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ABSTRACT 

The widespread automation of e-business processes has made workflow analysis and design an integral part of 
information management. Graph-based workflow models enables depicting complex processes in a fairly compact form. 
This free form, on the other hand, can yield models that may fail depending on the judgment of the modeler and create 
modeling situations that cannot be executed or will behave in a manner not expected by the modeler. Further, cycles in 
workflow models needed for purposes of rework and information feedback increase the complexity of workflow 
analysis. This paper presents a novel method of partitioning a cyclic workflow process, represented in a directed graph, 
into a set of acyclic subgraphs. This allows a cyclic workflow model to be analyzed further with several smaller sub-
flows, which are all acyclic. As a convincing example, we present two-phased verification of structural conflicts in 
workflow models for those incurred from the inappropriate composition of partitioned flows and the others within each 
acyclic subgraph, which is much easier to comprehend and verify individually than the whole workflow model, in 
general. 
 
Keywords: workflow model, directed graph, feedback, partition, verification 
 

1. INTRODUCTION 
 
The recent surge of e-business research and development 
has resulted in the automation of thousands of business 
processes by means of workflow management systems 
(WfMS), both within and across corporate boundaries 
([5], [7], [9], [16], [18], , [30], [32]). WfMS enable the 
design, analysis, optimization, and execution of business 
processes. The basic WfMS functions include the 
separation between the business process logic and 
business applications, management of relationships 
among process participants, integration of internal and 
external process resources, and monitoring and control of 
process performances ([24], [34], [35]).  There are 
typically two stages of workflow management, workflow 
specification and workflow execution.  The former 
defines a workflow model, and the latter generates 
workflow instances guided by the workflow model. 
 
A workflow model (also called workflow definition) 
consists of a set of activities and their execution 
sequences, the start and termination of the process, and 
the resources needed for executing individual activities, 
such as participants, associated IT applications, and data 
([34], [35]). The objective of workflow modeling is to 
provide high-level specification of processes that are 
independent of the implementation intricacies of the 
target workflow management system ([8], [13], [18], 
[21], [22], [35]). Of all workflow perspectives, e.g., 
control-flow, data, organization, task, and operation, the 
control-flow perspective is the most prominent one 
because it defines the backbone of the workflow on 
which other perspectives can be specified [1]. 
 
Workflow models must be correctly defined before being 
deployed in a workflow management system to avoid 
any costly maintenance delays due to runtime errors in 
the process model [29]. Therefore, it is essential to verify 

the workflow model before its deployment.  Despite the 
importance of workflow verification, few commercial 
workflow systems provide formal verification tools.  
This lack of verification support can be attributed to the 
fact that most of the more than 250 commercially 
available WfMS use a vendor-specific ad-hoc modeling 
techniques [5] without theoretical framework for the 
representation, analysis, and manipulation of workflow 
systems [8]. Although these vendor-provided tools 
facilitate workflow specification and visualization, and 
some support simulation of processes under various 
conditions, they usually do not support formal workflow 
analyses. While process simulation can provide useful 
insight into process behavior, it does not address 
questions about the interrelationships among process 
components [8]. Consequently, few workflows are 
thoroughly checked before they are deployed in practice, 
often resulting in errors that need to be corrected in an ad 
hoc fashion at prohibitive costs. 
 
There are two research approaches to ensure control flow 
correctness in workflow models – build it correctly, or 
check it completely [31]. The former ([10], [17], 
structured model in [21]), relying on strict rules in 
composing the model, may not model certain processes 
due to syntactical restrictions [21] and may not be very 
suitable for practical implementation in industry [31]. 
The latter, like Petri nets ([1], [4], [6], [26], [31], [33]) or 
the graph-theoretic techniques ([8], [14], [25], [29]), on 
the contrary, appeals more by allowing the user 
tremendous flexibility in expressing process 
requirements offering interesting analysis challenges to 
the modeler [31]. The Petri-nets-based workflow 
verification depends on the formalism of Petri nets, 
which is rarely adopted by existing WfMS, and makes it 
hard to be embedded into most of WfMS.  Therefore, for 
non-Petri-nets workflow models, it is difficult to apply 
Petri-nets-based verification techniques as it requires the 
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transformation from each different modeling paradigm 
into the Petri nets formalism plus an effort of 
determining the corresponding structural conflicts in the 
original model. The majority of business processes have 
been analyzed using acyclic (i.e. loop-free) free-choice 
nets, a special class of Petri nets that enjoys the added 
advantage that soundness can be verified in polynomial 
time [1]. Additionally, establishing soundness in a free-
choice net implies that the net is free from deadlock, and 
is also alive, i.e., no dead tasks [2]. However, the 
modeling of exceptions or precedence partially destroys 
the free-choiceness of the equivalent Petri net mapping. 
Moreover, modeling iteration necessitates the presence 
of loops in the control flow model, a problem that is yet 
to be satisfactorily addressed [31].  
 
