
Association for Information Systems Association for Information Systems

AIS Electronic Library (AISeL) AIS Electronic Library (AISeL)

ICEB 2004 Proceedings International Conference on Electronic Business
(ICEB)

Winter 12-5-2004

A Two Phase Verification Algorithm for Cyclic Workflow Graphs A Two Phase Verification Algorithm for Cyclic Workflow Graphs

Yongsun Choi

Follow this and additional works at: https://aisel.aisnet.org/iceb2004

This material is brought to you by the International Conference on Electronic Business (ICEB) at AIS Electronic
Library (AISeL). It has been accepted for inclusion in ICEB 2004 Proceedings by an authorized administrator of AIS
Electronic Library (AISeL). For more information, please contact elibrary@aisnet.org.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by AIS Electronic Library (AISeL)

https://core.ac.uk/display/301389528?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://aisel.aisnet.org/
https://aisel.aisnet.org/iceb2004
https://aisel.aisnet.org/iceb
https://aisel.aisnet.org/iceb
https://aisel.aisnet.org/iceb2004?utm_source=aisel.aisnet.org%2Ficeb2004%2F20&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elibrary@aisnet.org%3E

The Fourth International Conference on Electronic Business (ICEB2004) / Beijing 1

A Two Phase Verification Algorithm for Cyclic Workflow Graphs

Yongsun Choi

Dept. of Systems Management & Engineering, Inje University, Kimhae, 621-749, Korea
yschoi@inje.ac.kr

ABSTRACT

The widespread automation of e-business processes has made workflow analysis and design an integral part of
information management. Graph-based workflow models enables depicting complex processes in a fairly compact form.
This free form, on the other hand, can yield models that may fail depending on the judgment of the modeler and create
modeling situations that cannot be executed or will behave in a manner not expected by the modeler. Further, cycles in
workflow models needed for purposes of rework and information feedback increase the complexity of workflow
analysis. This paper presents a novel method of partitioning a cyclic workflow process, represented in a directed graph,
into a set of acyclic subgraphs. This allows a cyclic workflow model to be analyzed further with several smaller sub-
flows, which are all acyclic. As a convincing example, we present two-phased verification of structural conflicts in
workflow models for those incurred from the inappropriate composition of partitioned flows and the others within each
acyclic subgraph, which is much easier to comprehend and verify individually than the whole workflow model, in
general.

Keywords: workflow model, directed graph, feedback, partition, verification

1. INTRODUCTION

The recent surge of e-business research and development
has resulted in the automation of thousands of business
processes by means of workflow management systems
(WfMS), both within and across corporate boundaries
([5], [7], [9], [16], [18], , [30], [32]). WfMS enable the
design, analysis, optimization, and execution of business
processes. The basic WfMS functions include the
separation between the business process logic and
business applications, management of relationships
among process participants, integration of internal and
external process resources, and monitoring and control of
process performances ([24], [34], [35]). There are
typically two stages of workflow management, workflow
specification and workflow execution. The former
defines a workflow model, and the latter generates
workflow instances guided by the workflow model.

A workflow model (also called workflow definition)
consists of a set of activities and their execution
sequences, the start and termination of the process, and
the resources needed for executing individual activities,
such as participants, associated IT applications, and data
([34], [35]). The objective of workflow modeling is to
provide high-level specification of processes that are
independent of the implementation intricacies of the
target workflow management system ([8], [13], [18],
[21], [22], [35]). Of all workflow perspectives, e.g.,
control-flow, data, organization, task, and operation, the
control-flow perspective is the most prominent one
because it defines the backbone of the workflow on
which other perspectives can be specified [1].

Workflow models must be correctly defined before being
deployed in a workflow management system to avoid
any costly maintenance delays due to runtime errors in
the process model [29]. Therefore, it is essential to verify

the workflow model before its deployment. Despite the
importance of workflow verification, few commercial
workflow systems provide formal verification tools.
This lack of verification support can be attributed to the
fact that most of the more than 250 commercially
available WfMS use a vendor-specific ad-hoc modeling
techniques [5] without theoretical framework for the
representation, analysis, and manipulation of workflow
systems [8]. Although these vendor-provided tools
facilitate workflow specification and visualization, and
some support simulation of processes under various
conditions, they usually do not support formal workflow
analyses. While process simulation can provide useful
insight into process behavior, it does not address
questions about the interrelationships among process
components [8]. Consequently, few workflows are
thoroughly checked before they are deployed in practice,
often resulting in errors that need to be corrected in an ad
hoc fashion at prohibitive costs.

