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Preface

IDEA ’15 held at HiPEAC 2015, Amsterdam, The Netherlands on January 21st,
2015 is the first workshop on Investigating Dataflow in Embedded computing
Architectures. This technical report comprises of the proceedings of IDEA ’15.

Over the years, dataflow has been gaining popularity among Embedded Sys-
tems researchers around Europe and the world. However, research on dataflow
is limited to small pockets in different communities without a common forum for
discussion. The goal of the workshop was to provide a platform to researchers
and practitioners to present work on modelling and analysis of present and
future high performance embedded computing architectures using dataflow.

Despite being the first edition of the workshop, it was very pleasant to see a
total of 14 submissions, out of which 6 papers were selected following a thorough
reviewing process. All the papers were reviewed by at least 5 reviewers.

This workshop could not have become a reality without the help of a Techni-
cal Program Committee (TPC). The TPC members not only did the hard work
to give helpful reviews in time, but also participated in extensive discussion
following the reviewing process, leading to an excellent workshop program and
very valuable feedback to authors. Likewise, the Organisation Committee also
deserves acknowledgment to make this workshop a successful event. We take
this opportunity to thank everyone who contributed in making this workshop a
success.
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Energy-Aware Mapping and Scheduling of
Large-Scale Macro Data-Flow Applications

Jörg Walter
OFFIS – Institute for Information Technology,

Oldenburg, Germany
joerg.walter@offis.de

Wolfgang Nebel
University of Oldenburg

Oldenburg, Germany
wolfgang.nebel@uni-oldenburg.de

Abstract—Predicting the performance of parallel programs for
large-scale parallel platforms is difficult due to the disparity
between development system and target platform. Additionally,
energy efficiency is becoming a universal concern, and platforms
move towards highly heterogeneous systems containing GPUs,
FPGAs, and other unconventional processing elements.
In this paper we propose a static macro data-flow mapping
and scheduling tool that is able to handle large parallel ap-
plications targeting heterogeneous platforms. It optimizes overall
run time and energy consumption at the same time with a user-
configurable cost function, allowing a selectable trade-off between
both properties.

I. INTRODUCTION

Energy efficiency is a universal concern by now: the world’s
fastest supercomputers exhibit a de facto 20 MW power limit,
in mobile computing it affects battery life time; even high-end
workstations are constrained due to size and noise requirements.

An equally universal concern is parallel application design.
Well-established in the high-performance computing (HPC)
world as in embedded system level design, general-purpose
computing has embraced heterogeneous parallelism as well.

Experience shows that embedded systems can be expected
to reach the computational power of today’s supercomputers
within ten years. Consequently, they will face the same
challenges as supercomputers: a developer workstation will
struggle to model, map, and simulate an application running
on hundreds of processing elements at today’s level of detail.

Our current research includes a design and optimisation flow
for large parallel applications on heterogeneous platforms. It
works on task precedence graphs, or macro data-flow graphs,
and treats tasks in an abstract way so that it can handle larger
applications than usually addressed in embedded system design.

In this paper we present our tool to solve the mapping
problem, i. e. how to assign tasks to processing elements (PEs)
and how to schedule tasks on a given PE. While our mapper is
based on well-known algorithms, it has two main advantages
over existing tools:

• Instead of just minimizing overall run time time, it
optimizes energy efficiency by minimizing the energy
delay product or any other function of these two values.

The research leading to these results has received funding from the European
Union Seventh Framework Programme (FP7/2007-2013) under grant agreement
No 609757 (FiPS - Developing Hardware and Design Methodologies for
Heterogeneous Low Power Field Programmable Servers).

• It handles real-world applications consisting of thousands
of tasks mapped to hundreds of heterogeneous pro-
cessing elements with much better results than simulated-
annealing-based tools.

This paper has the following structure: The next section lists
research related to our methodology. Section III shows the
context for which we designed the mapper. Section IV defines
input data that it operates on. We explain the actual algorithm
in Section V, followed by Section VI, where we highlight open
issues and possible solutions. Finally, Section VII summarizes
our findings and gives an outlook to ongoing research.

II. RELATED WORK

Mapping and scheduling of task graphs is a well-researched
topic. Many algorithms exist, and [8], [9] give a comprehensive
overview; the latter also evaluates some of them. Most
algorithms use very simple assumptions about computation and
communication behaviour. We base our tool on a combination
of such well-understood algorithms, but since we map to real-
world heterogeneous cluster architectures, our performance and
power models are more detailed.

Few schedulers are energy aware in any case, and they
usually minimize energy under fixed deadlines, like [5],
[6] or reduce PE idle consumption by stretching tasks via
voltage/frequency scaling [2], but the actual scheduling still
optimizes for time only. Our mapper minimizes a configurable
cost function, by default energy times delay, and thus is able
to perform an arbitrary trade-off between time and energy.

III. A DESIGN AND OPTIMISATION FLOW

Fig. 1 shows the application design and optimization flow
for which we designed the mapper.

Designers have a golden application model, i. e. sequential
program code. They separate the code into several compute-
intensive kernels and extract them. With these stand-alone
kernels, they perform a one-time characterisation process; later
stages of the flow use its results.

Designers then build a task graph so that each task executes
exactly one kernel; one kernel usually corresponds to mul-
tiple task instances. Task graph plus kernel code should be
functionally equivalent to the source application.

Our mapping and scheduling algorithm uses task graph,
platform description, and characterisation results to map each
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Figure 1. Overview of our design flow.

task of the task graph to a processing element (PE) on the
target platform and generates a queue of tasks for each PE.

Simulation then uses this mapping in conjunction with
characterisation results to predict makespan (i. e. overall run
time) and energy consumption, as well as other metrics provided
by simulation models.

With these predictions, designers can optimize the application
in various ways: they can restructure the task graph, e. g. by
changing the amount of parallelism, they can change the
application’s separation into kernels, and they can even start
over and rewrite the application using different algorithms.
This effectively constitutes a design space exploration loop.
When satisfied, designers can create an executable version of
the parallelised application from the mapped task graph in
conjunction with the extracted kernels.

IV. MAPPING INPUTS

Our mapper works on an application model and a platform
model, much like embedded design space exploration tools.
We specifically target large parallel applications on loosely
coupled (cluster-like) architectures.

A. Application Model

Applications are represented as task precedence graphs as
commonly used in HPC research, e. g. in [1]. This application
model is also known as macro data-flow, with slightly different
terminology as main difference. Recent research has shown
practical usefulness of this representation [4].

We add annotations in order to express computation and com-
munication complexity with higher detail than simple edge/node
weights could express: a task graph TG = (T,D,K, κ, δ) is
an annotated directed acyclic graph, where T is the set of
tasks (graph nodes), D is the set of precedence constraints
(edges) between tasks, K is the set of known kernels (see
Section III), function κ maps tasks to kernels, and function δ
specifies communication volume for each edge.

A task can execute as soon as all predecessor tasks have
completed execution, and all data objects associated with
incoming dependencies have been received. Task execution is
atomic (at least conceptually) and has no hidden side-effects,

just communication as expressed by δ. Communication happens
after the originating task has completed execution and before
the destination task starts execution.

Our mapper expects that the task graph has exactly one start
node, i. e. exactly one node with in-degree zero.

B. Platform Model

The mapper uses an abstract model for the target platform
that provides a list of processing elements, their hardware
architecture, and a graph of communication resources.

The platform communication graph PCG = (C,L,MC , λ)
is an annotated directed graph, where C is the set of commu-
nication elements (CEs). Subset P ⊆ C is the set of processing
elements (PEs). Set L represents links between CEs. Function
λ maps CEs to behavioural parameters contained in set MC ,
most importantly start-up delay and usable bandwidth.

C. Characterisation Database

In addition to the task graph, the mapper relies on kernel
execution times collected in a characterisation database. For
each kernel k that is in the set K of all characterised kernels, it
contains the average execution time for k running on each PE
architecture, and the corresponding average power consumption.
The database could hold synthetic numbers derived from
power/performance simulation models, but it is intended to
store actual measurements done on real hardware.

By splitting applications into kernels and characterising those
independently of application and platform models, we get the
flexibility to explore hypothetical (i. e. unfinished, non-existing)
applications and platforms. A single processing element of each
architecture is sufficient for characterisation.

V. ENERGY-AWARE MAPPING AND SCHEDULING

Our mapping tool uses a constructive hybrid heuristic: An
earliest-finishing-time-first list scheduler works on a linear
task queue, while a modified version of simulated annealing
(SA) explores random permutations of tasks in that queue by
repeating the scheduling process for each permutation.

The mapper/scheduler only maps computation, not commu-
nication. We assume the platform has a shortest-path routing
policy as is common with Ethernet interconnects. Furthermore,
in its current state it does not model communication contention
in any way (see Section VI).

A. Data Structures

In addition to the input models as explained in Section IV,
our mapper uses the following important data structures:

1) Task Queue: The task queue is the central data structure.
Initially, it contains a breadth-first traversal of the task graph,
starting at the single start node. It must always contain a
topological ordering of the task graph: for every task in the
queue, all of its predecessors occur in front of it, and all of
its successors appear after it. The optimizing heuristic always
preserves this property.
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2) Communication Matrix: The mapper assumes static
shortest-path routing. From the platform communication graph
it constructs a square matrix with one row and column per
processing element (PE). It contains the cumulative start-up
delay per transmission, and the maximum achievable bandwidth
between each pair of PEs, which is the bandwidth of the slowest
link on the route between them.

3) PE Schedule: The main output of the mapping process
is a queue of tasks to be executed for each PE. A PE strictly
adheres to this order of tasks, but it dynamically determines
when the current task can start, i. e. when all inputs for a
task are available. This is because the lack of communication
congestion may lead to considerable timing inaccuracy.

B. Constructive Scheduler

The list-based mapper/scheduler traverses the task queue
in order and maps each task to the PE that yields the
earliest task finish time. It uses task execution times from the
characterisation database and models communication delays
via data taken from the communication matrix in conjunction
with data size as recorded in the application model.

Even though this only considers time, there is a strong
correlation between time and energy. As a consequence, we
have achieved good results with this scheduler in conjunction
with the actual optimizing heuristic (see Table I).

C. Optimizing Heuristic

The simulated-annealing (SA) part explores permutations of
the task queue in order to minimize the user-configurable cost
function, which can be any function of the two parameters total
time and total energy. As its only move, the heuristic swaps
the position of two adjacent tasks in the task queue. If that
would violate the ordering restriction noted in Section V-A1,
it chooses another pair until it finds a valid move.

It then lets the scheduler determine timing of the new task
queue. After that, the mapper uses a two-state power model
(active and idle) for processing elements to calculate total
energy usage. Finally, it calculates the score using the user-
configured cost function. It then decides whether to accept the
solution with a typical SA probability function. Then it repeats
the whole process; currently, it uses one million iterations.

1) Windowing: The mapper is intended for task graphs of a
few hundred nodes as well as for ones with tens to hundreds
of thousands of tasks. Therefore, it is difficult to set a fixed
iteration count for simulated annealing. Instead, we subdivide
the task queue into equal-sized windows. Each window overlaps
with half of the preceding window and half of the following
window. SA then works on a single window at a time, in
increasing order, spending one million iterations each time.

