929 research outputs found

    LogBase: A Scalable Log-structured Database System in the Cloud

    Full text link
    Numerous applications such as financial transactions (e.g., stock trading) are write-heavy in nature. The shift from reads to writes in web applications has also been accelerating in recent years. Write-ahead-logging is a common approach for providing recovery capability while improving performance in most storage systems. However, the separation of log and application data incurs write overheads observed in write-heavy environments and hence adversely affects the write throughput and recovery time in the system. In this paper, we introduce LogBase - a scalable log-structured database system that adopts log-only storage for removing the write bottleneck and supporting fast system recovery. LogBase is designed to be dynamically deployed on commodity clusters to take advantage of elastic scaling property of cloud environments. LogBase provides in-memory multiversion indexes for supporting efficient access to data maintained in the log. LogBase also supports transactions that bundle read and write operations spanning across multiple records. We implemented the proposed system and compared it with HBase and a disk-based log-structured record-oriented system modeled after RAMCloud. The experimental results show that LogBase is able to provide sustained write throughput, efficient data access out of the cache, and effective system recovery.Comment: VLDB201

    A Two Phase Verification Algorithm for Cyclic Workflow Graphs

    Get PDF
    The widespread automation of e-business processes has made workflow analysis and design an integral part of information management. Graph-based workflow models enables depicting complex processes in a fairly compact form. This free form, on the other hand, can yield models that may fail depending on the judgment of the modeler and create modeling situations that cannot be executed or will behave in a manner not expected by the modeler. Further, cycles in workflow models needed for purposes of rework and information feedback increase the complexity of workflow analysis. This paper presents a novel method of partitioning a cyclic workflow process, represented in a directed graph, into a set of acyclic subgraphs. This allows a cyclic workflow model to be analyzed further with several smaller subflows, which are all acyclic. As a convincing example, we present two-phased verification of structural conflicts in workflow models for those incurred from the inappropriate composition of partitioned flows and the others within each acyclic subgraph, which is much easier to comprehend and verify individually than the whole workflow model, in general

    Architectural support for task dependence management with flexible software scheduling

    Get PDF
    The growing complexity of multi-core architectures has motivated a wide range of software mechanisms to improve the orchestration of parallel executions. Task parallelism has become a very attractive approach thanks to its programmability, portability and potential for optimizations. However, with the expected increase in core counts, finer-grained tasking will be required to exploit the available parallelism, which will increase the overheads introduced by the runtime system. This work presents Task Dependence Manager (TDM), a hardware/software co-designed mechanism to mitigate runtime system overheads. TDM introduces a hardware unit, denoted Dependence Management Unit (DMU), and minimal ISA extensions that allow the runtime system to offload costly dependence tracking operations to the DMU and to still perform task scheduling in software. With lower hardware cost, TDM outperforms hardware-based solutions and enhances the flexibility, adaptability and composability of the system. Results show that TDM improves performance by 12.3% and reduces EDP by 20.4% on average with respect to a software runtime system. Compared to a runtime system fully implemented in hardware, TDM achieves an average speedup of 4.2% with 7.3x less area requirements and significant EDP reductions. In addition, five different software schedulers are evaluated with TDM, illustrating its flexibility and performance gains.This work has been supported by the RoMoL ERC Advanced Grant (GA 321253), by the European HiPEAC Network of Excellence, by the Spanish Ministry of Science and Innovation (contracts TIN2015-65316-P, TIN2016-76635-C2-2-R and TIN2016-81840-REDT), by the Generalitat de Catalunya (contracts 2014-SGR-1051 and 2014-SGR-1272), and by the European Union’s Horizon 2020 research and innovation programme under grant agreement No 671697 and No. 671610. M. Moretó has been partially supported by the Ministry of Economy and Competitiveness under Juan de la Cierva postdoctoral fellowship number JCI-2012-15047.Peer ReviewedPostprint (author's final draft

    An Efficient Framework for Execution of Smart Contracts in Hyperledger Sawtooth

    Full text link
    Blockchain technology is a distributed, decentralized, and immutable ledger system. It is the platform of choice for managing smart contract transactions (SCTs). Smart contracts are self-executing codes of agreement between interested parties commonly implemented using blockchains. A block contains a set of transactions representing changes to the system and a hash of the previous block. The SCTs are executed multiple times during the block production and validation phases across the network. The execution is sequential in most blockchain technologies. In this work, we incorporate a direct acyclic graph (DAG) based parallel scheduler framework for concurrent execution of SCTs. The dependencies among a block's transactions are represented through a concurrent DAG data structure that assists in throughput optimization. We have created a DAG scheduler module that can be incorporated into blockchain platforms for concurrent execution with ease. We have also formally established the safety and liveness properties of the DAG scheduler. For evaluation, our framework is implemented in Hyperledger Sawtooth V1.2.6. The performance across multiple smart contract applications is measured for various scheduler types. Experimental analysis shows that the proposed framework achieves notable performance improvements over the parallel SCT execution frameworks

    A sequentially constructive circuit semantics for Esterel

    Get PDF
    Static Single Assignment (SSA) is an established concept that facilitates various program optimizations. However, it is typically restricted to sequential programming. We present an approach that extends SSA for concurrent, reactive programming, specifically for the synchronous language Esterel. This extended SSA transformation expands the class of programs that can be compiled by existing Esterel compilers without causality problems. It also offers a new, efficient solution for the well-studied signal reincarnation problem. Finally, our approach rules out speculation/backtracking, unlike the recently proposed sequentially constructive model of computation

    Proceedings of the first international workshop on Investigating dataflow in embedded computing architectures (IDEA 2015), January 21, 2015, Amsterdam, The Netherlands

    Get PDF
    IDEA '15 held at HiPEAC 2015, Amsterdam, The Netherlands on January 21st, 2015 is the rst workshop on Investigating Data ow in Embedded computing Architectures. This technical report comprises of the proceedings of IDEA '15. Over the years, data ow has been gaining popularity among Embedded Systems researchers around Europe and the world. However, research on data ow is limited to small pockets in dierent communities without a common forum for discussion. The goal of the workshop was to provide a platform to researchers and practitioners to present work on modelling and analysis of present and future high performance embedded computing architectures using data ow. Despite being the rst edition of the workshop, it was very pleasant to see a total of 14 submissions, out of which 6 papers were selected following a thorough reviewing process. All the papers were reviewed by at least 5 reviewers. This workshop could not have become a reality without the help of a Technical Program Committee (TPC). The TPC members not only did the hard work to give helpful reviews in time, but also participated in extensive discussion following the reviewing process, leading to an excellent workshop program and very valuable feedback to authors. Likewise, the Organisation Committee also deserves acknowledgment to make this workshop a successful event. We take this opportunity to thank everyone who contributed in making this workshop a success
    corecore