There are two research approaches to ensure control flow
correctness in workflow models – build it correctly, or
check it completely [31]. The former ([10], [17],
structured model in [21]), relying on strict rules in
composing the model, may not model certain processes
due to syntactical restrictions [21] and may not be very
suitable for practical implementation in industry [31].
The latter, like Petri nets ([1], [4], [6], [26], [31], [33]) or
the graph-theoretic techniques ([8], [14], [25], [29]), on
the contrary, appeals more by allowing the user
tremendous flexibility in expressing process
requirements offering interesting analysis challenges to
the modeler [31]. The Petri-nets-based workflow
verification depends on the formalism of Petri nets,
which is rarely adopted by existing WfMS, and makes it
hard to be embedded into most of WfMS. Therefore, for
non-Petri-nets workflow models, it is difficult to apply
Petri-nets-based verification techniques as it requires the

The Fourth International Conference on Electronic Business (ICEB2004)/ Beijing 2

transformation from each different modeling paradigm
into the Petri nets formalism plus an effort of
determining the corresponding structural conflicts in the
original model. The majority of business processes have
been analyzed using acyclic (i.e. loop-free) free-choice
nets, a special class of Petri nets that enjoys the added
advantage that soundness can be verified in polynomial
time [1]. Additionally, establishing soundness in a free-
choice net implies that the net is free from deadlock, and
is also alive, i.e., no dead tasks [2]. However, the
modeling of exceptions or precedence partially destroys
the free-choiceness of the equivalent Petri net mapping.
Moreover, modeling iteration necessitates the presence
of loops in the control flow model, a problem that is yet
to be satisfactorily addressed [31].

Graph-based workflow models have been widely used in
industry to specify control flows of a business process.
Although graphs provide a great flexibility for depicting
complex processes in a fairly compact form, their free-
form nature also needs to resolve models that may fail
due to a lack of support for the modeler to avoid
situations that cannot be executed or will behave in a
manner not expected by the modeler [12]. Graph
reduction ([25], [29]) and block-wise abstraction [14]
have been proposed to identify structural conflicts in
workflow graphs, but both approaches are limited to
acyclic models [3].

This paper presents a novel method of partitioning into a
set of acyclic subgraphs and decomposed verification of
structural conflicts for a cyclic workflow process, even
for nested structures, represented in a directed graph. Our
approach of feedback partitioning and decomposed
verification is unique and has several distinctive features
useful for workflow analysis and design. First, we
present two-phased verification of structural conflicts in
workflow models. Our method detects certain types of
structural conflicts, in the early stage, incurred from the
inappropriate composition of feedback flows. And then,
our method applies verification to each acyclic subgraph,
which is much easier to comprehend and verify
individually than the whole workflow model, in general.
This decomposition feature has not been seen in any
existing workflow verification method. Second, each
acyclic flow can be utilized in hierarchically
decomposing the given model and is a candidate for a
sub-workflow, the knowledge of which is helpful for
managing large-scale workflows. Finally, our method is
based on a directed graph representation, more generic
and adopted widely by the WfMS vendors, and utilizes
well-known algorithms of graph-theoretic techniques,
which makes it easy to embed our approach into most
WfMS.

The rest of the paper is organized is as follows. In
Section 2, we present the preliminary concepts such as
directed graph representation and types of structural
conflicts of a workflow model. In Section 3, we present
the way of partitioning a cyclic workflow graph into the

subgraphs of acyclic flows with illustrative examples.
Section 4 delineates the two-phased verification of
structural conflicts and presents the associated theorems.
Section 5 discusses related work, summarizes our
contributions, and outlines future research directions.

2. WORKFLOW MODELS IN DIRECTED
GRAPHS

A workflow graph is a directed graph G = (N, T) with a
set of nodes N and a set of edges (i, j) ∈ T, where i, j ∈
N. Each edge, called a transition, links two nodes and
represents the execution order of nodes. A node is
classified into two types, task and coordinator. A task,
represented by a rectangle, stands for a unit of work to be
done. A coordinator, represented by a circle, stands for a
point where only one of succeeding paths is selected or
several paths are merged. Depending on the types of
nodes and the number of incoming and outgoing
transitions, nodes can be classified into five categories,
i.e., sequence, AND-split, AND-join, XOR-split, and OR-
join, as shown in Fig. 1. Start and End nodes are used to
indicate the beginning and the end of the given workflow
process, respectively ([25], [29]).

sequence AND-split AND-join XOR-split OR-join Start End

Fig. 1. Classification of nodes in workflow graphs
Fig. 2(a) illustrates an example cyclic workflow,
extending an acyclic example in [29]. We make a
simplifying assumption on the workflow graph that a
node cannot be a join and split at the same time. Any
node that joins and concurrently splits can be converted
into a set of a join and a split, separate and connected
with a transition.