In our experiments, a window size of about 3 · |P | tasks has
given best results; we observed a significant improvement in
result quality over the all-at-once variant (given similar total
mapping time).

2) Optimizations: We employed several optimisations in
order to reduce mapping time. Most importantly, we do not
reschedule the whole task graph on each iteration. We store
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Figure 2. Mapping speed for various task graph and target platform sizes.

intermediate scheduling results for every task in the task queue
(using O(|T | · |P |) memory) and start rescheduling only the
swapped tasks and the following ones. In average, this halves
mapping time.

The list-based scheduler itself contains another useful
optimisation: when searching for the best PE, it first checks if
a given PE would be a viable candidate if it did not experience
communication delays. If not, the scheduler skips calculation of
communication delays entirely, which yields another significant
speed-up (depending on target platform size).

D. Evaluation

1) Mapping Speed: With a fixed iteration count, our mapper
has an asymptotic run time of O(|T | · |P |), because the list
scheduler iterates exactly once over the task queue on each
annealing iteration, and it has to check all possible PEs for
each task. This relies on the assumption that the average in-
degree of all nodes is constant regardless of task graph size. It
is easy to create task graphs that break this assumption, but for
real-world parallel application patterns this holds, since kernels
usually have a fixed, small number of inputs. With windowing
this stays the same, because no matter how many windows
there are, the amount of work per window decreases by that
factor.

Fig. 2 shows the mapping time of some sample runs, each a
mapping of Cholesky matrix decomposition in various degrees
of parallelisation to various heterogeneous target platforms
built from of three different types of processing elements.
The mapper executed on a single core of an AMD Opteron
processor running at 2.6 GHz. The figure shows that actual
mapping times indeed scale linearly with number of PEs and
tasks

2) Mapping Quality: We compared our mapper to a plain
SA implementation as it is often found in literature, e. g. in
[9], and to the plain list-based scheduler without annealing.
Table I lists the results of mapping 1543 tasks to 90 PEs using
the energy delay product as cost function, as suggested in
[3]. As expected, the list-based scheduler is several orders of
magnitude faster than the others. We selected SA parameters
so it would run roughly the same time as our hybrid mapper.
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Table I
COMPARISON TO OTHER MAPPING HEURISTICS.

Type Predicted Cost Mapping
Time (s) Energy (kJ) (MJs) Time (s)

Simulated Annealing 162 164 26.5 2260
List Scheduler 160 199 31.8 0.003

Hybrid 132 177 23.4 2385

Our hybrid mapper produces mappings that are 26 % better
than the plain list-based scheduler (measured by the cost
function). It is 12 % better than plain simulated annealing
running for a similar amount of time. With an 8 % increase
in energy usage over SA, it produced a solution that has 18 %
less makespan. That solution is even faster than the time-only
optimizing list scheduler.

VI. FUTURE IMPROVEMENTS

There are some open issues we want to solve in order to make
our tool more suitable for its intended purpose. Unfortunately,
it is already quite slow, so any improvement in accuracy must
be essentially free, or we need to find further optimization
opportunities in the algorithm.

A. Performance

One way to speed up the mapper is to use variable
SA iteration counts. That way, users are able to make a
speed/optimality trade-off.

Another common technique is parallelisation. There are
existing implementations that promise easy parallelisation of
SA-based heuristics [7]. We have not yet tried this, but will
probably do so.

B. Data-Dependent Behaviour

In order to account for data-dependent behaviour that can
be expressed statically, kernels can actually be parametrised,
e. g. by the size of the inputs they process. In that case, tasks
in the task graph also specify kernel parameter values.

We do not yet handle data-dependent behaviour that cannot
be determined statically. Regarding execution time, histograms
instead of constant task execution times are a possible solution.
Since simulated annealing already encompasses repeatedly
retrieving execution times, a simple random sample from these
histograms on each iteration might be enough to get a realistic
task execution time distribution. If this expectation turns out to
be true, this means that essentially, we get stochastic modelling
for free.

C. Communication Congestion

The worst accuracy problem we face is the lack of commu-
nication congestion modelling. As far as we are aware, there
is no cheap solution. Since the scheduler iterates over the
task queue once, we cannot (cheaply) readjust already-mapped
tasks. This means that earlier tasks in the queue cannot account
for communication of later tasks even though they might be
contending for the same communication links.

The problem actually consists of two parts: how to get
congestion data, and how to incorporate it.

1) Collecting Congestion Information: So far, we have had
two ideas for gathering congestion data: As our mapper is part
of an iterative design space exploration flow, congestion data
generated by earlier iterations could influence future mappings.

Our windowing technique could also provide abstract link
utilisation figures. A window could record how much data went
over each link. The following (overlapping) window could use
this for congestion modelling.

2) Accounting for Congestion: In order to account for
such congestion, link bandwidth could simply be reduced.
Alternatively, link bandwidth could be modelled stochastically,
just like we intend to do for task execution times. The latter
solution might work well with iterative feedback, and it might
even be fed from each iteration of the annealing heuristic.

VII. CONCLUSION

In this paper, we have presented a mapping tool intended for
mapping large task graphs onto highly heterogeneous parallel
platforms. It uses a combination of two well-known heuristics to
create better mappings than each one on its own. Furthermore,
it scales linearly with the number of tasks and the number of
processing elements. Its main drawback is a speed that is only
suitable for static ahead-of-time mappings.

We are still investigating ways to improve the computation
and communication model employed in the mapper. The most
important missing element is communication congestion, as
this is a major source of mismatch to real-world execution
behaviour. Since the mapper is part of a full design space
exploration flow, we expect that other parts of the flow can
supply useful data to address this issue.
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Pipelined Scheduling of Acyclic SDF Graphs using
SMT Solvers

Pranav Tendulkar, Peter Poplavko, Oded Maler
VERIMAG Lab (CNRS,University of Grenoble), France

Abstract—We consider compile-time multi-core mapping and
scheduling problem for synchronous dataflow (SDF) graphs,
proved an important model of computation for streaming appli-
cations, such as signal/image processing and video/image coding.
In general the real-time constraints for these applications include
both the task periods / throughput and the deadlines / latency.
The deadlines are typically larger than the periods, which
enables pipelined scheduling, allowing concurrent execution of
different iterations of an application. A majority of algorithms
for scheduling SDF graphs on a limited number of processors
do not consider both latency and period real-time constraints at
the same time. For this problem, we propose an efficient method
based on SMT (satisfiability modulo theory) solvers. We restrict
ourselves to periodic scheduling and acyclic graphs, giving up
some efficiency for the sake of simplicity. We present an approach
to encode the pipelined scheduling problem and demonstrate
its practicality on Kalray MPPA-256 multi-core platform by
executing various benchmarks according to the optimal schedules.

I. INTRODUCTION

Streaming applications process streams of data of indefinite
length, where output stream(s) are function(s) of input streams.
Typical examples are digital signal processing (DSP) appli-
cations, video/audio (de-)coding, digital radio and television
applications [11]. Such applications have high computational
demands and hence they are often implemented in dedicated
hardware. However, the semiconductor technology advances
make it worthwhile to port many such applications to pro-
grammable parallel architectures, such as multi-cores. To meet
the performance targets on programmable hardware, it is
crucial to make use of task parallelism through optimizing
compiler tools. To this end, the designers represent their appli-
cation by a model of computation that exposes the parallelism.
The streaming applications can be conveniently expressed
using dataflow models, such as synchronous dataflow graph
(SDF) [4]. Several multi-core compilers for SDF and other
dataflow models have been proposed, e.g., StreamIt [11]. This
paper contributes to SDF compiler optimization to satisfy real-
time constraints on M identical shared-memory processors.
For simplicity, we restrict ourselves to acyclic graphs (i.e., all
feedback loops are hidden inside the graph nodes).

In real-time systems, for given limited set of processors the
tasks should satisfy constraints on both throughput (i.e., period)
and latency (i.e., response time, deadline). What makes the
problem harder is the typical lack of support of task preemption
in DSP multi-cores, which invalidates many real-time schedul-
ing policies, such as EDF, making it computationally hard

Research supported by the European ICT Collaborative Project no. 288175
(CERTAINTY).

to analyze the schedulability. Moreover, even if preemptions
were allowed, another problem is that DSP applications are
task graphs and not independent tasks, which makes it hard
to compute the response times. Therefore, many scheduling
algorithms for DSP multi-cores are non-preemptive and they
ignore latency and focus on throughput e.g., [3]. Satisfying
throughput, latency and processor count constraints at the same
time is a hard combinatorial problem rarely addressed in the
literature, especially if one tries to obtain or approximate
the exact solution. For example, [6] approximates a similar
problem using classical preemptive scheduling techniques.

Due to hardness of this problem, generic constraint solving
techniques are typically applied for it, such as, SMT (Satisfia-
bility Modulo Theory), ILP (integer linear programming), ASP
(Answer Set Programming), and CP (constraint programming).
For example [5] use SMT solvers and propose unfolding
method for a problem similar to ours, but not considering spe-
cific constraints for SDF graphs. In our previous work [9], we
apply SMT solvers for mapping and scheduling a (subclass of)
acyclic SDF graphs, but we still focused on latency constraint
and ignored the throughput constraint. Though we convert SDF
graphs into task graphs (also known as homogeneous (HSDF)
graphs), we propose task symmetry breaking constraints that
use the information of the original (multi-rate) SDF graph
actors to speed up the search for solutions. In this paper,
we propose extensions of that work for period/throughput,
assuming pipelined scheduling, i.e., the period can be smaller
than the latency. For simplicity, we restrict ourselves to strictly
periodic schedules, i.e., schedules where task graph iterations
are spawned at equal time intervals. However, we believe that
we do not loose much efficiency with this assumption because
even self-timed solutions are eventually periodic, though not
necessarily strictly periodic, but in general, multi-periodic,
i.e., imposing a period every K iterations for some K ∈ N.

We propose a new technique called ‘period locality’ for
pipelined scheduling of SDF graphs. The proposed method
represents the pipelined scheduling by a significantly simpler
set of SMT constraints than the comparable encoding of un-
folding [5] or modulo scheduling [10]. It also offers solutions
that are sustainable to period variations for the fixed latency,
in exchange of possible loss of optimality.

This technique was implemented in our tool StreamEx-
plorer [7] and we perform experiments on the benchmarks
from StreamIt and we validate our results by deploying them
on a Kalray MPPA-256 multi-core processor architecture [1].
We observe that the error in prediction of period using a single
cluster inside the platform is less than 15%.
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Fig. 1: Periodic Schedule Examples for an SDF Graph

II. SYNCHRONOUS DATAFLOW GRAPHS

Definition II.1 (Acyclic SDF Graph). An acyclic SDF graph
is a tuple S = (V,E, d, r) where (V,E) is a connected
finite direct acyclic graph (DAG) whose nodes are repeatedly
executed processes (actors) and edges are FIFO (first-in-first-
out) channels, d : V → R+ is a function assigning an
execution time to each node, r : E → N+ ×N+ assigns pairs
of token production/consumption rates to channels. We use the
notation r(u, v) = (α(u, v), β (u, v)). The meaning of α is the
number of data tokens produced to the channel at the end of
each execution of actor u, and β is the number of data tokens
consumed at the start of each execution of actor v. An SDF
graph with r(e) = (1, 1) for every e is called a task-graph1

and is denoted by T = (U, E , δ), renaming the first three tuple
components and skipping the implicit component r.