Graph-based workflow models have been widely used in 
industry to specify control flows of a business process.  
Although graphs provide a great flexibility for depicting 
complex processes in a fairly compact form, their free-
form nature also needs to resolve models that may fail 
due to a lack of support for the modeler to avoid 
situations that cannot be executed or will behave in a 
manner not expected by the modeler [12]. Graph 
reduction ([25], [29]) and block-wise abstraction [14] 
have been proposed to identify structural conflicts in 
workflow graphs, but both approaches are limited to 
acyclic models [3]. 
 
This paper presents a novel method of partitioning into a 
set of acyclic subgraphs and decomposed verification of 
structural conflicts for a cyclic workflow process, even 
for nested structures, represented in a directed graph. Our 
approach of feedback partitioning and decomposed 
verification is unique and has several distinctive features 
useful for workflow analysis and design. First, we 
present two-phased verification of structural conflicts in 
workflow models. Our method detects certain types of 
structural conflicts, in the early stage, incurred from the 
inappropriate composition of feedback flows. And then, 
our method applies verification to each acyclic subgraph, 
which is much easier to comprehend and verify 
individually than the whole workflow model, in general. 
This decomposition feature has not been seen in any 
existing workflow verification method. Second, each 
acyclic flow can be utilized in hierarchically 
decomposing the given model and is a candidate for a 
sub-workflow, the knowledge of which is helpful for 
managing large-scale workflows. Finally, our method is 
based on a directed graph representation, more generic 
and adopted widely by the WfMS vendors, and utilizes 
well-known algorithms of graph-theoretic techniques, 
which makes it easy to embed our approach into most 
WfMS. 
 
The rest of the paper is organized is as follows.  In 
Section 2, we present the preliminary concepts such as 
directed graph representation and types of structural 
conflicts of a workflow model. In Section 3, we present 
the way of partitioning a cyclic workflow graph into the 

subgraphs of acyclic flows with illustrative examples. 
Section 4 delineates the two-phased verification of 
structural conflicts and presents the associated theorems.  
Section 5 discusses related work, summarizes our 
contributions, and outlines future research directions.  
 

2.  WORKFLOW MODELS IN DIRECTED 
GRAPHS  

 
A workflow graph is a directed graph G = (N, T) with a 
set of nodes N and a set of edges (i, j) ∈ T, where i, j ∈ 
N.  Each edge, called a transition, links two nodes and 
represents the execution order of nodes. A node is 
classified into two types, task and coordinator. A task, 
represented by a rectangle, stands for a unit of work to be 
done. A coordinator, represented by a circle, stands for a 
point where only one of succeeding paths is selected or 
several paths are merged. Depending on the types of 
nodes and the number of incoming and outgoing 
transitions, nodes can be classified into five categories, 
i.e., sequence, AND-split, AND-join, XOR-split, and OR-
join, as shown in Fig. 1. Start and End nodes are used to 
indicate the beginning and the end of the given workflow 
process, respectively ([25], [29]). 

sequence AND-split AND-join XOR-split OR-join Start End
 

Fig. 1. Classification of nodes in workflow graphs 
Fig. 2(a) illustrates an example cyclic workflow, 
extending an acyclic example in [29]. We make a 
simplifying assumption on the workflow graph that a 
node cannot be a join and split at the same time. Any 
node that joins and concurrently splits can be converted 
into a set of a join and a split, separate and connected 
with a transition.  
 
Structural conflicts in workflow models 
In this paper, we focus on the verification of three types 
of structural conflicts, deadlock, lack of synchronization, 
and livelock as illustrated in Fig. 3 ([1], [20], [29]). 
Deadlock refers to a situation in which a workflow 
instance gets into a stalemate such that no further activity 
can be executed. This happens when only some partial 
subset of the join paths to an AND-Join is executed, the 
AND-Join node k will wait forever and block the 
continuation of the process (Fig. 3(a)). Lack of 
synchronization refers to a situation in which the 
concurrent flows are joined by an OR-Join, resulting in 
unintentional multiple executions of activities following 
the node k (Fig. 3(b)). Livelock refers to a situation in 
which certain loop(s) of tasks are continuously 
performed, and there is no execution path leading to 
termination or cannot terminate properly (Fig. 3(c)). 
Note that livelock occurs only where a cyclic structure 
exists.  
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Other types of structural conflicts such as dangled nodes 
are relatively easier to detect than those described above, 

from the graph-theoretic viewpoint. A dangled 
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Fig. 2. (a) An example cyclic workflow graph; and (b) the normalized graph 

 
node can be found simply by checking the reachability of 
each node from the Start node and to the End node. 
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(a) deadlock (b) Lack of synchronization (c) Livelock
 