Structural conflicts in workflow models
In this paper, we focus on the verification of three types
of structural conflicts, deadlock, lack of synchronization,
and livelock as illustrated in Fig. 3 ([1], [20], [29]).
Deadlock refers to a situation in which a workflow
instance gets into a stalemate such that no further activity
can be executed. This happens when only some partial
subset of the join paths to an AND-Join is executed, the
AND-Join node k will wait forever and block the
continuation of the process (Fig. 3(a)). Lack of
synchronization refers to a situation in which the
concurrent flows are joined by an OR-Join, resulting in
unintentional multiple executions of activities following
the node k (Fig. 3(b)). Livelock refers to a situation in
which certain loop(s) of tasks are continuously
performed, and there is no execution path leading to
termination or cannot terminate properly (Fig. 3(c)).
Note that livelock occurs only where a cyclic structure
exists.

The Fourth International Conference on Electronic Business (ICEB2004) / Beijing 3

Other types of structural conflicts such as dangled nodes
are relatively easier to detect than those described above,

from the graph-theoretic viewpoint. A dangled

10: Prepare cheques
for ANZ Bank

18

14

6

17: Issue
cheque

16: Signatures from
finance director

15: Update accounts
database

12: Reject
request

9: Prepare cheque
for CITIBANK

4: Approval from
Finance Director

2: Payment
Request

19: File payment
request

0: Start

20:End

US$

A$
5: Approval from

Dept. Managerr

7 8Approved
Not Approved

3

1

13: Ask account
adjustment

11: Ask amount
adjustment

RejectedApproved

Adjustment
required

Adjustment
required

10

18

14

6

17

16

15 12

9

4

2

19

0

20

5

7

8

3

1

13

11

0

1

2

3

4

5

6

7

8

9

10

11

12

FN0 FN1

Fig. 2. (a) An example cyclic workflow graph; and (b) the normalized graph

node can be found simply by checking the reachability of
each node from the Start node and to the End node.

s

k

s

k

s

k

s

k

s

k

s

k

(a) deadlock (b) Lack of synchronization (c) Livelock

Fig. 3. Types of structural conflicts

3. PARTITIONING A CYCLIC WORKFLOW
INTO ACYCLIC FLOWS

Cycles in workflow models are needed for purposes of
rework and information feedback. For instance, the
workflow in Fig. 2 contains two simple cycles, i.e., a
cycle that does not contain any other cycles [19]. Our
method identifies and partitions off each acyclic flow
from the given cyclic workflow model. At the first
iteration of partition, our method partitions off a
maximally connected subgraph from the Start to the End,
spanned by all nodes reachable to the End without
multiple visits to any nodes contained, called main flow.
If the original workflow model has nested feedback
structures, our method proceeds on partitioning further to
the remaining subgraph(s) that contain(s) cyclic
structures. Otherwise, our method identifies and partition
off each additional acyclic feedback flow from the
remaining subgraph(s). More formal definitions and
detailed descriptions of our method are given next.

The algorithm of Depth-First Search can be applied to
identify the “back edges” where each of those completes
a cycle, with the complexity of O(|N|+|T|) [15]. An edge
(u, v) is classified as a back edge if v is already
discovered but any of its adjacent nodes are not

discovered yet, when to explore edge (u, v) in the course
of Depth-First Search. With all back edges removed, the
rank of each node can be computed from the resulting
acyclic workflow graph with the complexity of O(|T|)
[19]. Fig. 2(b) shows the normalized graph of the
workflow process in Fig. 2(a), with nodes rearranged by
its rank r(i), i ∈ N, computed from the resulting acyclic
workflow graph and shown to the left in Fig. 2(b). Fig.
4(b) shows another example of normalized graph for a
workflow of Fig. 4(a) with nested cycles.

A normalized graph is helpful for identifying feedback
structures of a cyclic workflow process. By examining
the normalized graphs in Fig. 2(b) and Fig. 4(b), we find
some interesting phenomena. First, every dotted
upstream transition (i, j), with r(i) > r(j), merges a
feedback flow, which is a back edge as defined above.
Second, each dashed transition initiates a new feedback
flow. Transition (13, 7) in Fig. 4(b) has both
characteristics. These transitions can be used as the cut
sets to group the nodes in N. Next, we describe an
iterative way of identifying those transitions initiating or
merging each feedback flow and partitioning the graph
of a cyclic workflow into subgraphs of acyclic flows.

Steps of a partitioning
The back edges of a cyclic workflow graph found during
normalization are called as Feedback Join Transitions
(FJT). Each transition (i, j) of FJT has the property of
r(i) > r(j) and corresponds to a distinct simple cycle of a
cyclic workflow graph. FJT = {(11, 1), (13, 1)} and FJT
= {(11, 7), (13, 7), (23, 19), (24, 1)} for the examples
shown in Fig. 2 and 4, respectively. Nodes that merge
feedback flows are called as Feedback Joins, denoted by
FJ, where
FJ = { j | (i, j) ∈ FJT }, (1)
FJ = { 1 } and FJ = { 1, 7, 19 } for the examples shown
in Fig. 2 and 4, respectively.