We deviate from the common definition of SDF graph by
forbidding cyclic paths and initial tokens. This is not due to
any fundamental restrictions, but certain parts of the theory,
mentioned later, need to be extended to support these features
in future work.

A practical SDF graph should satisfy the consistency
property [4], namely, it should be possible to execute the actors
such that the total amount of data produced on each channel
is equal to the total amount of data consumed. Let c(v) denote
the number of times actor v is executed. The balance equation
for an SDF channel (v, v′) is written as:

c(v) · α(v, v′) = c(v′) · β (v, v′) (1)

A graph is consistent if the balance equations have solu-
tions c(v), and only the smallest positive integer solutions
are considered. Executing every actor c(v) number of times
is called graph iteration. The dependencies between actor
executions in a graph iteration is modeled by equivalent task
graph (U, E , δ), where the nodes – called tasks – represent
actor executions and edges represent precedence constraints.
A consistent SDF graph can be expanded to a task graph, by
well-known algorithm of deriving homogeneous SDF graph,
see e.g., [10]. In the derived task graph, every actor v is
expanded into c(v) tasks: Uv = {v1, v2, . . .}.

III. SMT ENCODING OF THE SCHEDULING PROBLEM

A problem instance of the scheduling problem consists of
an acyclic SDF graph S and the costs. Though for scheduling

1mostly referred to as homogeneous SDF graph

not the SDF graph itself, but the derived task graph is used,
still we exploit the relation between these graphs for symmetry
breaking in the solution space. The costs are the number of
processors M , the latency `, and, period P . The primary
decision variables for the scheduling problem are the task start
times, s(u), and task mapping to processors, µ(u), assuming
real s(u) ∈ R≥0 and integer µ(u) ∈ N+. A scheduling interval
for task u is interval [s(u), e(u)), where e(u) = s(u) + δ(u).
We assume non-preemptive scheduling, and hence the task
executes entirely inside this interval. Note that the scheduling
is assumed periodic, so a task scheduled at s(u) is also
scheduled at s(u) + P , s(u) + 2P , etc., where P is period.

A schedule is realizable, if the tasks mapped to the same
processor do not overlap in time. In addition, to be feasible it
should respect tasks dependencies and the cost constraints. We
define a realizable and feasible schedule in terms of constraints
presented to the SMT solver tools. To express the scheduling
constraints, it is convenient to define the following predicate:

ψu,u′ : e(u) ≤ s(u′)
This predicate states that the scheduling interval of task u′

follows after the interval of task u.

The following constraint is necessary to ensure that the
schedule is realizable [5]:

ϕµ :
∧

u6=u′∈U
(µ(u) = µ(u′))⇒ ψu,u′ ∨ ψu′,u

ϕµ is called mutual exclusion constraint. It asserts that the
scheduling intervals of two tasks running on the same proces-
sor are mutually exclusive.

The task graph dependencies are specified by precedence
constraints:

ϕε :
∧

(u,u′)∈E
ψu,u′ (2)

We define two cost constraints: one for the latency (termination
of the last task), denoted `, and the other one for the number
of processors used, denoted M :

ζ` :
∧

u∈U
e(u) ≤ ` ∧ ζM :

∧

u∈U
µ(u) ≤M

Putting all constraints together, we have the following
encoding for the scheduling problem:

Φµε`M : ϕε ∧ ϕµ ∧ ζ` ∧ ζM (3)

In addition, we assert the processor and task symmetry
breaking constraints in order to accelerate the search for solu-
tions [9]. In particular, the task symmetry breaking constraints
sort the schedule in the order compatible with the task index:

∧

v∈V

∧

vh,vh+1∈Uv

s(vh) ≤ s(vh+1)

where h is the index of task appearance in the ‘classical’ SDF
graph sequential schedule with FIFO communication on the
channels [10]. We prove a theorem that these constraints do
not eliminate any feasible costs [9], [10]. Note that it is here
where we exploit the connection of the derived task graph to its
SDF origin. Note also that the task symmetry theorem would
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need to be revisited and generalized if we considered pipelined
scheduling of SDF graphs that contain initial tokens. In fact,
that is the reason why we do not yet support SDF graphs with
feedback loops.

The encoding presented in this section is sufficient for
non-pipelined scheduling, illustrated in Fig. 1a. However for
pipelined scheduling, these constraints are not sufficient.

IV. PIPELINED SCHEDULING

In pipelined scheduling the graph iterations follow with a
period that is smaller than the latency, so they can overlap
in time, Fig 1b. The constraints ϕµ presented in the previous
section ensure mutual exclusion inside every iteration but not
between the iterations.

We introduce a novel approach of encoding mutual ex-
clusion in order to produce a pipeline schedule. We call
this method period locality. The idea is to use the same
mutual exclusion constraints as the non-pipelined scheduling,
but to restrict the schedule such that different iterations cannot
compete for processors. For this we require that all task
scheduling intervals assigned to the same processor fit within
a timing interval of length P .

ϕλ :
∧

u,u′∈U
(µ(u) = µ(u′))⇒ e(u)− s(u′) ≤ P

In a strictly periodic schedule with period P this condition
eliminates the inter-iteration processor conflicts. Hence, we
have the following encoding of the period locality method (if
we ignore symmetry breaking):

Φλµε`M : ϕλ ∧ ϕε ∧ ϕµ ∧ ζ` ∧ ζM

The period locality is a heuristic, as it restricts the periodic
schedule such that the iterations do not overtake each other on
a processor. One can construct manual examples that show
that this restriction may eliminate optimal periodic scheduling
solutions. Nevertheless, for practical benchmarks, exact encod-
ing methods such as unfolding and modulo scheduling do not
show any advantage in quality of solutions, but require a much
more complex encoding. Apparently, the higher complexity
of the exact methods does not typically lead to significantly
worse solver computation times in practice, though it may lead
to higher solver memory demands [10]. The main advantage
of period locality is, however, that it possesses period mono-
tonicity property2, meaning that if a given period is feasible
then larger periods are feasible as well while reusing the same
problem solution and thus keeping intact the other costs such
as latency and processor count. Monotonicity is important for
efficient design space exploration for cost trade-offs, because
(in)feasibility of some points implies (in)feasibility for the
dominated (or dominating) cost points [9].

For the cost trade-off exploration, in this paper we consider
two costs: the number of processors M and the period P ,
fixing the latency to an upper bound `max, computed by [10]:
2(Ω + 1)P , where Ω is a maximal number of edges in an
SDF graph path. The scheduling problem gets significantly

2probably related to so-called schedule sustainability

more difficult if the latency constraint ` is below this value:
` < `max, whereas when ` ≥ `max, one can decouple mapping
and processor scheduling without compromising the latency
constraint. The mapping would be done by load balancing,
ensuring the sum of task execution times per processor does
not exceed P [3]. The scheduling would be done after mapping
by maximal re-timing, i.e., splitting the time axis into equal
intervals of length P and assigning every task to the interval3
that follows immediately after the interval of its latest prede-
cessor [10]. Comparing the SMT solver efficiency between this
approach and period locality at `max is future work. Note that
for generalizing this method to cyclic SDF graphs one would
have to reconsider the definition of `max.

V. EXPERIMENTS

For pipelined scheduling problem, using our tool [7], we
investigate the performance of SMT solver when applied
for multi-criteria cost optimisation problems. We validate the
computed solutions by deploying the application benchmarks
on a single shared-memory cluster of the Kalray MPPA-256
platform [1]. Extending the pipelined scheduling to multiple
clusters is a non-trivial task, requiring co-scheduling of tasks
and communication transfers [8], which is currently limited
to non-pipelined scheduling. From the solution obtained from
the SMT solver, our framework uses the task-to-processor
mapping and ordering and lets the tasks synchronize their
communication at run-time. In a single cluster, we execute the
application for a configured number of iterations in a self-timed
way and measure the period in which every task executes. The
maximum value over all tasks is taken into account.

Maximal actor execution times obtained from measure-
ments are used in the scheduling constraints. The costs to
minimize are the period and the number of allocated processors
at `max latency4. Within a certain predefined timeout a query
to the SMT solver should provide a sat or unsat answer,
i.e., satisfiable (feasible) and non-satisfiable (unfeasible). The
solver may also give a timeout answer when it cannot conclude
on the feasibility within the given time. Our goal is to find the
closest approximation of the Pareto front possible, for which
we used a grid based exploration strategy [9]. Our benchmarks
consist of JPEG decoder and number of benchmarks from
StreamIt [11], [8].

All the experiments were performed using the Z3 Solver [2]
version 4.1 running on a Linux machine with Intel Core i7
processor at 1.73 GHz with 4 GB of memory. The time out
per query is 3 minutes while we keep the global exploration
timeout to be 10 minutes.

1) Radix Sort: We explain the experiments with the run-
ning example of Radix Sort benchmark, an application that
sorts integers. It consists of chain of 11 radix actors connected
between the source and sink actors.

Figure 2 shows the results obtained for the two-dimensional
cost space exploration of the period and the processors used.
We can observe the trade-off between the two. We show an
example schedule in Figure 3 for two and four processors.
We can see how the solver is able to pack multiple iterations

3positioning inside the interval is not important
4see [10] for experiments at ` < `max
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Fig. 3: Radix Sort : schedule for 2 and 4 processors

together. The amount of overlap between different iterations
has increased when more processors are used. This also implies
that the four-processor schedule requires larger communication
buffers than the two-processor one, as more iterations run
concurrently. However taking into account the communication
buffer size together with the three other costs in pipelined
scheduling is future work.

2) Other benchmarks: For the other benchmarks we per-
form the same experiment, i.e., approximating the Pareto
front and deploying the optimized solutions on the MPPA-256
cluster. Figure 4 shows the results for different benchmarks.
We plot the number of solutions obtained for every benchmark
and the maximum error as mismatch between the solver-
predicted and measured period on the Kalray platform. The
maximum error observed is 13.25% in case of BeamFormer
application. There are two sources of error in our experiments.
One is that we don’t model the conflicts due to concurrent
memory accesses by the processors. Secondly, Beamformer
application has 53 tasks, which is relatively large. The cost
space exploration experiences multiple solver timeouts, which
leads to very loose predictions of feasible schedule periods.
Since we execute them in a self-timed way the measured period
is often much less than the predicted one in this benchmark.
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measured period

VI. CONCLUSIONS

In this paper we applied SMT solvers to address the
pipelined scheduling problem for acyclic SDF graphs on
shared-memory multi-cores with identical processors. We also
evaluated our approach for a multi-core platform, showing
good accuracy. Hereby, we considered throughput (i.e., period),
latency and processor count costs simultaneously, a problem
that is rarely addressed in the literature.