Fig. 3. Types of structural conflicts 
 

3.  PARTITIONING A CYCLIC WORKFLOW 
INTO ACYCLIC FLOWS  

 
Cycles in workflow models are needed for purposes of 
rework and information feedback. For instance, the 
workflow in Fig. 2 contains two simple cycles, i.e., a 
cycle that does not contain any other cycles [19]. Our 
method identifies and partitions off each acyclic flow 
from the given cyclic workflow model. At the first 
iteration of partition, our method partitions off a 
maximally connected subgraph from the Start to the End, 
spanned by all nodes reachable to the End without 
multiple visits to any nodes contained, called main flow. 
If the original workflow model has nested feedback 
structures, our method proceeds on partitioning further to 
the remaining subgraph(s) that contain(s) cyclic 
structures. Otherwise, our method identifies and partition 
off each additional acyclic feedback flow from the 
remaining subgraph(s). More formal definitions and 
detailed descriptions of our method are given next. 
 
The algorithm of Depth-First Search can be applied to 
identify the “back edges” where each of those completes 
a cycle, with the complexity of O(|N|+|T|) [15]. An edge 
(u, v) is classified as a back edge if v is already 
discovered but any of its adjacent nodes are not 

discovered yet, when to explore edge (u, v) in the course 
of Depth-First Search. With all back edges removed, the 
rank of each node can be computed from the resulting 
acyclic workflow graph with the complexity of O(|T|) 
[19]. Fig. 2(b) shows the normalized graph of the 
workflow process in Fig. 2(a), with nodes rearranged by 
its rank r(i), i ∈ N, computed from the resulting acyclic 
workflow graph and shown to the left in Fig. 2(b). Fig. 
4(b) shows another example of normalized graph for a 
workflow of Fig. 4(a) with nested cycles. 
 
A normalized graph is helpful for identifying feedback 
structures of a cyclic workflow process. By examining 
the normalized graphs in Fig. 2(b) and Fig. 4(b), we find 
some interesting phenomena. First, every dotted 
upstream transition (i, j), with r(i) > r(j), merges a 
feedback flow, which is a back edge as defined above. 
Second, each dashed transition initiates a new feedback 
flow. Transition (13, 7) in Fig. 4(b) has both 
characteristics. These transitions can be used as the cut 
sets to group the nodes in N. Next, we describe an 
iterative way of identifying those transitions initiating or 
merging each feedback flow and partitioning the graph 
of a cyclic workflow into subgraphs of acyclic flows. 
 
Steps of a partitioning 
The back edges of a cyclic workflow graph found during 
normalization are called as Feedback Join Transitions 
(FJT). Each transition (i, j) of FJT has the property of 
r(i) > r(j) and corresponds to a distinct simple cycle of a 
cyclic workflow graph. FJT = {(11, 1), (13, 1)} and FJT 
= {(11, 7), (13, 7), (23, 19), (24, 1)} for the examples 
shown in Fig. 2 and 4, respectively.  Nodes that merge 
feedback flows are called as Feedback Joins, denoted by 
FJ, where  
FJ = { j | (i, j) ∈ FJT },  (1)  
FJ = { 1 } and FJ = { 1, 7, 19 } for the examples shown 
in Fig. 2 and 4, respectively. 
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Definition 1. For any i ∈ N, let the Order of Feedback of 
i, called by OF(i), denote the minimum number of 
transitions of FJT to pass to the End node. The subset of 
nodes with OF(i) = n will be called as nth-order 
Feedback Nodes and denoted by FNn.  
Note that N = ∪n FNn. Nodes of FN0 do not need any 
transitions in FJT to reach the End node, and FN0 can be 
identified as follows, 

FN0 = { i | RFJT (i, End) = 1 },              (2) 
where RFJT (i, End), which can be computed with 
complexity of O(|T|),  denote the reachability of node i 
to the End node without the transitions of FJT. That is, 
RFJT (i, End) = 1 when node i can reach the End node 
without passing through any transitions in FJT, or RFJT 
(i, End) = 0 otherwise. RFJT (End, End) is defined to be 
1. Table 1 shows RFJT (i, End) for each node i, resulting 
N – FN0 = { 11, 13 } for the workflow in Fig. 2. It can 
be shown that N – FN0 = { 11, 16, 17, 18, 19, 20, 21, 22, 
23, 24 } for the workflow in Fig. 4. The subgraph 
spanned by FN0 will be called as the main flow and will 
be denoted as MF(Start, End). 
 

