6,386 research outputs found

    The Inviscid Limit and Boundary Layers for Navier-Stokes Flows

    Full text link
    The validity of the vanishing viscosity limit, that is, whether solutions of the Navier-Stokes equations modeling viscous incompressible flows converge to solutions of the Euler equations modeling inviscid incompressible flows as viscosity approaches zero, is one of the most fundamental issues in mathematical fluid mechanics. The problem is classified into two categories: the case when the physical boundary is absent, and the case when the physical boundary is present and the effect of the boundary layer becomes significant. The aim of this article is to review recent progress on the mathematical analysis of this problem in each category.Comment: To appear in "Handbook of Mathematical Analysis in Mechanics of Viscous Fluids", Y. Giga and A. Novotn\'y Ed., Springer. The final publication is available at http://www.springerlink.co

    On the Global Regularity of a Helical-decimated Version of the 3D Navier-Stokes Equations

    Full text link
    We study the global regularity, for all time and all initial data in H1/2H^{1/2}, of a recently introduced decimated version of the incompressible 3D Navier-Stokes (dNS) equations. The model is based on a projection of the dynamical evolution of Navier-Stokes (NS) equations into the subspace where helicity (the L2L^2-scalar product of velocity and vorticity) is sign-definite. The presence of a second (beside energy) sign-definite inviscid conserved quadratic quantity, which is equivalent to the H1/2H^{1/2}-Sobolev norm, allows us to demonstrate global existence and uniqueness, of space-periodic solutions, together with continuity with respect to the initial conditions, for this decimated 3D model. This is achieved thanks to the establishment of two new estimates, for this 3D model, which show that the H1/2H^{1/2} and the time average of the square of the H3/2H^{3/2} norms of the velocity field remain finite. Such two additional bounds are known, in the spirit of the work of H. Fujita and T. Kato \cite{kato1,kato2}, to be sufficient for showing well-posedness for the 3D NS equations. Furthermore, they are directly linked to the helicity evolution for the dNS model, and therefore with a clear physical meaning and consequences

    Persistency of Analyticity for Nonlinear Wave Equations: An Energy-like Approach

    Full text link
    We study the persistence of the Gevrey class regularity of solutions to nonlinear wave equations with real analytic nonlinearity. Specifically, it is proven that the solution remains in a Gevrey class, with respect to some of its spatial variables, during its whole life-span, provided the initial data is from the same Gevrey class with respect to these spatial variables. In addition, for the special Gevrey class of analytic functions, we find a lower bound for the radius of the spatial analyticity of the solution that might shrink either algebraically or exponentially, in time, depending on the structure of the nonlinearity. The standard L2L^2 theory for the Gevrey class regularity is employed; we also employ energy-like methods for a generalized version of Gevrey classes based on the 1\ell^1 norm of Fourier transforms (Wiener algebra). After careful comparisons, we observe an indication that the 1\ell^1 approach provides a better lower bound for the radius of analyticity of the solutions than the L2L^2 approach. We present our results in the case of period boundary conditions, however, by employing exactly the same tools and proofs one can obtain similar results for the nonlinear wave equations and the nonlinear Schr\"odinger equation, with real analytic nonlinearity, in certain domains and manifolds without physical boundaries, such as the whole space Rn\mathbb{R}^n, or on the sphere Sn1\mathbb{S}^{n-1}

    Entire solutions of hydrodynamical equations with exponential dissipation

    Get PDF
    We consider a modification of the three-dimensional Navier--Stokes equations and other hydrodynamical evolution equations with space-periodic initial conditions in which the usual Laplacian of the dissipation operator is replaced by an operator whose Fourier symbol grows exponentially as \ue ^{|k|/\kd} at high wavenumbers k|k|. Using estimates in suitable classes of analytic functions, we show that the solutions with initially finite energy become immediately entire in the space variables and that the Fourier coefficients decay faster than \ue ^{-C(k/\kd) \ln (|k|/\kd)} for any C<1/(2ln2)C<1/(2\ln 2). The same result holds for the one-dimensional Burgers equation with exponential dissipation but can be improved: heuristic arguments and very precise simulations, analyzed by the method of asymptotic extrapolation of van der Hoeven, indicate that the leading-order asymptotics is precisely of the above form with C=C=1/ln2C= C_\star =1/\ln2. The same behavior with a universal constant CC_\star is conjectured for the Navier--Stokes equations with exponential dissipation in any space dimension. This universality prevents the strong growth of intermittency in the far dissipation range which is obtained for ordinary Navier--Stokes turbulence. Possible applications to improved spectral simulations are briefly discussed.Comment: 29 pages, 3 figures, Comm. Math. Phys., in pres

    Numerical investigations of non-uniqueness for the Navier-Stokes initial value problem in borderline spaces

    Full text link
    We consider the Cauchy problem for the incompressible Navier-Stokes equations in R3\mathbb{R}^3 for a one-parameter family of explicit scale-invariant axi-symmetric initial data, which is smooth away from the origin and invariant under the reflection with respect to the xyxy-plane. Working in the class of axi-symmetric fields, we calculate numerically scale-invariant solutions of the Cauchy problem in terms of their profile functions, which are smooth. The solutions are necessarily unique for small data, but for large data we observe a breaking of the reflection symmetry of the initial data through a pitchfork-type bifurcation. By a variation of previous results by Jia & \v{S}ver\'ak (2013) it is known rigorously that if the behavior seen here numerically can be proved, optimal non-uniqueness examples for the Cauchy problem can be established, and two different solutions can exists for the same initial datum which is divergence-free, smooth away from the origin, compactly supported, and locally (1)(-1)-homogeneous near the origin. In particular, assuming our (finite-dimensional) numerics represents faithfully the behavior of the full (infinite-dimensional) system, the problem of uniqueness of the Leray-Hopf solutions (with non-smooth initial data) has a negative answer and, in addition, the perturbative arguments such those by Kato (1984) and Koch & Tataru (2001), or the weak-strong uniqueness results by Leray, Prodi, Serrin, Ladyzhenskaya and others, already give essentially optimal results. There are no singularities involved in the numerics, as we work only with smooth profile functions. It is conceivable that our calculations could be upgraded to a computer-assisted proof, although this would involve a substantial amount of additional work and calculations, including a much more detailed analysis of the asymptotic expansions of the solutions at large distances.Comment: 31 pages, 19 figure
    corecore