We proposed the period locality heuristic, whose main ad-
vantage compared to exact methods is monotonicity, required
for efficient design space exploration. We implemented this
technique in our tool StreamExplorer [7] and evaluated it on
a multi-core platform.
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Abstract—The problem of mapping dataflow applications on
multi-core chips is notoriously difficult. This difficulty is com-
pounded with the fact that the graphs describing the applications
of interest are becoming very large. This paper proposes an
approach which ensures that the size of the description of the
mapping problem grows only polynomially with respect to the
sizes of the graphs describing the application and the architecture.
The application graphs considered in this paper are synchronous
data flow graphs (SDFG) and the architectures are multi-cluster
arrays of identical processors. The key idea is to apply a
previously obtained polynomial condition of liveness to the SDFG
describing the mapped application. This permits a formulation
of the mapping problem as an Integer Linear Program whose
objective is the minimization of buffer memory and whose size is
polynomial in the sizes of the application and architecture graphs.

I. INTRODUCTION

Keeping pace with the evolution of multi-core chips and the
advent of many-core architectures [4], dataflow applications
are broken down into numerous computation tasks, or actors, to
be assigned to multiple on-chip processors. Finding an efficient
algorithm to map these applications on clustered architectures,
scalable for many cores, such as Kalray MPPA-256, STHORM
or CoMPSoC, is difficult as this task encompasses the assign-
ment of many actors to the processing resources and their
scheduling under multiple resource constraints.

Synchronous Dataflow Graphs (SDFG), introduced in [9],
are commonly used to model dataflow applications. They
express an application with actors (nodes) and communica-
tions of data items between pairs of actors (arcs). Whenever
an SDFG is consistent [9], it is possible to find an initial
distribution of data items over the arcs, or initial marking,
that ensures liveness and, hence, the existence of solutions
to the scheduling problem [2]. In order to obtain good qual-
ity solutions, several methods have been recently proposed
that jointly resolve the actor-to-resource assignment and the
scheduling problem. Some authors [5], [8], [12] consider only
homogeneous SDFGs (HSDFG), whose actors produce for
(consume from) other actors a single data item at a time. By
applying a simple transformation to a given consistent SDFG,
an equivalent homogeneous SDFG may be obtained whose
size is, however, exponential with respect to the SDFG’s.
This limits the scalability of HSDFG-based mapping methods,
such as [3], where nodes and arcs are added to the HSDFG
equivalent of the application’s SDFG in order to model each
candidate mapping and compute the associated throughput.

An alternative is to bound the throughput from below by
computing a schedule, see [14], and [6] for acyclic SDFGs.

To overcome the scalability problem associated to the use
of the HSDFG model, a simplified model is used in [13]
to evaluate the volume of the communications between two
adjacent actors. Actors are assigned to processors under re-
source constraints in order to minimize the bandwidth between
the processors. This technique gives coarser solutions with a
better scalability (although the underlying problem remains
NP-complete). Our model is similar but with a finer evaluation
of the memory requirements.

We present in this paper a new analysis of the mapping
problem on a clustered multi-core architecture using the SDFG
model with bounded buffers. Instead of being transformed
into an HSDFG, the SDFG is just “normalized” [11], [10].
Normalization, a simple scaling transformation applicable to
any consistent SDFG, makes the weights on the arcs adjacent
to an actor—the numbers of data items produced or consumed
on each arc—all equal. It can be performed in polynomial
time and does not increase the size of the model. Its main
practical interest is that it simplifies live initial marking and
throughput computation. Since it is reversible, all the mapping
computations may be performed on normalized SDFGs, thus
we shall assume in the paper that the SDFGs are normalized.

The architecture is a distributed memory architecture con-
sisting of n equal tiles, the clusters, with limited memory (and
limited processor count). They communicate by a NoC and
each one contains an amount of memory equal to ∆max to
handle communications. Our goal is to minimize the overall
memory required for communication between processor clus-
ters while ensuring that the mapped application be live.

The application graph is supposed to fulfill the sufficient
condition of liveness from [10]. Whenever a buffer is needed
between two clusters, lower bounds on the amount of memory
reserved in each cluster to implement the buffer are computed
which guarantee that liveness is preserved. A simplified model
issued from graph theory is then considered using these bounds
to solve the global optimization problem.

The paper is organized as follows. The Synchronous
Dataflow Graph model is introduced in Section II. In Section
III, after a study of the memory needed when there is a single
buffer between two clusters, a set of conditions on the memory
required in order to fulfill the sufficient condition of liveness
for the whole SDFG is derived, and a simple solution is
proposed. Section IV presents two equivalent models for the
global optimization problem. The first proceeds from graph
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theory while the second formalizes the first using Integer
Linear Programming. Section V is our conclusion.

II. DATAFLOW MODELS

A. Synchronous Dataflow Graph model

In a Synchronous Dataflow Graph, nodes represent actors,
which are programs that are executed repeatedly, and arcs
represent data communications. Data are stored in a first-in
first-out (FIFO) memory during communication. The SDFG
is normalized as shown in [11]: as a result, an integer value
Z > 0 is associated to each actor t so that, each time actor t is
executed, Z data items are consumed (resp. produced) on each
of its input (resp. output) buffers. The initial marking M0(a)
of an arc a represents the normalized number of data items
initially present in the associated buffer.

t t′
a

Z Z ′
. . . . . . . . . .0

Fig. 1. A buffer a with initial marking M0(a) = 0 between two actors of
an SDFG, t, with production weight Z, and t′, with consumption weight Z′.

B. Liveness

A dataflow graph is said to be live if all actors can be
executed infinitely often. The liveness of a graph depends on
its initial marking.

The most common ways to check the liveness of an SDFG
are to compute a self-timed schedule or to expand the SDFG
into its HSDFG equivalent [7]. However these methods have
an exponential complexity, and their scalability is limited.

Another way is to evaluate the sufficient condition of live-
ness obtained in [10], which can be computed in polynomial
time and, while not being necessary, is tight in practice. It has
been implemented in the graph generator Turbine and used
to generate live initial markings of SDFGs of up to 10,000
nodes [2]. In this paper this sufficient condition is supposed to
be satisfied by the SDFG models of applications considered.

III. EVALUATION OF THE OVERALL MEMORY FOR
COMMUNICATIONS BETWEEN CLUSTERS

This section presents a simple solution to the problem
of evaluating the memory needed for buffers between two
different clusters. Subsection III-A presents the problem and
some notations. Subsection III-B expresses a condition when
there is a unique buffer between two clusters. Subsection III-C
extends the condition to several buffers between two clusters.
Subsection III-D presents a feasible solution that will be used
to express the subsequent global optimization problem.

A. Problem and notations

The application graph is an SDFG, G = (T ,B,M0), with
T the set of actors, B the set of buffers and marking function
M0 giving the initial amount of data in the buffers. Any
bounded buffer a = (t, t′) ∈ B, such that the number
of data items it can contain is bounded by a fixed value
B(a), can be modeled by a backward arc a′ = (t′, t) with
M0(a′) = B(a)−M0(a), as shown in Fig. 2.

t t′

a

a′

Z Z ′. . . . . . . . . .M0(a)

Z ′Z
. . . . . . . . . .M ′

0(a)

Fig. 2. A bounded buffer, with a the original arc and a′ the backward arc.

Two assumptions are made on the buffer-aware SDFG
G = (T ,B,M0) obtained when adding all the backward arcs:

1) The initial marking M0(a) of any buffer a = (t, t′) is
divisible by gcda = gcd(Z,Z ′), the greatest common
divisor of the weights of the actors. Indeed, replacing
M0(a) by bM0(a)/gcdac · gcda does not change the
behavior of the SDFG [10].

2) G satisfies the sufficient condition of liveness found
in [10]. Defining the height of an arc a = (t, t′) as
H(a) = M0(a)+gcda−Z ′ and the height of a cycle
µ as H(µ) =

∑
a∈µH(a), this condition states that

the height of any cycle µ of G satisfies H(µ) > 0.
The set of clusters of the many-core architecture is denoted

by C, with |C| > 1, and the overall memory available in each
cluster is bounded by a fixed value ∆max. The size of the data
items stored in buffer a ∈ B is denoted by θ(a). If the two
adjacent actors t and t′ of a = (t, t′) are in a same cluster, the
resource requirement for a is just θ(a) · (M0(a) + M0(a′)).
Otherwise, the amount of memory needed in each cluster to
ensure liveness is evaluated as shown in the rest of the section.

B. Case of a single bounded inter-cluster buffer

Consider now a bounded buffer a = (t, t′) with t and t′

assigned to different clusters, c and c′. An actor c(a) is inserted
to perform the communication of data from c to c′ via two
bounded buffers, at and at′ , as depicted in Fig. 3.

The weight Zc(a) of c(a) and the initial markings of at and
at′ are determined by minimizing the buffer sizes B(at) =
M0(at) + M0(a′t) and B(at′) = M0(at′) + M0(a′t′) while
satisfying the sufficient condition of liveness. We shall see that
if we set Zc(a) = gcda the equations will be greatly simplified.

t c(a) t′

at

a′t

at′

a′t′

Z Zc(a)

. . . . . . . . . .

Zc(a)Z . . . . . . . . . .

Zc(a) Z ′
. . . . . . . . . .

Z ′Zc(a)
. . . . . . . . . .

Fig. 3. A bounded inter-cluster buffer. The buffer a = (t, t′) is split between
the two clusters. The part belonging to the cluster where actor t resides is
represented by arc at (and backward arc a′t) while the part belonging to the
cluster where t′ resides is represented by at′ (and a′

t′ ).

A sufficient condition of liveness for a single inter-cluster
buffer is given in the following theorem.
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Theorem 1: A single inter-cluster buffer a = (t, t′) with
Zc(a) = gcda is live if M0(at) +M0(a′t) ≥ Z and M0(at′) +
M0(a′t′) ≥ Z ′.

Proof: Let µ1 = (t, at, c(a), a′t, t) and µ2 = (t′, a′t′ , c(a),
at′ , t

′) be the two elementary cycles of the inter-cluster buffer.
The sufficient condition of liveness of the buffer is that
H(µ1) > 0 and H(µ2) > 0. Now, H(µ1) =H(at)+H(a′t)> 0
is strictly equivalent to

M0(at) + gcd(Z,Zc(a))− Zc(a)+
M0(a′t) + gcd(Zc(a), Z)− Z > 0.

Since Zc(a) = gcda = gcd(Z,Z ′), gcd(Z,Zc(a)) = gcda
and the inequality simplifies to

M0(at) +M0(a′t) + gcda − Z > 0.

Since, by our first assumption on G, M0(at)+M0(a′t)−Z
is divisible by gcda, this inequality is equivalent to

M0(at) +M0(a′t)− Z ≥ 0.

The other inequality results similarly from H(µ2) > 0.

C. General case

Define a communication-aware graph Gc = (Tc,Bc,M0) as
an SDFG obtained from the buffer-aware graph G by splitting
every bounded inter-cluster buffer a = (t, t′) as done in the
previous subsection. The next theorem gives conditions on
Gc’s initial marking M0 ensuring that Gc satisfies the sufficient
condition of liveness from [10].

Theorem 2: Consider a communication-aware graph
Gc = (Tc,Bc,M0) associated to a live buffer-aware graph
G = (T ,B,M0). The graph Gc is live if, for every bounded
inter-cluster buffer a = (t, t′) ∈ B, in addition to having
Zc(a) = gcda and the two inequalities of Theorem 1
satisfied, the inequalities M0(at) + M0(at′) ≥ M0(a) and
M0(a′t′) +M0(a′t) ≥M0(a′) are satisfied.