Table 1. R FJT (i, End) of each node i in Figure 2 
i 0 1 2 3 4 5 6 7 8 9 16 11 12 13 14 15 1617181920

RFJT (i, 
End)

1 1 1 1 1 1 1 1 1 1 1 0 1 0 1 1 1 1 1 1 1

 
Definition 2.  The nth-order Feedback Joins, denoted by 
FJn, is the subset of feedback joins in FNn. That is FJn = 
FJ ∩ FNn. The nth-order Feedback Splits, denoted by 
FSn, is the subset of nodes that split the subgraph 
spanned by FNn+1 from the subgraph spanned by FNn, 
identified as  FSn = { i | (i, j) ∈ T, i ∈ FNn, j ∈ FNn+1 ∪ 
FJn}. 
 
Note that FJ = ∪n FJn. By definition 2, we get FJ0 as 
follows, 

FJ0 = FJ ∩ FN0.                          (3) 
FJ0 = { 1 } and FJ0 = { 1, 7 } for the examples of Fig. 2 
and 4, respectively.  
 
The set of nodes in any of FSn will be called as 
Feedback Splits, denoted by FS, where FS = ∪n FSn. 
Finally, FS0 will be identified. Since FN1 is not available 
yet and there will be no transition from a node in FN0 to 
any node in ∪n≥2 FNn, we identify FS0 as follows,  

FS0 = { i | (i, j) ∈ T, i ∈ FN0, j ∈ (N – FN0 ) ∪FJ0 } (4) 
FS0 = { 7, 8 } and FS0 = { 10, 13, 15 } for the workflow 
in Fig. 2 and 4, respectively.  
 
At each iteration, our method identifies FNn, FJn and 
FSn. FNn and FJn is identified by classifying N and FJ, 
respectively. On the other hand, FSn is newly discovered 
from FNn, at each iteration. When all the nodes in FJ are 
classified into one of FJn, we can conclude that FNn+1 = 
N – ∪m≤n FNm and no further classification of nodes is 
required. For instance, FJ0 = FJ for the workflow in Fig. 
2, and we can conclude with FN1 = N – FN0 = { 11, 
13 }. Otherwise, there exist more feedback structures in 

the subgraph(s) spanned by N – ∪m≤n FNm and further 
classification of nodes is required. 
 
Recursive partition for nested feedback structures 
Definition 3. For any fs ∈ FSn-1, let Descn (fs) denote the 
set of nodes in FNn and Descn+ (fs) denote the set of 
nodes in ∪m≥n FNm, respectively, that can be reached 
from fs by the transitions in T. For any fj ∈ FJn-1, let 
FAncsn (fj) denote the set of nodes in FNn and FAncsn+ 
(fj) denote the set of nodes in ∪m≥n FNm, respectively, 
that can reach fj by the transitions in T. 
 
Definition 4.  Let fs ∈ FSn-1 and fj ∈ FJn-1. The nth-order 
Feedback Flow FFn(fs, fj) denotes the subgraph spanned 
by the set of nodes { fs, fj } ∪ (Descn (fs) ∩ FAncsn (fj)). 
The (n+)th-order Feedback Flow FFn+(fs, fj) denotes the 
subgraph spanned by the set of nodes { fs, fj } ∪ (Descn+ 
(fs) ∩ FAncsn+ (fj)).  
 
Note that we can let the main flow MF(Start, End) equal 
to FF0(Start, End), assuming that Start ∈ FS-1 and End 
∈ FJ-1.  
 
When FJ is not fully classified yet, there exist at least 
one FFn+(fs, fj) that contains node(s) of FJ. The 
corresponding subgraph contains some feedback 
structures and requires further partitioning. Our method 
recursively applies the steps of partition to each of these 
subgraphs. Otherwise, FFn+(fs, fj) does not require 
further partitioning and equals to FFn(fs, fj), by 
definition.  
 
The workflow of Fig. 2, with FN0, FJ0 = FJ, FS0, and 
FN1, can be partitioned into the main flow MF (0, 20), 
FF1(7, 1) spanned by {7, 11, 1}, and FF1(8, 1) spanned 
by {8, 13, 1}, requiring no further partitioning. For the 
workflow of Fig. 4, we have MF (0, 25), FF1(10, 7), 
FF1(13, 7), and FF1+(15, 1). Since FF1+(15, 1) contains 
a node of FJ not classified yet, i.e., node 19 ∉ FJ0, it 
contains some cyclic structures and requires further 
partitioning. In a similar manner, we can get FN1 = { 11, 
16, 17, 18, 19, 20, 21, 22, 24 }, FJ1 = { 19 }, and FS1 = 
{ 2 } from FF1+(15, 1). Since nodes in FJ are fully 
classified, we can conclude that FN2 = N – FN0 – FN1  = 
{ 23 } and derive additional acyclic subgraphs of 
FF1(15, 1) and FF2(22, 19). Table 2 summarizes the 
results of the analyses for the workflow graphs of Fig. 2 
and 4. Note that each finally derived subgraph of a 
feedback flow, except main flow, matches for distinct 
simple cycle in the given workflow graph. 
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(a) A workflow with nested cycles 
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Fig. 4. Normalization of a workflow graph with nested 
cycles 
 