The Fourth International Conference on Electronic Business (ICEB2004)/ Beijing 4

Definition 1. For any i ∈ N, let the Order of Feedback of
i, called by OF(i), denote the minimum number of
transitions of FJT to pass to the End node. The subset of
nodes with OF(i) = n will be called as nth-order
Feedback Nodes and denoted by FNn.
Note that N = ∪n FNn. Nodes of FN0 do not need any
transitions in FJT to reach the End node, and FN0 can be
identified as follows,

FN0 = { i | RFJT (i, End) = 1 }, (2)
where RFJT (i, End), which can be computed with
complexity of O(|T|), denote the reachability of node i
to the End node without the transitions of FJT. That is,
RFJT (i, End) = 1 when node i can reach the End node
without passing through any transitions in FJT, or RFJT
(i, End) = 0 otherwise. RFJT (End, End) is defined to be
1. Table 1 shows RFJT (i, End) for each node i, resulting
N – FN0 = { 11, 13 } for the workflow in Fig. 2. It can
be shown that N – FN0 = { 11, 16, 17, 18, 19, 20, 21, 22,
23, 24 } for the workflow in Fig. 4. The subgraph
spanned by FN0 will be called as the main flow and will
be denoted as MF(Start, End).

Table 1. R FJT (i, End) of each node i in Figure 2
i 0 1 2 3 4 5 6 7 8 9 16 11 12 13 14 15 1617181920

RFJT (i,
End)

1 1 1 1 1 1 1 1 1 1 1 0 1 0 1 1 1 1 1 1 1

Definition 2. The nth-order Feedback Joins, denoted by
FJn, is the subset of feedback joins in FNn. That is FJn =
FJ ∩ FNn. The nth-order Feedback Splits, denoted by
FSn, is the subset of nodes that split the subgraph
spanned by FNn+1 from the subgraph spanned by FNn,
identified as FSn = { i | (i, j) ∈ T, i ∈ FNn, j ∈ FNn+1 ∪
FJn}.

Note that FJ = ∪n FJn. By definition 2, we get FJ0 as
follows,

FJ0 = FJ ∩ FN0. (3)
FJ0 = { 1 } and FJ0 = { 1, 7 } for the examples of Fig. 2
and 4, respectively.

The set of nodes in any of FSn will be called as
Feedback Splits, denoted by FS, where FS = ∪n FSn.
Finally, FS0 will be identified. Since FN1 is not available
yet and there will be no transition from a node in FN0 to
any node in ∪n≥2 FNn, we identify FS0 as follows,

FS0 = { i | (i, j) ∈ T, i ∈ FN0, j ∈ (N – FN0) ∪FJ0 } (4)
FS0 = { 7, 8 } and FS0 = { 10, 13, 15 } for the workflow
in Fig. 2 and 4, respectively.

At each iteration, our method identifies FNn, FJn and
FSn. FNn and FJn is identified by classifying N and FJ,
respectively. On the other hand, FSn is newly discovered
from FNn, at each iteration. When all the nodes in FJ are
classified into one of FJn, we can conclude that FNn+1 =
N – ∪m≤n FNm and no further classification of nodes is
required. For instance, FJ0 = FJ for the workflow in Fig.
2, and we can conclude with FN1 = N – FN0 = { 11,
13 }. Otherwise, there exist more feedback structures in

the subgraph(s) spanned by N – ∪m≤n FNm and further
classification of nodes is required.

Recursive partition for nested feedback structures
Definition 3. For any fs ∈ FSn-1, let Descn (fs) denote the
set of nodes in FNn and Descn+ (fs) denote the set of
nodes in ∪m≥n FNm, respectively, that can be reached
from fs by the transitions in T. For any fj ∈ FJn-1, let
FAncsn (fj) denote the set of nodes in FNn and FAncsn+
(fj) denote the set of nodes in ∪m≥n FNm, respectively,
that can reach fj by the transitions in T.

Definition 4. Let fs ∈ FSn-1 and fj ∈ FJn-1. The nth-order
Feedback Flow FFn(fs, fj) denotes the subgraph spanned
by the set of nodes { fs, fj } ∪ (Descn (fs) ∩ FAncsn (fj)).
The (n+)th-order Feedback Flow FFn+(fs, fj) denotes the
subgraph spanned by the set of nodes { fs, fj } ∪ (Descn+
(fs) ∩ FAncsn+ (fj)).

Note that we can let the main flow MF(Start, End) equal
to FF0(Start, End), assuming that Start ∈ FS-1 and End
∈ FJ-1.

When FJ is not fully classified yet, there exist at least
one FFn+(fs, fj) that contains node(s) of FJ. The
corresponding subgraph contains some feedback
structures and requires further partitioning. Our method
recursively applies the steps of partition to each of these
subgraphs. Otherwise, FFn+(fs, fj) does not require
further partitioning and equals to FFn(fs, fj), by
definition.