Proof: With the assumption Zc(a) = gcda, the two
inequalities of Theorem 1 ensure that the liveness condition
is satisfied for the two elementary cycles associated to each
bounded inter-cluster buffer a = (t, t′) ∈ B. Consider now
all the other elementary cycles introduced when there is more
than one inter-cluster buffer between two clusters. Under the
assumption that G satisfies the sufficient condition of liveness
from [10], a sufficient condition of liveness for Gc can be
expressed as H(at) +H(at′) ≥ H(a) and H(a′t) +H(a′t′) ≥
H(a′) for every bounded inter-cluster buffer a = (t, t′) ∈ B.
The first inequality is equivalent to

M0(at) + gcd(Z,Zc(a))− Zc(a) +M0(at′) +
gcd(Zc(a), Z

′)− Z ′ ≥M0(a) + gcd(Z,Z ′)− Z ′.

Since Zc(a) = gcd(Z,Z ′) = gcd(Z,Zc(a)) = gcd(Zc(a), Z
′),

this inequality simplifies to M0(at) +M0(at′) ≥M0(a). The
second inequality is obtained in a similar manner.

D. A live initial marking for a bounded inter-cluster buffer
The following corollary exhibits a simple solution to the

inequalities of Theorem 2.

Corollary 1: Consider a live buffer-aware graph G =
(T ,B,M0) and the associated communication-aware graph
Gc = (Tc,Bc,M0) with the initial marking M0(at) = M0(a),
M0(a′t) = Z, M0(a′t′) = M0(a′) and M0(at′) = Z ′ for every

inter-cluster buffer a = (t, t′) ∈ B. The graph Gc is live.
Moreover, the buffer sizes B(at) = M0(at) + M0(a′t) and
B(at′) = M0(at′) +M0(a′t′) verify

B(at) +B(at′) ≤ 2(M0(a) +M0(a′)) + gcd(Z,Z ′).

Proof: One can easily check that the initial marking
considered verifies the inequalities of Theorem 1 and 2. Let
m = B(at) + B(at′) = M0(a) + M0(a′) + Z + Z ′. Since
the buffer-aware graph G = (T ,B,M0) verifies the sufficient
condition of liveness, for the cycle of Fig. 2

M0(a) +M0(a′) ≥ Z + Z ′ − gcd(Z,Z ′),

implying that m ≤ 2(M0(a) +M0(a′)) + gcd(Z,Z ′).

The initial marking from Corollary 1 will be used in the
next section to formalize the mapping problem.

IV. FORMULATION OF THE MAPPING PROBLEM

The mapping problem is formalized is this section. Sub-
section IV-A describes the problem, while Subsection IV-B
models it using an Integer Linear Program of polynomial size.

A. Problem definition
The application is modeled by a live SDFG G = (T ,B,

M0). The buffer-aware SDFG G = (T ,B,M0) is derived from
G by adding reverse arcs and associated initial markings so that
the sufficient condition of liveness of [10] be satisfied.

The buffer memory requirements for the application can be
modeled using an undirected multigraph H = (T , E) whose
nodes are the actors. To each arc a = (t, t′) ∈ B corresponds
an edge e = {t, t′} ∈ E with three associated values:

• S(e), the memory size required for arc a if t and t′ are
in the same cluster. S(e) = θ(a) · (M0(a) +M0(a′)),
where a′ = (t′, t) is the reverse of arc a in G.

• St(e), and St′(e), the memory sizes required for arc
a in the cluster of t, and of t′, if t and t′ are not in
the same cluster. St(e) = θ(a) · B(at) and St′(e) =
θ(a)·B(at′), where, from Corollary 1, these values are
set to B(at) = M0(a)+Z and B(at′) = M0(a′)+Z ′.

Note that E is a multiset; thus, when both arcs (t, t′) and (t′, t)
belong to B, there are two instances of e = {t, t′} in E . Sizes
S(e), St(e) and St′(e), are sums over all the instances of e.

A mapping consists in assigning the actors to the clusters.
To each couple (t, c) ∈ T × C is associated a binary variable
xt,c defined by

xt,c=

{
1 if actor t is in cluster c
0 otherwise

The mapping problem is to find the values xt,c ∈ {0, 1}
for all the couples (t, c) ∈ T ×C such that the total additional
memory (due to buffers split into two different clusters) is
minimized under the constraints that each actor is assigned to
one and only one cluster, and the total memory assigned in
each cluster is bounded by ∆max (capacity constraint).

B. Integer Linear Programming Formulation
To each couple (e, c) ∈ E × C are associated two binary

variables set,c, where t ∈ e, defined as:

set,c=

{
1 if xt,c = 1 and xt′,c = 0, where t′ ∈ e and t′ 6= t,
0 otherwise
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Lemma 1 expresses the relationship between set,c and xt,c.
It allows to compute set,c using Integer Linear Programming:

Lemma 1: For any edge e = {t, t′} ∈ E and any cluster
c ∈ C, set,c ≥ xt,c − xt′,c.

Proof: If xt,c = xt′,c then set,c = 0 and the inequality is
set,c ≥ 0. Now, if xt,c = 1 and xt′,c = 0, set,c = 1 and the
inequality becomes set,c ≥ 1. Lastly, if xt,c = 0 and xt′,c = 1,
set,c = 0 and the inequality becomes set,c ≥ −1. The inequality
set,c ≥ xt,c − xt′,c is thus verified in all cases.

Lemma 2 allows to express the capacity constraint:

Lemma 2: For any couple (c, e) ∈ C × E , the size of the
memory allocated to edge e in cluster c is:

f(c, e) =
∑

t∈e
set,c.St(e) +

∑

t∈e
(xt,c − set,c)

S(e)

2
.

Proof: Three cases have to be considered:

1) If xt,c = xt′,c = 0, neither t nor t′ is assigned to
cluster c. Then set,c = set′,c = 0 and f(c, e) = 0.

2) If xt,c = xt′,c = 1, both t and t′ are in c and so is
the buffer associated to e. Then set,c = set′,c = 0 and
f(c, e) = S(e)/2 + S(e)/2 = S(e).

3) If xt,c 6= xt′,c, suppose that xt,c = 1 and xt′,c = 0
thus t is assigned to c but not t′. Then set,c = 1 and
set′,c = 0 hence f(c, e) = St(e).

The lemma is thus verified.

The mapping problem may now be expressed as an Integer
Linear Program as follows:

minimize
∑

c∈C

∑

e∈E

∑

t∈e
set,c · St(e)

under the constraints
∑

c∈C
xt,c = 1, ∀t ∈ T , (1)

set,c ≥ xt,c − xt′,c, ∀t ∈ e, ∀e = {t, t′} ∈ E , ∀c ∈ C, (2)∑

e∈E
f(c, e) ≤ ∆max, ∀c ∈ C, (3)

xt,c ∈ {0, 1},∀c ∈ C, ∀t ∈ T (4)
set,c ∈ {0, 1},∀e ∈ E , ∀c ∈ C,∀t ∈ T . (5)

The objective is the minimization of the memory used for
the communications between clusters. Constraints (1) ensure
that each actor is assigned to exactly one cluster. Constraints
(2) express the relationships between the binary variables.
Constraints (3) ensure that the limit ∆max of total memory
in each cluster is not exceeded. Further constraints, such as∑
t∈T xt,c ≥

∑
t∈T xt,c′ where c immediately precedes c′ in

a total order on the clusters, could be added to reduce the
number of equivalent solutions.

A key feature of our formulation is that the size of the
program is polynomial. Indeed, the number of variables is |T |·
|C|+ |T | · |C| · |E| while the number of equations is |T |+ |T | ·
|C| · |E|+ |C|.

V. CONCLUSION AND PERSPECTIVES

The problem of finding a mapping of an SDFG on a
clustered architecture that minimizes the overall memory has
been formulated as an Integer Linear Program of polynomial
size in terms of the SDFG and architecture model sizes.
The first perspective is to test the scalability of this method
using a solver and develop efficient heuristics to solve the
program on large instances. The evaluation of the memory size
presented in Corollary 1 should also be improved. Two other
interesting issues are the extension of this method to more
widely applicable models such as the Cyclo-Static DataFlow
Graphs [1] and the incorporation of a minimum throughput
guarantee.
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Abstract—Dataflow formalisms play a significant role in the
areas of design and analysis of embedded streaming applications.
These formalisms can roughly be split into static and dynamic
ones. Static dataflow formalisms are highly analyzable, but due
to their static nature are not able to capture the dynamism
inherent to modern embedded streaming applications. Dynamic
dataflow formalisms on the other hand provide a sufficient
level of expressiveness to capture the application dynamism
at the cost of reduced analyzability. The recently introduced
finite state machine-based scenario aware dataflow (FSM-SADF)
formalism provides a good trade-off between expressiveness and
analyzability. This paper reports on the translation of the FSM-
SADF formalism to timed automata (TA). In short, we propose
a compositional translation from FSM-SADF to TA that enables
computation of some quantitative and qualitative properties of
the model not supported by the existing tools, in the UPPAAL
model checker. We demonstrate our approach on an MPEG-4
case study which is a typical example of a streaming application
from the multi-media domain.

I. INTRODUCTION

Dataflow formalisms are widely used to design and analyze
embedded streaming applications running on distributed plat-
forms such as MPSoCs (Multi-Processor System on Chips).
In general, dataflow formalisms take the form of a directed
graph which consists of actors as vertices and channels as
edges. Actors are computational entities that usually represent
application sub-tasks, while channels are communicational
entities used to communicate application, control and syn-
chronisation data between actors. In dataflow, an actor firing
is an indivisible quantum of computation during which an
actor consumes a certain number of data values from its input
channels and produces a certain number of data values on its
output channels. These data values are abstracted into tokens
and the consumption and production numbers are called rates.
In timed dataflow formalisms, it takes some time for the actor
firing to complete and this time duration is called the actor
firing duration.

Modern embedded streaming applications exhibit a high
level of dynamism. The consequence is that the workload of
such applications changes over time. How difficult it is to
model such a dynamic application will depend on the particular
dataflow formalism used. Not all dataflow formalisms provide
us with a sufficient level of expressiveness needed to capture
the dynamism of the application. On the other hand, those that
do, pay the price in terms of significantly reduced analyzability.
A good comparison between expressiveness and analyzability
for various dataflow formalisms can be found in [6].

This work is supported by the 7th EU Framework Program under grant
agreement 318490 (SENSATION).

The scenario aware dataflow (SADF) formalism [8] models
an application as a collection of different behaviours called
scenarios in which consumption and production rates and the
actor firing durations change within one scenario and from
one scenario to the other. A stochastic approach is used to
model variance in firing durations and scenario ordering. The
SADF formalism can therefore model dynamic applications
and comes equipped with algorithms able to decide on the its
qualitative and quantitative properties. These algorithms are
implemented in the SDF3 tool [5].