Table 2. Summary of partitioning  
Case Target 

graph Classified nodes Derived 
subgraphs

Fig. 2 G(N,T) 
FJ = {1}; 
V–FN0 = {11,13}, FJ0 = 
{1}, FS0= {7,8}. 

MF (0, 20) 
FF1 (7, 1) 
FF1 (8, 1) 

G(N,T) 

FJ = {1,7,19}; 
V–FN0 = {11,16,17,18,19, 
20,21,22,23,24}, FJ0  = 
{1,7}, FS0  = {10,13,15}. 

MF (0, 25)  
FF1 (10, 7) 
FF1 (13, 7) 
FF1+ (15, 1)Fig. 4 

FF1+ 
(15, 1) 

FN1  = {11,16,17,18,19,20, 
21,22,24}, FJ1  = {19}, FS1 

= {22}; FN1= {23}. 

FF1 (15, 1) 
FF2 (22, 19)

 
The proposed method allows a cyclic workflow model to 
be analyzed further, if necessary, with several smaller 
subflows, which are all acyclic. The complexity of this 
phase can be estimated as follows. Let q be the 
maximum degree of feedback and r be the average 
number of subgraphs in FNn that need to be further 
partitioned, in the given workflow graph. The 
identification of FNn (with FSn-1 and FJn-1) from 
FFn+(fs, fj), where fs ∈ FSn-1 and fj ∈ FJn-1, is rather 
straightforward with RFJT (i, fj), where i ∈ FFn+(fs, fj), 
that has complexity O(|T′|), where |T′| is the number of 
transitions in the cyclic subgraph FFn+(fs, fj). Therefore, 
the complexity of this step will be O(qr|T|) < O(|N|· |T|).  
 
4. TWO-PHASED VERIFICATION OF CONTROL 

FLOWS  
 
This section presents two-phased verification of 
structural conflicts in workflow models. First, it detects 
certain types of structural conflicts, in the early stage, 
incurred from the inappropriate composition of feedback 
flows. And then, it applies verification to each acyclic 
subgraph, which is much easier to comprehend and 
verify individually than the whole workflow model, in 
general.  
 
4.1   Early stage verification on combining partitioned 
flows 
 
Lemma 1.  A workflow with an AND- feedback join 
node fj will deadlock at fj. A workflow with an AND- 
feedback split node fs will potentially result in an infinite 
loop (i.e., livelock) or multiple instances.   
 
Any FFn(fs, fj) split from a XOR-split fs and merged into 
a OR-join fj, which is exclusive with the originating 

subflow in FNn, will not introduce additional deadlock 
and lack of synchronization conflict to the combined 
flow. On the other hand, feedback joins or feedback 
splits of AND-type incur structural conflicts to the 
combined flow. Fig. 5 shows that conflicts are caused by 
combining a feedback flow with AND-controls. An 
AND-join at fj can never be started, thus causing a 
deadlock (Fig. 5(a)). An AND-split at fs may never end 
since fs always triggers a feedback, thus leading to an 
infinite loop without any type of proper exit from the 
loop, or may result in multiple instances of subflow sf1 
before the synchronization, if exist, with the subflow sf2 
exited from the loop (Fig. 5(b)).  

(a) fj fse
e: any type of exit

(b) fj fse Sf1

Sf2e: any type of exit

Fig. 5. Conflicts caused by AND-controls as a feedback 
join or a feedback split 
 
Lemma 2.  An AND-join a-j that joins FFn(fs1, fj) and 
FFn(fs2, fj), with fs1≠ fs2, incurs a potential deadlock at a-
j as illustrated in Fig. 6(a). In addition, an AND-split  a-s 
that splits FFn(fs, fj1) and FFn(fs, fj2), with fj1≠ fj2, may 
result in multiple instances of subflow sf3 or deadlock at j  
as illustrated in Fig. 6 (b). 
 