The workflow of Fig. 2, with FN0, FJ0 = FJ, FS0, and
FN1, can be partitioned into the main flow MF (0, 20),
FF1(7, 1) spanned by {7, 11, 1}, and FF1(8, 1) spanned
by {8, 13, 1}, requiring no further partitioning. For the
workflow of Fig. 4, we have MF (0, 25), FF1(10, 7),
FF1(13, 7), and FF1+(15, 1). Since FF1+(15, 1) contains
a node of FJ not classified yet, i.e., node 19 ∉ FJ0, it
contains some cyclic structures and requires further
partitioning. In a similar manner, we can get FN1 = { 11,
16, 17, 18, 19, 20, 21, 22, 24 }, FJ1 = { 19 }, and FS1 =
{ 2 } from FF1+(15, 1). Since nodes in FJ are fully
classified, we can conclude that FN2 = N – FN0 – FN1 =
{ 23 } and derive additional acyclic subgraphs of
FF1(15, 1) and FF2(22, 19). Table 2 summarizes the
results of the analyses for the workflow graphs of Fig. 2
and 4. Note that each finally derived subgraph of a
feedback flow, except main flow, matches for distinct
simple cycle in the given workflow graph.

3

5
0 762 8

4
9 10 12 1413 15

19
24 16

22

11

21 20

17

18

251

23

(a) A workflow with nested cycles

The Fourth International Conference on Electronic Business (ICEB2004) / Beijing 5

3
5

0 761 8
4

9 10 12 1413 15

19
24

16 22
11

2120
17
18

252

0 31 2 4 5 7 98 106 11 12 13 14 15 16 17 18 19 20

23

FN0

FN1

FN2

(b) Normalized graph
Fig. 4. Normalization of a workflow graph with nested
cycles

Table 2. Summary of partitioning
Case Target

graph Classified nodes Derived
subgraphs

Fig. 2 G(N,T)
FJ = {1};
V–FN0 = {11,13}, FJ0 =
{1}, FS0= {7,8}.

MF (0, 20)
FF1 (7, 1)
FF1 (8, 1)

G(N,T)

FJ = {1,7,19};
V–FN0 = {11,16,17,18,19,
20,21,22,23,24}, FJ0 =
{1,7}, FS0 = {10,13,15}.

MF (0, 25)
FF1 (10, 7)
FF1 (13, 7)
FF1+ (15, 1)Fig. 4

FF1+
(15, 1)

FN1 = {11,16,17,18,19,20,
21,22,24}, FJ1 = {19}, FS1

= {22}; FN1= {23}.

FF1 (15, 1)
FF2 (22, 19)

The proposed method allows a cyclic workflow model to
be analyzed further, if necessary, with several smaller
subflows, which are all acyclic. The complexity of this
phase can be estimated as follows. Let q be the
maximum degree of feedback and r be the average
number of subgraphs in FNn that need to be further
partitioned, in the given workflow graph. The
identification of FNn (with FSn-1 and FJn-1) from
FFn+(fs, fj), where fs ∈ FSn-1 and fj ∈ FJn-1, is rather
straightforward with RFJT (i, fj), where i ∈ FFn+(fs, fj),
that has complexity O(|T′|), where |T′| is the number of
transitions in the cyclic subgraph FFn+(fs, fj). Therefore,
the complexity of this step will be O(qr|T|) < O(|N|· |T|).

4. TWO-PHASED VERIFICATION OF CONTROL

FLOWS

This section presents two-phased verification of
structural conflicts in workflow models. First, it detects
certain types of structural conflicts, in the early stage,
incurred from the inappropriate composition of feedback
flows. And then, it applies verification to each acyclic
subgraph, which is much easier to comprehend and
verify individually than the whole workflow model, in
general.

4.1 Early stage verification on combining partitioned
flows

Lemma 1. A workflow with an AND- feedback join
node fj will deadlock at fj. A workflow with an AND-
feedback split node fs will potentially result in an infinite
loop (i.e., livelock) or multiple instances.

Any FFn(fs, fj) split from a XOR-split fs and merged into
a OR-join fj, which is exclusive with the originating

subflow in FNn, will not introduce additional deadlock
and lack of synchronization conflict to the combined
flow. On the other hand, feedback joins or feedback
splits of AND-type incur structural conflicts to the
combined flow. Fig. 5 shows that conflicts are caused by
combining a feedback flow with AND-controls. An
AND-join at fj can never be started, thus causing a
deadlock (Fig. 5(a)). An AND-split at fs may never end
since fs always triggers a feedback, thus leading to an
infinite loop without any type of proper exit from the
loop, or may result in multiple instances of subflow sf1
before the synchronization, if exist, with the subflow sf2
exited from the loop (Fig. 5(b)).