Finite state machine-based SADF (FSM-SADF) [7], [3] is
a subset of SADF that abstracts from the stochastic aspects of
firing durations and scenario ordering. In FSM-SADF every
scenario is represented by a synchronous dataflow (SDF)
graph [4], while scenario occurrence patterns are given by a
finite state machine. These restrictions render the FSM-SADF
more analyzable and implementation efficient than the general
SADF model and very well positioned on the expressiveness
vs. analyzability trade-off chart [6]. All FSM-SADF analysis
and implementation algorithms can be found in the SDF3 tool.

However, tools such as SDF3 can be too specialized in
the sense that they can only handle predefined properties, thus
lacking support for user-defined properties. Although work has
been done to check general properties by translating to model
checkers [10], [9], this has only been done for the probabilistic
SADF formalism. To circumvent this limitation, in this paper
we propose a translation of the FSM-SADF formalism to
timed automata (TA) as the first step to enable more general
verification. Using TA has a number of advantages, in that very
efficient abstractions exist. For example, temporal logics can
express many of the properties common in reasoning about
timed systems with concurrency. Furthermore, TA models of
dataflow specifications can be easily extended to add costs such
as energy and include the underlying implementation fabric
models. This would in the future give us the possibility of using
FSM-SADF for reachability analysis of embedded dynamic
streaming applications through an optimal control formula-
tion using model-checking techniques. We demonstrate our
approach using an MPEG-4 case study modeled as an FSM-
SADF graph for which we compute important quantitative and
qualitative properties, some of which are not supported by the
SDF3 tool. We use the UPPAAL [2] state-of-the-art tool. The
closest related work is the work of Ahmad et al. [1], although
this only tackles the SDF formalism and is more concerned
with modelling lower-level details of the scheduling on a given
execution platform.
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II. DEFINITION OF FSM-SADF

Here we give a more concise definition of FSM-SADF than
the one given in [7]. Specifically, since the sets of ports and
detectors have a simpler structure than in the general SADF,
it is not necessary to represent them explicitly.

Definition 1 (FSM-SADF graph). An FSM-SADF graph is a
tuple G = (S,K,B, E,Rp, Rc,S,T, ι,Φ, t, φι, ψι), where

1) S is the nonempty finite set of scenarios,
2) K is the nonempty finite set of kernels,

• P = K∪{d}, where d /∈ K denotes the unique
detector, is the set of processes,

3) B ⊆ K × P is the set of buffers,
4) E : P × S → N0 is the execution time for each

process in each scenario,
5) Rp, Rc : B×S → N0 is the production (consumption)

rate of the kernel producing to (process consuming
from) each buffer in each scenario,

6) (S,T, ι,Φ) is the FSM of the detector, where S is the
nonempty set of states, T : S → 2S is the transition
function, ι ∈ S is the initial state, and Φ : S → S
associates each state with a scenario,

7) t : K×S → S+ is the string of scenarios sent to the
FIFO of each kernel in each scenario of the detector,

8) φι : B → N0 is the initial buffer status,
9) ψι : K → S∗ is the initial control status.

The detector is connected to every kernel by an explicitly
ordered (FIFO) control channel. We further define In(p) =
{b ∈ B | πr(b) = p}, where πr is the right projection function,
to be the set of buffers that process p consumes from (that input
into p). Similarly, Out(k) = {b ∈ B | πl(b) = k}.

In anticipation of the next section we define ∅ to be the
empty multiset, P to be the set of all submultisets of its input
set, ] to be the multiset sum, and \ to be the zero-truncated
asymmetric multiset difference. For example let A = {1, 1}
and B = {1, 2}. Then A ∪ B = {1, 1, 2} (maxima of
multiplicities), A ] B = {1, 1, 1, 2} (sums of multiplicities),
A \ B = {1}, and B \ A = {2}. For strings σ, τ, ν ∈ S∗
we define σi to be the ith element of σ, σ + τ to be the
concatenation of σ and τ , and, if ν = σ + τ , then ν − σ = τ .

A. Operational Semantics

The behavior of an FSM-SADF graph is defined as a
transition system where states are configurations.

Definition 2 (Configuration). A configuration of an FSM-
SADF graph G = (S,K,B, E,Rp, Rc,S,T, ι,Φ, t, φι, ψι) is
a tuple (φ, ψ, κ, δ), where φ is a buffer status, ψ a control
status, κ a kernel status, and δ a detector status:

• A buffer status is a function φ : B → N0 from each
buffer to the number of tokens it stores,

• A control status is a function ψ : K → S∗ from each
kernel to the string of scenarios (control tokens) its
FIFO stores,

• A kernel status is a function κ : K → P(S × N0) that
to each kernel assigns a multiset of ongoing firings
and their remaining execution times,

• A detector status is a pair δ ∈ S × (N0 ∪ {−}) that
represents the state of the FSM and the remaining
execution time of the ongoing firing, or, if there is no
ongoing firing, the value −.

The initial configuration of G is (φι, ψι, κι, δι), where φι and
ψι are defined in G, κι = K × {∅} and δι = (ι,−).

Five types of configuration transitions are distinguished.

Definition 3 (Kernel Start Action). A kernel start action
transition (φ, ψ, κ, δ)

start(k)−−−−−→ (φ′, ψ′, κ′, δ) represents the
start of a firing of kernel k. Let s = ψ(k)1 denote the scenario
of the firing (if it is defined). The transition is enabled if
|ψ(k)| ≥ 1 and ∀b ∈ In(k) : φ(b) ≥ Rc(b, s). The resulting
statuses are defined as

φ′ = φ[b 7→ φ(b)−Rc(b, s)] for all b ∈ In(k)

ψ′ = ψ[k 7→ ψ(k)− s]
κ′ = κ[k 7→ κ(k) ] {(s, E(k, s))}]

Definition 4 (Kernel End Action). A kernel end action tran-
sition (φ, ψ, κ, δ)

end(k)−−−−→ (φ′, ψ, κ′, δ) is the end of a firing of
kernel k. It is enabled if ∃s ∈ S : (s, 0) ∈ κ(k). The resulting
buffer and kernel statuses are

φ′ = φ[b 7→ φ(b) +Rp(b, s)] for all b ∈ Out(k)

κ′ = κ[k 7→ κ(k) \ {(s, 0)}]
Definition 5 (Detector Start Action). A detector start action
transition (φ, ψ, κ, δ)

start(d)−−−−−→ (φ′, ψ, κ, δ′) represents the start
of a firing of the detector, d. It is enabled if there is no ongoing
firing ∃s ∈ S : δ = (s,−) and all inputs are available ∀b ∈
In(d) : φ(b) ≥ Rc(b,Φ(s)). The resulting statuses are

φ′ = φ[b 7→ φ(b)−Rc(b,Φ(s))] for all b ∈ In(d)

δ′ = (s, E(d,Φ(s)))

Definition 6 (Detector End Action). A detector end action
transition (φ, ψ, κ, δ)

end(d)−−−−→ (φ, ψ′, κ, δ′) is enabled if ∃s ∈
S : δ = (s, 0), and the resulting statuses are

ψ′ = ψ[k 7→ ψ(k) + t(k,Φ(s))] for all k ∈ K
δ′ = (s′,−) for some s′ ∈ T(s)

In [7] time transitions are defined very generally, such that
to account for given scheduling/resource constraints one needs
to instantiate the time transitions needed. In the following we
will assume a unconstrained execution, namely that all ongoing
firings advance at the same pace.

Definition 7 (Time Transition). A time transition (φ, ψ, κ, δ)
time(t)−−−−→ (φ, ψ, κ′, δ′) represents time progressing t time units.

It is enabled if no kernel end or detector end transition is
enabled, and t is the smallest remaining execution time of any
ongoing firing. The resulting kernel status is

κ′ = κ[k 7→ {(s, n− t)|(s, n) ∈ κ(k)}] for all k ∈ K
using multiset comprehension. The detector status δ = (s, n)
is updated as δ′ = (s, n − t), unless n = − in which case it
is unchanged, δ′ = δ.
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B. Overtaking Problem

A closer look at the definition of the kernel status and the
kernel start action in Section II-A reveals that the operational
semantics of FSM-SADF allows the possibility of multiple
simultaneous firings of a kernel, i.e. auto-concurrency. If these
simultaneous firings of a kernel occur in different scenarios,
due to the potential difference in kernel execution times in
different scenarios, tokens may “overtake” each other. The
result of that is that some kernel might consume tokens in
a different scenario than the one these were produced in. This
phenomenon makes it hard to ensure determinacy. One way
of ensuring determinacy under auto-concurrency is considered
in [3] by the introduction of the (max,+) algebraic semantics
of FSM-SADF. In this paper, we assure determinacy by
prohibiting auto-concurrency in the TA translation introduced
in the following section.

III. TRANSLATION OF FSM-SADF TO TA

To be able to model check an FSM-SADF specification,
we encode the operational semantics of Section II-A in the
UPPAAL model checker. We refer to [2] for the full formalism
and introduce it only briefly here due to space constraints.
The correctness of the translation (with auto-concurrency being
prohibited) follows from the construction itself as explained in
the remainder of this section. In UPPAAL, a system is modeled
as a network of TA that is extended with bounded discrete
variables that are part of the state. We recall the definition of
TA where we use B(C) to denote the set of constraints defined
over a finite set of real-valued variables C called clocks and
where Σ = {a!, a?, . . .} is a finite alphabet of synchronization
actions.

Definition 8 (Timed automaton (TA)). A timed automaton A
is a tuple (L, l0, E, I), where L is a finite set of locations
(nodes), l0 is the initial location, E ⊆ L×B(C)×Σ× 2C ×L
is the set of edges and I : L → B(C) assigns invariants to
locations. We shall write l

g,a,r−−−→ l′ when (l, g, a, r, l′) ∈ E.

The configuration is modelled such that the kernel and
detector statuses are encoded in the states of the TA, while
the buffer and control statuses are modelled explicitly using
discrete variables. These do not add to the expressive power of
the formalism, and for presentation purposes, we do not encode
their use in the following, but we show the token consumptions
and productions in the UPPAAL models in Fig. 1.

Given an FSM-SADF graph G, we generate a parallel
composition of TA System = Ak1 ‖ . . . ‖ Akn ‖ Ad, where
ki ∈ K and n = |K|. As there is only one instance of each
kernel, no auto-concurrency exists, and determinacy is ensured.
Fig. 1a shows the UPPAAL model of any kernel and Fig. 1b
shows the detector of an FSM-SADF graph with S = {A,B}
and the FSM defined to generate the language (AB)∗.

Every kernel ki ∈ K is translated to the TA Aki =
(Li, l

0
i , Ei, Ii) where Li = {Initial,Configure,Fire},

l0i = Initial, and Ei and Ii are given as follows. The path

Initial
|ψ(ki)|≥1,asap!,∅−−−−−−−−−−−→Configure

∀b∈In(ki):φ(b)≥Rc(b,s),∅,{xi}−−−−−−−−−−−−−−−−−−−−→ Fire

corresponds to the kernel start action. It is split into two
TA edges because the kernel must first receive its configu-
ration from the detector to know, depending on the current
scenario s, how many tokens must be available in its input
buffers. The edge (Initial, . . . ,Configure) synchronizes
by sending on the urgent broadcast channel asap (which has
no receivers), thus ensuring that the transition is taken as soon
as a scenario is available. The kernel end action is encoded by

Fire
xi=E(ki,s),∅,∅−−−−−−−−−→ Initial

and the invariant I(Fire) = xi ≤ E(ki, s) which together
assure that the system stays in the location Fire for exactly
the execution time E(ki, s) of the kernel ki in scenario s. Thus,
time transitions are encoded implicitly in the operation of the
network of TA, for which time progresses in unison.