In Fig. 6 (a), when there exists some precedence 
relationship between fs1 and fs2, it is clear that a deadlock 
conflict will occur at the AND-join node a-j. The only 
way to prevent this deadlock is when split s is of AND-
type and both fs1 and fs2 always lead to the AND-join a-j 
altogether, if any one of them does. But, this cannot be 
guaranteed and may lead to potential deadlock. In Fig. 6 
(b), when there exists some precedence relationship 
between fj1 and fj2, it is clear that lack of synchronization 
conflict will occur at one of them visited later. Note that 
subflow sf1 or sf2 may have some XOR-exit, not 
represented in the figure for simplification, which makes 
the analysis even more complex. The only way to 
prevent this lack of synchronization conflict is when the 
join node j that subflow sf1 and sf2 merge should be of 
AND-join and both sf1 and sf2 should always lead to the 
AND-join j altogether, if any one of them does so. But, 
this cannot be guaranteed either and may lead to 
potential deadlock. Fig. 6 (c) shows the control-flow-
equivalent workflow transformed from the workflow of 
Fig. 6 (b), by duplicating certain nodes [28] where these 
additional constraints are satisfied.  
 

(a)

fs2

fs1fj

a-j 

s
s: any type of split
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(b) fs

fj1

a-s

fj2 j

Sf1

Sf2 Sf3

Sf4Sf6Sf5

j: any type of join

 

(c) 
fs

fj1

fj2

Sf1

Sf2

Sf3

Sf4

Sf5

Sf6

fj1

fj2

Sf1

Sf2
Fig. 6. Inadequate usages of (a) AND-Join and (b) AND-
Split on feedback paths; (c) equivalent control flow 
transformed from (b) of a special case 
 
Lemmas 1 and 2 can be used to detect certain types of 
structural conflict related to feedback flows. Our method 
identifies those ill-structured control flows based on 
Lemmas 1 or 2 in a workflow model. The decomposed 
verification phase described next, will assume that the 
workflow models contain only XOR- feedback split and 
join nodes. 
 
4.2   Decomposed verification for each acyclic flow 
 
We conjecture that the verification of a given workflow 
can be done by verifying the main flow and each 
partitioned feedback flow of the given workflow, where 
all of which are acyclic. Theorem 1 below argues the 
correctness of this approach formally. 
 
Theorem 1.  If there exist no structural conflicts in 
MF(Start, End) and  each FFn(fs, fj), then there exist no 
structural conflict in the integrated model.  
Proof: Any possible additional structural conflicts in the 
integrated model caused by combining each FF1+(fs, fj), 
originated from and merged into MF(Start, End), are of 
lack of synchronization.  After early stage verification 
with Lemma 1 and 2, each FF1+(fs, fj) splits from an 
XOR feedback split fs, merges at an OR feedback join fj, 
and does not cross another feedback flow by an AND-
split or an AND-join. Therefore, there is no chance that 
any additional Lack of Synchronization conflict would 
be caused in the combined model. The fact that each 
FF1+(fs, fj) can be composed in similar manner 
completes the proof. o 
 
By Theorem 1, verification of structural conflicts in a 
cyclic workflow model can be done by verifying 
structural conflicts of MF(Start, End) and each FFn(fs, 
fj), which are all acyclic. That is, in decomposed 
verification approach, we only need to verify acyclic 
flows. This is a very important feature of our approach 
and can lead to simplified verification and significant 
computational efficiency compared to those approaches 
that verify a cyclic graph as a whole. For instance, the 
graph reduction technique [25] can be applied to a cyclic 
workflow graph after the original graph is partitioned 
into s subflow graphs. As a result of partitioning, the 
computation effort can be even improved from 

O((|N|+|T|)2⋅|N|2) ([3], [25]) to O((|N|+|T|)2⋅|N|2 / s3 ) by 
dividing |N| and |T| by s, respectively. 
 

5.  CONCLUDING REMARKS 
 
Workflow analysis and design is a fundamental task in 
business process management because of the recent 
surge of e-business process automation efforts in the 
corporations worldwide.  Although hierarchical 
decomposition of a complex workflow process is an 
useful step in workflow analysis and design, until now 
there has been no reported work of its automated support 
in the literature.  When the process model is complex, it 
is quite perplexing for a human to recognize 
substructures of potential subprocesses [2].  
 
In this paper, we proposed a unified approach of 
feedback partition and decomposed verification of 
structural conflicts that can handle cyclic workflows 
efficiently. We showed how to identify the main flow 
and each feedback flow that completes each simple 
cycle, which are all acyclic. Hierarchical decomposition 
of a workflow model by feedback structures can make 
workflow analysis and design more accurate and 
efficient and can lead to a better design. We also showed 
that verification of structural conflicts in a cyclic 
workflow model could be done by independently 
verifying structural conflicts in main flow and each 
feedback flow, which are all acyclic. That is, in 
decomposed verification approach, we only need to 
verify acyclic flows.  
 