(a) fj fse
e: any type of exit

(b) fj fse Sf1

Sf2e: any type of exit

Fig. 5. Conflicts caused by AND-controls as a feedback
join or a feedback split

Lemma 2. An AND-join a-j that joins FFn(fs1, fj) and
FFn(fs2, fj), with fs1≠ fs2, incurs a potential deadlock at a-
j as illustrated in Fig. 6(a). In addition, an AND-split a-s
that splits FFn(fs, fj1) and FFn(fs, fj2), with fj1≠ fj2, may
result in multiple instances of subflow sf3 or deadlock at j
as illustrated in Fig. 6 (b).

In Fig. 6 (a), when there exists some precedence
relationship between fs1 and fs2, it is clear that a deadlock
conflict will occur at the AND-join node a-j. The only
way to prevent this deadlock is when split s is of AND-
type and both fs1 and fs2 always lead to the AND-join a-j
altogether, if any one of them does. But, this cannot be
guaranteed and may lead to potential deadlock. In Fig. 6
(b), when there exists some precedence relationship
between fj1 and fj2, it is clear that lack of synchronization
conflict will occur at one of them visited later. Note that
subflow sf1 or sf2 may have some XOR-exit, not
represented in the figure for simplification, which makes
the analysis even more complex. The only way to
prevent this lack of synchronization conflict is when the
join node j that subflow sf1 and sf2 merge should be of
AND-join and both sf1 and sf2 should always lead to the
AND-join j altogether, if any one of them does so. But,
this cannot be guaranteed either and may lead to
potential deadlock. Fig. 6 (c) shows the control-flow-
equivalent workflow transformed from the workflow of
Fig. 6 (b), by duplicating certain nodes [28] where these
additional constraints are satisfied.

(a)

fs2

fs1fj

a-j

s
s: any type of split

The Fourth International Conference on Electronic Business (ICEB2004)/ Beijing 6

(b) fs

fj1

a-s

fj2 j

Sf1

Sf2 Sf3

Sf4Sf6Sf5

j: any type of join

(c)
fs

fj1

fj2

Sf1

Sf2

Sf3

Sf4

Sf5

Sf6

fj1

fj2

Sf1

Sf2
Fig. 6. Inadequate usages of (a) AND-Join and (b) AND-
Split on feedback paths; (c) equivalent control flow
transformed from (b) of a special case

Lemmas 1 and 2 can be used to detect certain types of
structural conflict related to feedback flows. Our method
identifies those ill-structured control flows based on
Lemmas 1 or 2 in a workflow model. The decomposed
verification phase described next, will assume that the
workflow models contain only XOR- feedback split and
join nodes.

4.2 Decomposed verification for each acyclic flow

We conjecture that the verification of a given workflow
can be done by verifying the main flow and each
partitioned feedback flow of the given workflow, where
all of which are acyclic. Theorem 1 below argues the
correctness of this approach formally.

Theorem 1. If there exist no structural conflicts in
MF(Start, End) and each FFn(fs, fj), then there exist no
structural conflict in the integrated model.
Proof: Any possible additional structural conflicts in the
integrated model caused by combining each FF1+(fs, fj),
originated from and merged into MF(Start, End), are of
lack of synchronization. After early stage verification
with Lemma 1 and 2, each FF1+(fs, fj) splits from an
XOR feedback split fs, merges at an OR feedback join fj,
and does not cross another feedback flow by an AND-
split or an AND-join. Therefore, there is no chance that
any additional Lack of Synchronization conflict would
be caused in the combined model. The fact that each
FF1+(fs, fj) can be composed in similar manner
completes the proof. o

By Theorem 1, verification of structural conflicts in a
cyclic workflow model can be done by verifying
structural conflicts of MF(Start, End) and each FFn(fs,
fj), which are all acyclic. That is, in decomposed
verification approach, we only need to verify acyclic
flows. This is a very important feature of our approach
and can lead to simplified verification and significant
computational efficiency compared to those approaches
that verify a cyclic graph as a whole. For instance, the
graph reduction technique [25] can be applied to a cyclic
workflow graph after the original graph is partitioned
into s subflow graphs. As a result of partitioning, the
computation effort can be even improved from

O((|N|+|T|)2⋅|N|2) ([3], [25]) to O((|N|+|T|)2⋅|N|2 / s3) by
dividing |N| and |T| by s, respectively.

5. CONCLUDING REMARKS

Workflow analysis and design is a fundamental task in
business process management because of the recent
surge of e-business process automation efforts in the
corporations worldwide. Although hierarchical
decomposition of a complex workflow process is an
useful step in workflow analysis and design, until now
there has been no reported work of its automated support
in the literature. When the process model is complex, it
is quite perplexing for a human to recognize
substructures of potential subprocesses [2].