The detector TA uses the structure of its FSM, but embeds
in each transition a firing location wherein time can pass be-
tween the events of consuming the input tokens and producing
the output tokens. We encode it as Ad = (Ld, l

0
d, Ed, Id),

where Ld = S ∪ {(s, s′) | s, s′ ∈ S ∧ s′ ∈ T(s)} and l0d = ι.
The edge set Ed is defined such that each transition si → sj
described by T is translated into a detector start edge followed
by a detector end edge:

si
∀b∈In(d):φ(b)≥Rc(b,Φ(s)),∅,{xd}−−−−−−−−−−−−−−−−−−−−−→ (si, sj)

xd=E(d,Φ(s)),∅,∅−−−−−−−−−−−→ sj

The invariant function Id is defined such that each firing
location (si, sj) maps to the invariant xd ≤ E(d,Φ(si)).

IV. MODEL CHECKING OF TA MODEL

In this section we demonstrate examples of qualitative and
quantitative analysis of the MPEG-4 FSM-SADF specification
from [6] using the UPPAAL model checker. The types of
analysis, the associated time and memory usage and whether
or not the respective type of analysis can be found in the SDF3

tool are shown in Table I. The experiments were performed on
an Intel Core i7-3520M CPU running UPPAAL 4.1.18 64-bit
on Linux. The default settings were used and UPPAAL was
restarted between each query.

SDF3 can analyze deadlock freedom, buffer occupancy,
inter-firing latency, response delay and throughput of an FSM-
SADF specification. Table I reveals that using UPPAAL we
can analyze all these properties, except throughput which is
a subject of future work. Using UPPAAL we obtained the
same results as SDF3 on the analysis types supported by
both frameworks. Analyzing for deadlock freedom is achieved
by the UPPAAL query (A[] not deadlock). Maximum
buffer occupancy analysis is performed using the UPPAAL
supremum operator, e.g. (sup: bi). Maximum inter-firing
latencies can be obtained as clock suprema. For example,
maximum latency of the detector process can be computed
using the query (sup: xd). We can check the relationship
between the maximum response delay of a process p and a con-
straint r using the query (E<> !p.bFirstFirCompleted
and yp >= r), where yp is a clock that is never reset, and
bFirstFirCompleted is a variable set to true when p
completes its first firing within a scenario. In this experiment,
p = MC, and r = 3510. We can also check interleaving
patterns of process firings, e.g. “between two consecutive
firings of the process p, process q fires at least n times”, etc.
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(a) Kernel in UPPAAL (b) Example detector in UPPAAL

Fig. 1: FSM-SADF UPPAAL model

TABLE I: MPEG-4 verification time and virtual memory usage

Analysis SDF3 Time [s] Mem [MB]
Deadlock freedom Yes 5.87 452

Maximum buffer occupancy, all buffers Yes 2.44 452

Maximum inter-firing latency, detector Yes 3.71 455

Maximum response delay, MC Yes 1.44 252

Interleaving patterns of process firings No 4.89 460

Maximum delay between process firings No 4.18 455

For this we use a leads to query (whenever a eventually b)
and a counter variable: (p.Fire --> q.FireCount >=
n). In the experiment, p = MC, q = RC, and n = 1. We
can also check whether the maximum delay between the end
times of firings of two processes within a scenario is greater
than, less than or equal to a predefined value by constructing
a query monitor TA that synchronizes with the events of
firing completions of the processes it monitors. In the case
of kernels, this synchronization takes place when the edges
(Fire,...,Initial) are taken. In the experiment we
verify that the MC-RC delay is always smaller than 5000.

UPPAAL allows us to check the model against various
properties, many of which are not supported by the SDF3

tool-set, therefore justifying the use of a general verification
tool such as UPPAAL as a complement to specialized tools.
The flexibility of the UPPAAL’s TCTL based query language
and the possibility of construction of various query monitor
automata allows the user to easily and in almost no time
compute various qualitative and quantitative properties of the
model. In contrast to UPPAAL, doing the same in a specialized
tool like SDF3 would involve the user into a process of
software development.

V. CONCLUSION AND FUTURE WORK

FSM-SADF is a powerful dataflow formalism that is able
to capture the dynamic behaviour of modern streaming appli-
cations while offering a good trade-off between expressive-
ness, analyzability and implementation efficiency. However,
the formalism is currently only supported by the SDF3 tool-
set which implements a predefined set of properties that can
be analysed/verified. In this paper we propose a translation
of FSM-SADF to TA, thereby enabling the use of the UP-
PAAL model checker for analysing and verifying user-defined
properties in a straightforward manner. As future work we
plan to develop methods for worst-case throughput analysis,

investigate the scalability of our translation and also to give
performance comparison with SDF3. Furthermore, we wish
to further investigate auto-concurrency and the overtaking
problem and explore policies that would assure determinacy,
such as the (max,+) one [3]. As our translation also sets the
first milestone towards enabling the use of FSM-SADF in
a wider context, e.g. cost-optimal analysis, we also plan to
investigate reachability analysis of applications modeled by
FSM-SADF through an optimal control formulation using the
UPPAAL family of model-checkers.
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I. I NTRODUCTION

Scenario-awaredataflow (SADF [11]) is an extension of
synchronous dataflow (SDF [9]) supporting the description
of variations in data processing (e.g. changes in speed, or
disabling of components) according to predefined scenarios. As
such, it extends the applicability of dataflow formalisms, which
have traditionally seen heavy use in digital signal processing
applications, to the setting of modern dynamic embedded ap-
plications where behaviour may change drastically depending
on changes in input data or the operational environment.

The execution times of the actors in an SADF graph are a
key aspect of the model with direct impacts on characteristics
such as throughput, buffer occupancy, or energy usage. So far,
SADF has been considered with execution times (or processing
delays) either chosen from discrete (in fact, finite-support)
probability distributions [12], or sampled from the (negat-
ive) exponential distribution with certain (scenario-dependent)
rates [7], [10]. The latter has been called exponentially-timed
SADF, or eSADF for short.

In this abstract, we generalise both notions of SADF
to generally-timed energy SADF, or xSADF for short. This
allows not only execution times following arbitrary probability
distributions (including discrete ones as used by Theelen et
al. [12] and continuous ones such as the continuous uniform,
normal, or exponential distribution), but also the nondetermin-
istic choice of delays over given (sets of) time intervals, and
any combination thereof. Additionally, we include in xSADF
a way to specify the energy consumed by an actor during idle
times and during different processing modes as a core feature.

To equip our enriched variant of SADF with a formal
semantics, we need a formalism that supports the necessary
combination of quantitative aspects: soft and hard real-time
behaviour, discrete and continuous probabilistic decisions, and
nondeterministic choices. We find support for all of these
aspects in the model of stochastic timed automata (STA [1]).
Despite their expressiveness, STA can be seen as a straight-
forward generalisation of existing, well-known formalisms
such as timed automata or Markov decision processes. Our
semantics takes advantage of the fact that STA support com-
positional modelling through a standard parallel composition
operator. The analysis of STA by means of model checking
is challenging, but first techniques and implementations have
appeared recently [4]. This means that it is possible today to
create xSADF models, convert them to their STA semantics,
and perform a fully automated model checking analysis.

II. GENERALLY-TIMED ENERGY SADF

In this section, we define generally-timed energy SADF
(xSADF) by example. Our definitions are based on the one

This work is supported by the EU 7th Framework Programme under
grant agreements 295261 (MEALS) and 318490 (SENSATION), the DFG
Transregional Collaborative Research Centre SFB/TR 14 AVACS, and by the
CAS/SAFEA International Partnership Program for Creative Research Teams.

of Katoen andWu for eSADF [7], and our notation is mostly
consistent with theirs. xSADF extends eSADF by allowing
arbitrary deterministic, nondeterministic and stochastic pro-
cessing times and by adding information about the energy
consumption of kernels and detectors in different scenarios.
Our example extends the one introduced by Theelen et al. [12]:

In Figure 1a, we display the exemplary structure of an
xSADF graph. It consists of thekernelsA and B and the
detectorsD and D′. They are connected bychannels: Data
channels, drawn with solid lines, carry untyped data tokens,
while control channels, drawn with dashed lines, carry typed
scenario tokens. In this abstract, we denote the channel that
carries tokens fromX to Y by chX

Y . The typesof tokens that
a control channelch can carry are given byΣ(ch); here, we
haveΣ(chD′

D ) = {u } andΣ(chD
A) = Σ(chD

B) = { v, w }. For
data channels, we specify the initial number of tokens on the
channel; in our example, we initially have 2 tokens onchB

A

and 1 token onchB
D. Control channelsare initially empty.

A kernel processes information: It takes a specified number
of data tokens from all its incoming data channels, processes
the data for some time, and then outputs a number of new data
tokens on its outgoing data channels. In each such step, a ker-
nel also consumes a scenario token from each of its incoming
control channels; together, these tokens determine the scenario
that the kernel operates in. The current scenario determines the
number of data tokens consumed and produced, the processing
time, and the energy consumption during processing.

A detector is a more powerful kind of kernel in that
it is also supports output of scenario tokens. It may still
have incoming control channels, but its behaviour is governed
by subscenarios: After consuming scenario tokens and thus
determining the current scenario, a scenario-specific state
machine performs one step (originating from its previous
state), with its new state being the current subscenario. We
use discrete-time Markov chains(DTMC) for this purpose,
but other state-based formalisms such as labelled transition
systems or Markov decision processes could be used instead
without requiring conceptual extensions to the STA semantics
we develop in this abstract. The subscenario DTMC thatD
uses when it is in scenariou is shown in Figure1b. The set
of subscenarios ofD is thus{ s1, s2 }.

To completeour example, we need to specify the num-
bers of data tokens consumed and produced by the kernels
and detectors, the types of scenario tokens produced by the
detectors, the processing times, and the energy consumption
rates. For each of these pieces of information and each kernel
and detector, we define a function that depends on the current
scenario. The production and consumption of data tokens is
given by

RD = { 〈s1, ch
B
D〉 7→ 1, 〈s2, ch

B
D〉 7→ 1 },

RA = RB = { 〈v, chA
B〉 7→ 1, 〈v, chB

A〉 7→ 2,

〈w, chA
B〉 7→ 0, 〈w, chB

A〉 7→ 0 }
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Figure 1: Componentsof an example xSADF graph

while the type of scenario tokens produced byD is given by

TD = { 〈s1, ch
D
A〉 7→ v, 〈s1, ch

D
B〉 7→ v,

〈s2, ch
D
A〉 7→ w, 〈s2, ch

D
B〉 7→ w }.