Our work is related to three main studies in workflow 
verification, namely the graph reduction approach ([25], 
[29]), the Petri nets approach ([1], [4], [6], [33]), and the 
logic-based approach ([11], [27]). The graph reduction 
approach detects structural errors by trying to reduce the 
original workflow graph into an empty one.  If this 
attempt fails, the workflow is determined to contain 
errors.  One main drawback is that the graph reduction 
technique cannot handle cyclic workflows and 
overlapping patterns algorithmically. The Petri-nets-
based workflow verification depends on the formalism of 
Petri nets.  Therefore, for non-Petri-nets workflow 
models, it is difficult to apply their verification 
technique.  The logic-based approach depends on the 
expressive power of propositional logic and does not 
take advantage of instance flows in its verification 
method.  Furthermore, none of these approaches use the 
concept of feedback partitioning, which has been shown 
to provide advantageous features in workflow analysis 
and design.  Our work unifies process decomposition and 
verification while other verification techniques focus 
mainly on process verification.  In sum, our approach 
provides a useful, if not better, alternative to existing 
workflow verification methods. 
 
The issues that merit future research are: to establish 
results for verifying correctness of a workflow model 
including other perspectives, for instance the data-flow; 
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transformation of a free-form graph-structured workflow 
model into a structured model, like in BPEL4WS [10]; to 
extend results for further workflow analysis of process 
reengineering. 
 

ACKNOWLEDGEMENT 
 

This work was supported by the 2003 Inje University 
research grant. 
 

REFERENCES 
 
[1] Aalst, W. M. P. van der, “The Application of Petri Nets to 
Workflow Management”, The Journal of Circuits, Systems and 
Computers, vol. 8, no. 1, pp. 21-66, 1998. 
[2] Aalst, W. M. P. van der, “Workflow Verification: Finding 
Control-Flow Errors using Petri-net-based Techniques”, In W.M.P. 
van der Aalst, J. Desel, and A. Oberweis, Editors, Business Process 
Management: Models, Techniques, and Empirical Studies, volume 
1806 of Lecture Notes in Computer Science, pp. 161-183, 
Springer-Verlag, Berlin, 2000. 
[3] Aalst, W. M. P. van der, “An alternative way to analyze 
workflow graphs,” 14th Int. Conf. On Adv. Info. Sys. Eng., pp. 535-
552, 2002. 
[4] Aalst, W. M. P. van der and A. H. M. ter Hofstede, 
“Verification of workflow task structures: A Petri-Net-based 
Approach,” Information Systems, vol. 25, no. 1, pp. 43-69, 2000. 
[5] Aalst, W.M.P. van der, A.H.M. ter Hofstede, and M. Weske, 
“Business Process Management: A Survey”, In W.M.P. van der 
Aalst, A.H.M. ter Hofstede, and M. Weske, Editors, International 
Conference on Business Process Management (BPM 2003), 
volume 2678 of Lecture Notes in Computer Science, pp. 1-12. 
Springer-Verlag, Berlin, 2003. 
[6] Adam, N. R., V. Atluri, and W. Huang. “Modeling and 
Analysis of Workflows using Petri Nets,” Journal of Intelligent 
Information Systems, vol. 10, pp. 131-158, 1998. 
[7] Aissi, S., P. Malu, and K. Srinivasan. “E-business process 
modeling: the next big step,” IEEE Computer, vol. 35, no. 5, pp. 
55-62, 2002. 
[8] Basu, A. and R. W. Blanning, “A formal approach to 
workflow analysis,” Information Systems Research, vol. 11, no. 1, 
pp. 17-36, 2000. 
[9] Basu, A. and A. Kumar, “Research commentary: Workflow 
management issues in e-Business,” Information Systems Research, 
vol. 13, no. 1, pp. 1-14, 2002. 
[10] BEA Systems, IBM Corporation, & Microsoft Corporation, 
Inc., Business Process Execution Language for Web Services, 
Version 1.1, 2003, available at 
http://www.ibm.com/developerworks/library/ws-bpel/. 
[11] Bi, H. H. and J. L. Zhao, "Mending the Lag between 
Commerce and Research: A Logic-based Workflow Verification 
Approach," Computational Modeling and Problem Solving in the 
Networked World, Kluwer Academic Publishers, pp. 191-212, 
2003. 
[12] Business Process Management Initiative, Business Process 
Modeling Notation, Working Draft 1.0, August 2003, available at 
http://www.bpmi.org/ 
[13]  Casati, F., S. Ceri, B. Pernici, G. Pozzi, “Conceptual 
Modeling of Workflows”, In M.P. Papazoglou, Editor, 
Proceedings of the 14th International Object-Oriented and Entity-
Relationship Modeling Conference, volume 1021 of Lecture Notes 
in Computer Science, pages 341–354. Springer-Verlag, Berlin, 
1998. 

