460557R. Escobedo, L.L. Bonilla, Numerical methods for quantum drift-diffusion equation in semiconductor phisics. Math. Chem. 40(1), 3–13 (2006)S.J. Preece, J. Villingham, A.C. King, Chemical clock reactions: the effect of precursor consumtion. Math. Chem. 26, 47–73 (1999)H. Montazeri, F. Soleymani, S. Shateyi, S.S. Motsa, On a new method for computing the numerical solution of systems of nonlinear equations. J. Appl. Math. 2012 ID. 751975, 15 pages (2012)J.L. Hueso, E. Martínez, C. Teruel, Convergence, effiency and dinamimics of new fourth and sixth order families of iterative methods for nonlinear systems. J. Comput. Appl. Math. 275, 412–420 (2015)J.R. Sharma, H. Arora, Efficient Jarratt-like methods for solving systems of nonlinear equations. Calcolo 51, 193–210 (2014)X. Wang, T. Zhang, W. Qian, M. Teng, Seventh-order derivative-free iterative method for solving nonlinear systems. Numer. Algor. 70, 545–558 (2015)J.R. Sharma, H. Arora, On efficient weighted-Newton methods for solving systems of nonlinear equations. Appl. Math. Comput. 222, 497–506 (2013)A. Cordero, J.G. Maimó, J.R. Torregrosa, M.P. Vassileva, Solving nonlinear problems by Ostrowski-Chun type parametric families. J. Math. Chem. 53, 430–449 (2015)A.M. Ostrowski, Solution of equations and systems of equations (Prentice-Hall, Englewood Cliffs, New York, 1964)C. Chun, Construction of Newton-like iterative methods for solving nonlinear equations. Numer. Math. 104, 297–315 (2006)A. Cordero, J.L. Hueso, E. Martínez, J.R. Torregrosa, A modified Newton-Jarratt’s composition. Numer. Algor. 55, 87–99 (2010)J.M. Ortega, W.C. Rheinboldt, Iterative solution of nonlinear equations in several variables (Academic, New York, 1970)C. Hermite, Sur la formule dinterpolation de Lagrange. Reine Angew. Math. 84, 70–79 (1878)A. Cordero, J.R. Torregrosa, Variants of Newton’s method using fifth-order quadrature formulas. Appl. Math. Comput. 190, 686–698 (2007

    On diffusively corrected multispecies kinematic flow models

    Get PDF
    This presentation provides a survey of some recent results related to efficient numerical methods for the numerical solution of a class of convection-diffusion systems that arise as one-dimensional models of the flow of one (disperse) substance through a continuous fluid. Applications include the settling of polydisperse suspensions of solid particles in a viscous fluid, multiclass vehicular traffic under the effect of anticipation distances and reaction times, the settling of dipersions and emulsions, and chromatography. In many of these applications the system becomes strongly degenerate. For the numerical solution, this fact poses a number of difficulties whose partial solution will be addressed. For instance, it is well known that implicit-explicit (IMEX) numerical scheme that are based on discretizing the convective and diffusive parts are a potentially suitable tool to avoid the severe time step limitation associated with fully explicit discretization. However, their implementation relies on the efficient numerical solution of the nonlinear systems of algebraic equations arising from the discretization which can not be achieved by standard Newton-Raphson techniques when the diffusion coefficients are discontinuous. A combined smoothing and line search technique solves the problem of solving the corresponding nonlinearly implicit equations. Alternatively, this problem can be avoided by the construction of so-called linearly implicit methods that are slightly less accurate, but noticeably more efficient than their nonlinearly implicit counterparts. The main collaborators in this research are Pep Mulet (Universitat de Valencia, Spain) and Luis Miguel Villada (Universidad del Bío-Bío, Concepción, Chile).Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    Arc-Length Continuation and Multigrid Techniques for Nonlinear Elliptic Eigenvalue Problems

    Get PDF
    We investigate multi-grid methods for solving linear systems arising from arc-length continuation techniques applied to nonlinear elliptic eigenvalue problems. We find that the usual multi-grid methods diverge in the neighborhood of singular points of the solution branches. As a result, the continuation method is unable to continue past a limit point in the Bratu problem. This divergence is analyzed and a modified multi-grid algorithm has been devised based on this analysis. In principle, this new multi-grid algorithm converges for elliptic systems, arbitrarily close to singularity and has been used successfully in conjunction with arc-length continuation procedures on the model problem. In the worst situation, both the storage and the computational work are only about a factor of two more than the unmodified multi-grid methods

    A decomposition procedure based on approximate newton directions

    Get PDF
    The efficient solution of large-scale linear and nonlinear optimization problems may require exploiting any special structure in them in an efficient manner. We describe and analyze some cases in which this special structure can be used with very little cost to obtain search directions from decomposed subproblems. We also study how to correct these directions using (decomposable) preconditioned conjugate gradient methods to ensure local convergence in all cases. The choice of appropriate preconditioners results in a natural manner from the structure in the problem. Finally, we conduct computational experiments to compare the resulting procedures with direct methods, as well as to study the impact of different preconditioner choices
    • …
    corecore