In this paper, we proposed a unified approach of
feedback partition and decomposed verification of
structural conflicts that can handle cyclic workflows
efficiently. We showed how to identify the main flow
and each feedback flow that completes each simple
cycle, which are all acyclic. Hierarchical decomposition
of a workflow model by feedback structures can make
workflow analysis and design more accurate and
efficient and can lead to a better design. We also showed
that verification of structural conflicts in a cyclic
workflow model could be done by independently
verifying structural conflicts in main flow and each
feedback flow, which are all acyclic. That is, in
decomposed verification approach, we only need to
verify acyclic flows.

Our work is related to three main studies in workflow
verification, namely the graph reduction approach ([25],
[29]), the Petri nets approach ([1], [4], [6], [33]), and the
logic-based approach ([11], [27]). The graph reduction
approach detects structural errors by trying to reduce the
original workflow graph into an empty one. If this
attempt fails, the workflow is determined to contain
errors. One main drawback is that the graph reduction
technique cannot handle cyclic workflows and
overlapping patterns algorithmically. The Petri-nets-
based workflow verification depends on the formalism of
Petri nets. Therefore, for non-Petri-nets workflow
models, it is difficult to apply their verification
technique. The logic-based approach depends on the
expressive power of propositional logic and does not
take advantage of instance flows in its verification
method. Furthermore, none of these approaches use the
concept of feedback partitioning, which has been shown
to provide advantageous features in workflow analysis
and design. Our work unifies process decomposition and
verification while other verification techniques focus
mainly on process verification. In sum, our approach
provides a useful, if not better, alternative to existing
workflow verification methods.

The issues that merit future research are: to establish
results for verifying correctness of a workflow model
including other perspectives, for instance the data-flow;

The Fourth International Conference on Electronic Business (ICEB2004) / Beijing 7

transformation of a free-form graph-structured workflow
model into a structured model, like in BPEL4WS [10]; to
extend results for further workflow analysis of process
reengineering.

ACKNOWLEDGEMENT

This work was supported by the 2003 Inje University
research grant.

REFERENCES

[1] Aalst, W. M. P. van der, “The Application of Petri Nets to
Workflow Management”, The Journal of Circuits, Systems and
Computers, vol. 8, no. 1, pp. 21-66, 1998.
[2] Aalst, W. M. P. van der, “Workflow Verification: Finding
Control-Flow Errors using Petri-net-based Techniques”, In W.M.P.
van der Aalst, J. Desel, and A. Oberweis, Editors, Business Process
Management: Models, Techniques, and Empirical Studies, volume
1806 of Lecture Notes in Computer Science, pp. 161-183,
Springer-Verlag, Berlin, 2000.
[3] Aalst, W. M. P. van der, “An alternative way to analyze
workflow graphs,” 14th Int. Conf. On Adv. Info. Sys. Eng., pp. 535-
552, 2002.
[4] Aalst, W. M. P. van der and A. H. M. ter Hofstede,
“Verification of workflow task structures: A Petri-Net-based
Approach,” Information Systems, vol. 25, no. 1, pp. 43-69, 2000.
[5] Aalst, W.M.P. van der, A.H.M. ter Hofstede, and M. Weske,
“Business Process Management: A Survey”, In W.M.P. van der
Aalst, A.H.M. ter Hofstede, and M. Weske, Editors, International
Conference on Business Process Management (BPM 2003),
volume 2678 of Lecture Notes in Computer Science, pp. 1-12.
Springer-Verlag, Berlin, 2003.
[6] Adam, N. R., V. Atluri, and W. Huang. “Modeling and
Analysis of Workflows using Petri Nets,” Journal of Intelligent
Information Systems, vol. 10, pp. 131-158, 1998.
[7] Aissi, S., P. Malu, and K. Srinivasan. “E-business process
modeling: the next big step,” IEEE Computer, vol. 35, no. 5, pp.
55-62, 2002.
[8] Basu, A. and R. W. Blanning, “A formal approach to
workflow analysis,” Information Systems Research, vol. 11, no. 1,
pp. 17-36, 2000.
[9] Basu, A. and A. Kumar, “Research commentary: Workflow
management issues in e-Business,” Information Systems Research,
vol. 13, no. 1, pp. 1-14, 2002.
[10] BEA Systems, IBM Corporation, & Microsoft Corporation,
Inc., Business Process Execution Language for Web Services,
Version 1.1, 2003, available at
http://www.ibm.com/developerworks/library/ws-bpel/.
[11] Bi, H. H. and J. L. Zhao, "Mending the Lag between
Commerce and Research: A Logic-based Workflow Verification
Approach," Computational Modeling and Problem Solving in the
Networked World, Kluwer Academic Publishers, pp. 191-212,
2003.
[12] Business Process Management Initiative, Business Process
Modeling Notation, Working Draft 1.0, August 2003, available at
http://www.bpmi.org/
[13] Casati, F., S. Ceri, B. Pernici, G. Pozzi, “Conceptual
Modeling of Workflows”, In M.P. Papazoglou, Editor,
Proceedings of the 14th International Object-Oriented and Entity-
Relationship Modeling Conference, volume 1021 of Lecture Notes
in Computer Science, pages 341–354. Springer-Verlag, Berlin,
1998.