[14] Choi, Y. and J. L. Zhao, “Matrix-based abstraction and 
verification of e-business processes,” In Proc.  the 1st Workshop 
on e-Business, pp. 154-165, 2002.  
[15] Cormen, T. H., C. E. Leiserson, R. L. Rivest, and C. Stein, 
Introduction to Algorithms (2nd Ed.), MIT Press, 2001. 
[16] Delphi Group, BPM2002: Market Milestone Report, available 
at http://www.delphigroup.com/. 
[17] Fan, W. and S. Weinstein, “Specifying and reasoning about 
workflows with path constraints”, In Proceedings of the 5th 
International Computer Science Conference (ICSC’99), HongKong, 
China, volume 1749 of Lecture Notes in Computer Science, 
Springer, pp. 13-15, 1999. 
[18] Georgakopoulos, D., M. Hornick, and A. Sheth, “An 
overview of workflow management: from process modeling to 
workflow automation infrastructure”, Distributed and Parallel 
Databases, vol. 3, pp.119-153, 1995. 
[19] Gondran, M. and M. Minoux, Graphs and Algorithms, John 
Wiley & Sons Ltd., 1984. 
[20] Hofstede, A. H. M. ter, M. E. Orlowska, and J. Rajapakse, 
“Verification Problems in Conceptual Workflow Specifications,” 
Data and Knowledge Engineering, vol. 24, no. 3, pp. 239-256, 
1998. 
[21] Kiepuszewski, B., Expressiveness and Suitability of 
Languages for Control Flow Modelling in Workflows, PhD thesis, 
Queensland University of Technology, Brisbane, Australia, 2002.  
[22] Kumar, A., and Zhao, J. L., "Dynamic Routing and 
Operational Controls in Workflow Management Systems," 
Management Science, vol. 45, no. 2, pp. 253-272, 1999. 
[23] Kwan, M.M. and P.R. Balasubramanian, “Adding workflow 
analysis techniques to the IS development toolkit,” Proc. 31st Int’l 
Conf. on System Sciences, vol. 4, pp. 312-321, 1998. 
[24] Leymann, F., D. Roller, and A. Reuter, Production Workflow: 
Concepts and Techniques, Prentice-Hall, Englewood Cliffs, NJ, 
2000. 
[25] Lin, H., Z. Zhao, H. Li, and Z. Chen, “A novel graph 
reduction algorithm to identify structural conflicts,” Proc. of the 
35th Hawaii Int. Conf. On Sys. Sci. (HICSS’02), IEEE Computer 
Society Press, 2002. 
[26] Murata, T., “Petri nets: Properties, analysis, and applications”, 
Proceedings of the IEEE, vol. 77, no. 4, pp. 541-580, 1989. 
[27] Mukherjee S., H. Davulcu, M. Kifer, P. Senkul, and G. Yang, 
“Logic Based Approaches to Workflow Modeling and 
Verification”, In J. Chomicki, R. Meyden, G. Saake, Edtiors, 
Logics for emerging applications of databases, Springer-Verlag, pp. 
167-202, 2004 
[28] Oulsnam, G., “Unraveling unstructured programs”, Computer 
Journal, vol. 25, no. 3, pp. 379-387, 1982. 
[29] Sadiq, W. and M. E. Orlowska, “Analyzing process models 
using graph reduction techniques,” Information Systems, vol. 25, 
no. 2, pp.117-134, 2000. 
[30] Sheth, A. P., W. M. P. van der Aalst, and I. B. Arpinar, 
“Processes driving the networked economy,” IEEE Concurrency, 
vol. 7, no. 3, pp. 18–31, 1999. 
[31] Sivaraman, E. and M. Kamath, “On the use of Petri nets for 
business process modeling”, 11th Annual Industrial Engineering 
Research Conference, Orlando, Florida. 2002 
[32] Stohr, E. A. and J. L. Zhao, “Workflow automation: 
Overview and research issues,” Information Systems Frontiers, vol. 
3, no. 3, pp. 281-296, 2001. 
[33] Verbeek, H. M. W., T. Basten, and W. M. P. van der Aalst, 
“Diagnosing workflow processes using Woflan,” Computer 
Journal, vol. 44, no. 4, pp. 246-279, 2001.  
[34] Workflow Management Coalition, Glossary. Document 
Number WfMC-TC-1011, 1999. 
[35] Workflow Management Coalition, Interface 1: Process 
Definition Interchange Process Model. Document Number WfMC 
TC-1016-P, 1999. 

 


	A Two Phase Verification Algorithm for Cyclic Workflow Graphs
	Microsoft Word - EN089-paper.doc