[14] Choi, Y. and J. L. Zhao, “Matrix-based abstraction and
verification of e-business processes,” In Proc. the 1st Workshop
on e-Business, pp. 154-165, 2002.
[15] Cormen, T. H., C. E. Leiserson, R. L. Rivest, and C. Stein,
Introduction to Algorithms (2nd Ed.), MIT Press, 2001.
[16] Delphi Group, BPM2002: Market Milestone Report, available
at http://www.delphigroup.com/.
[17] Fan, W. and S. Weinstein, “Specifying and reasoning about
workflows with path constraints”, In Proceedings of the 5th
International Computer Science Conference (ICSC’99), HongKong,
China, volume 1749 of Lecture Notes in Computer Science,
Springer, pp. 13-15, 1999.
[18] Georgakopoulos, D., M. Hornick, and A. Sheth, “An
overview of workflow management: from process modeling to
workflow automation infrastructure”, Distributed and Parallel
Databases, vol. 3, pp.119-153, 1995.
[19] Gondran, M. and M. Minoux, Graphs and Algorithms, John
Wiley & Sons Ltd., 1984.
[20] Hofstede, A. H. M. ter, M. E. Orlowska, and J. Rajapakse,
“Verification Problems in Conceptual Workflow Specifications,”
Data and Knowledge Engineering, vol. 24, no. 3, pp. 239-256,
1998.
[21] Kiepuszewski, B., Expressiveness and Suitability of
Languages for Control Flow Modelling in Workflows, PhD thesis,
Queensland University of Technology, Brisbane, Australia, 2002.
[22] Kumar, A., and Zhao, J. L., "Dynamic Routing and
Operational Controls in Workflow Management Systems,"
Management Science, vol. 45, no. 2, pp. 253-272, 1999.
[23] Kwan, M.M. and P.R. Balasubramanian, “Adding workflow
analysis techniques to the IS development toolkit,” Proc. 31st Int’l
Conf. on System Sciences, vol. 4, pp. 312-321, 1998.
[24] Leymann, F., D. Roller, and A. Reuter, Production Workflow:
Concepts and Techniques, Prentice-Hall, Englewood Cliffs, NJ,
2000.
[25] Lin, H., Z. Zhao, H. Li, and Z. Chen, “A novel graph
reduction algorithm to identify structural conflicts,” Proc. of the
35th Hawaii Int. Conf. On Sys. Sci. (HICSS’02), IEEE Computer
Society Press, 2002.
[26] Murata, T., “Petri nets: Properties, analysis, and applications”,
Proceedings of the IEEE, vol. 77, no. 4, pp. 541-580, 1989.
[27] Mukherjee S., H. Davulcu, M. Kifer, P. Senkul, and G. Yang,
“Logic Based Approaches to Workflow Modeling and
Verification”, In J. Chomicki, R. Meyden, G. Saake, Edtiors,
Logics for emerging applications of databases, Springer-Verlag, pp.
167-202, 2004
[28] Oulsnam, G., “Unraveling unstructured programs”, Computer
Journal, vol. 25, no. 3, pp. 379-387, 1982.
[29] Sadiq, W. and M. E. Orlowska, “Analyzing process models
using graph reduction techniques,” Information Systems, vol. 25,
no. 2, pp.117-134, 2000.
[30] Sheth, A. P., W. M. P. van der Aalst, and I. B. Arpinar,
“Processes driving the networked economy,” IEEE Concurrency,
vol. 7, no. 3, pp. 18–31, 1999.
[31] Sivaraman, E. and M. Kamath, “On the use of Petri nets for
business process modeling”, 11th Annual Industrial Engineering
Research Conference, Orlando, Florida. 2002
[32] Stohr, E. A. and J. L. Zhao, “Workflow automation:
Overview and research issues,” Information Systems Frontiers, vol.
3, no. 3, pp. 281-296, 2001.
[33] Verbeek, H. M. W., T. Basten, and W. M. P. van der Aalst,
“Diagnosing workflow processes using Woflan,” Computer
Journal, vol. 44, no. 4, pp. 246-279, 2001.
[34] Workflow Management Coalition, Glossary. Document
Number WfMC-TC-1011, 1999.
[35] Workflow Management Coalition, Interface 1: Process
Definition Interchange Process Model. Document Number WfMC
TC-1016-P, 1999.

	A Two Phase Verification Algorithm for Cyclic Workflow Graphs
	Microsoft Word - EN089-paper.doc