To specify the processing times incurred by each kernel or
detector, we associate to their possible scenarios anexpression
that characterises the delay:

EA = { v 7→ NONDET([1, 3[), w 7→ DET(1) },
EB = { v 7→ SAMPLE(UNI(1, 3)), w 7→ DET(1) },

ED = { s1 7→ SAMPLE(EXP( 1
2 )), s2 7→ DET(1) }

where DET denotes a fixed, i.e. deterministic, delay, NONDET
denotes a delaythat is nondeterministically chosen out of the
specified interval, and finally SAMPLE specifies that thedelay
is to be sampled from the specified probability distribution.
In this example, we use UNI(1, 3), the continuousuniform
distribution over the interval[1, 3], and EXP( 1

2 ), the (negative)
exponential distribution with rate parameter1

2 . In this model,
every node thus waits for exactly one time unit (e.g. 1 second)
in the “switched-off” scenariow resp.s2, while theprocessing
time in the “active” scenariov is nondeterministic forA
and stochastic with mean2 for B and D. We note that
the STA semantics we introduce in this abstract supports
arbitrary probability distributions (e.g. the (truncated) normal
distribution, or discrete probability distributions as used by
Theelen et al. [12]) as well as more complex expressions
such as a nondeterministic choice of delay over an interval
whose upper bound has been sampled from some probability
distribution.

Finally, in xSADF, we add a notion of quantifiable en-
ergy consumption: We specify, for each kernel and detector,
how much energy they consume per unit of time in each
(sub)scenario and when idle:

PA = { v 7→ 4, w 7→ 1
8 , ⊥ 7→ 1

8 },

PB = { v 7→ 2, w 7→ 1
8 , ⊥ 7→ 1

8 },

PD = { v 7→ 1
4 , w 7→ 1

4 , ⊥ 7→ 1
4 }

where ⊥ refers to theidle state when a kernel or detector
is waiting for scenario or data tokens to become available.
Intuitively, in this example, we thus say that the detectorD
always has an energy consumption of0.25 (e.g. measured in
watts when one time unit is taken to correspond to one second),
while the detectors both consume0.125 W in idle and when
“switched off” in scenariow, and 2 W per when processing
data per token in scenariov.

l0
true
ṙ = 0

l1
c ≤ x
ṙ = 1

l2
c ≤ 16
ṙ = 0

l3
true
ṙ = 0

l4
true
ṙ = 0

true, a
1
2

, { c := 0, x := EXP(λ) }

1
2

, { c := 0 }

c ≥ 8, τ , ∅

c ≥ x, b, ∅

c ≥ 16, τ , ∅

Figure 2: Anexample stochastic timed automaton [4]

We have not described the detectorD′ so far. This is
because its only purpose is to illustrate that detectors can
receive scenario tokens that determine the subscenario DTMC,
and how this is achieved in the STA semantics later on.

III. STOCHASTIC TIMED AUTOMATA

Stochastic timed automata(STA) are a very expressive
automata-based formalism. They allow nondeterministic de-
cisions, real time aspects, continuous and discrete probab-
ilistic choices, and any combination thereof. STA had been
introduced as the original formal semantics of the high-level
compositional modelling language MODEST [1]. They can be
viewed as probabilistic timed automata (PTA [8]) with the
additional capability to sample from arbitrary (in particular
also continuous) probability distributions, or as generalised
semi-Markov processes (GSMP) extended with discrete and
continuous nondeterminism. In an STA, it is possible to
represent all the kinds of delays that we used in our example
in the previous section, and more.

Figure 2 shows an example STA. It consists of a set of
locations, l0 through l4, connected byedges, and a set of
variablesand rewards. Here, we have two variablec and x,
wherec is aclock, and one rewardr. Variables have some type,
e.g. real numbers or FIFO queues, where clocks are particular
in that they have type real, but advance over time at rate 1 (as in
timed automata). Each location is associated with aninvariant
(second line) and a number ofrate rewards(third line) of the
form v̇ = x for a reward v andx ∈ R. The invariants specify
when time is allowed to advance; so in locationl2, time can
progressuntil clock c reaches the value16, at which point the
location has to be left via an edge before time can pass again.
If that is not possible, a timelock occurs. When time is spent
in some location, the values of all rewards increase at the rate
given by the location’s rate rewards. Edges are labelled with a
guard and anaction, and lead from one location to a symbolic
probability distribution over pairs of a target location and a
set of assignments. Guards specify when an edge is enabled,
i.e. when it can be taken, while the action labels are used in
parallel composition (see below). The only outgoing edge of
l0 has guardtrue and islabelled with actiona. It leads tol1
or l2 with probability 1

2 each. In bothcases, clockc is reset,
and when we go tol1, the real-valued variablex is updated
with a randomly selected value according to the exponential
distribution with rateλ. In general, the probabilities for an
edge’s targets can be given via expressions that may refer to
variables and that are interpreted as weights. When an edge has
a single target location, we omit the branching in the graphical
representation of the STA; likewise, we may omittrue guards.
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A0

¬f(v, 2)
∧¬f(w, 0)

A1

cA ≤ 3

A2

cA ≤ 1

{ pA := 1
8
}

f(v, 2), τ ,
{ cA := 0, chD

A := tl(chD
A), chB

A := chB
A − 2, pA := 4 }

f(w, 0), τ , { cA := 0, chD
A := tl(chD

A), chB
A := chB

A − 0, pA := 1
8
}

cA ≥ 1, τ , { chA
B

:= chA
B

+ 1, pA :=
1
8
}

cA ≥ 1, τ , { chA
B := chA

B + 0, pA := 1
8 }

with f(sc, n)
def
= |chD

A| ≥ 1 ∧ hd(chD
A) = sc ∧ chB

A ≥ n

Figure 3: STA semantics of the kernelA

In our example STA, we have several types of delays and
decisions: The choice of target location when leavingl0 is
probabilistic, i.e. it follows a discrete probability distribution.
When we arrive inl2, the edgeback to l0 can be taken after
a delaynondeterministicallychosen between 8 and 16 time
units. If we choose to wait for the full 16 time units, there is
an additional (discrete)nondeterministicchoice of going tol4
instead. When wego from l0 to l1, the updateof x combined
with the wayx is subsequently used in the invariant ofl1 and
the guard ofthe edge tol2 means that theamount of time spent
in l1 follows theexponential distribution with rateλ, i.e. it is
a stochasticdelay.

Given two STA, we can define their parallel composition
using a standard interleaving semantics. STA support a CSP-
like parallel composition operator‖ that forces edges with the
same action label to synchronise. In particular, in the parallel
compositionM1 ‖ M2, if STA M1 wants to take an edge
labelleda andM2 also has anedge with the same label at some
point, thenM1 is forced toeither wait untilM2 is also ready
to take an edge labelleda, resulting in synchronisation, or to
take an edge with a different label if possible. We also allow
variables to be shared between STA that run in parallel. This
means that it is possible to specifyinconsistentassignments,
i.e. two edges that synchronise and assign different values to
the same variable. We treat this as a modelling error and do
not allow models where this is possible. We call a given set of
STA {M1, . . . , Mn } a network of STA (NSTA) and identify
it with the parallel compositionM1 ‖ . . . ‖ Mn.

IV. SEMANTICS

We can now give a semantics for xSADF in terms of
NSTA. We broadly follow the ideas of the existing semantics of
eSADF in terms of Markov automata [7], in particular its use
of variables to model channels and its compositional approach.
We support the additional features of xSADF, namely its
very general execution times and the energy consumption
annotations, by transforming them into the corresponding STA
constructs that are not available in Markov automata: assign-
ments involving arbitrary general probability distributions for
stochastic delays in combination with guards and invariants
for continuous nondeterministic choices over time, and rate
rewards to model the rate of energy consumption. We again
proceed by example by showing the parts of the semantics of
the xSADF graph of SectionII necessary to understand the

s1

true
s2

true
req u

{ΩD := s1 }

1
3

, {ΩD := s2 }1
3

, {ΩD := s1 }

req u, {ΩD := s1 }

Figure 4: STA for the subscenario DTMC of detectorD

approach, with the overall semantics of an entire graph being
the network of the STA corresponding to its components.

The semantics of a kernel is a single STA. For kernel
A, it is shown in Figure3. It has one local variable:cA, a
clock. Thedata processing takes place in locationsA1 andA2,
whose invariants combined with the guards of the outgoing
transitions ensure that the correct delay according toEA is
incurred. Wesee that no edge synchronises with any other STA
since they are all labelled with the special silent actionτ . The
communication with the other components of the semantics
of the xSADF graph happens through the channels, which are
modelled as shared variables that have the name of the channel
itself. We use integer variables for data channels, keeping
track of the number of data tokens in the channel. For control
channels, the order of the typed scenario tokens matters, so
we use variables of type FIFO queue. Operationhd returns
the first item of a queue,tl returns the queue without its first
item, and the dot operator. appends an item to the queue.

We use one rewardp to keep track of the total energy
consumption across the entire xSADF graph. We therefore
cannot use rate rewards inside the semantics of the kernels and
detectors, and instead keep track of their current rate of energy
usage through real-valued variables likepA in kernelA. We
then add an extra STA with a single location and no edges
that specifies the aggregate rate reward; in this case, it is
ṗ = pA + pB + pD + pD′ .

The semantics ofa detector consists of two STA in order to
separate the selection of the subscenario from its higher-level
behaviour, which is similar to that of a kernel. The semantics
of the subscenario selection DTMC of detectorD when in
scenariou is shown in Figure4. It synchronises with the high-
level STA for D, given in Figure5, via actionsreq indexed
with the current scenario and the shared variableΩD. The
synchronisation viareq on the edge from locationD0 is used
to let the DTMC perform one step as soon as the required
scenario tokens are available; the selected subscenario is then
communicated back inΩD. If D had morethan one scenario,
D0 would have multiple outgoing edges with different indexes
on req. Otherwise, the semantics ofD is largely similar to
that of a kernel, with locationsD1, D2 andD3 performing the
same basictasks asA0, A1 andA2, respectively, for kernelA.

V. A NALYSIS

There are currentlytwo possible ways to analyse xSADF
using its STA semantics: First, if there is no nondeterminism
in the execution times (and subscenarios are selected by
DTMC), then all nondeterminism that is present in the concrete
semantics of the network of STA is due to the interleaving of
the automata, and in particular does not affect the analysis
results. In this case, we can use statistical model checking
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chD
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B .w }

Figure 5: STA for the higher-level behaviour of detectorD

(a.k.a. simulation) for an efficient but approximative analysis.
In case the xSADF model contains “true” nondeterminism,
due to nondeterministic delays or owed to the use of non-
deterministic machinery such as Markov decision processes to
select subscenarios, we need to perform STA model checking,
which is a challenging problem. However, a first approach
that allows model checking of general STA has recently been
developed [4]. It enables the computation of upper bounds
on maximum and lower bounds on minimum probabilistic
reachability and expected accumulated reward properties, for
both time-bounded and -unbounded properties. It can thus
be used to compute, for example, bounds on the worst-case
(i.e. maximum) probability of exceeding a channel’s capacity,
on the (maximum/minimum) probability of having a certain
number of tokens in a channel within a time bound, on the
(minimum/maximum) expected time until a certain number
of data tokens has been processed by a kernel, or on the
(maximum/minimum) number of tokens processed with some
time bound. The analysis of STA models is supported by
the MODEST TOOLSET [6], where themodes tool handles
statistical model checking and the recently developedmcsta
tool implements the new STA model checking technique [4].

VI. FUTURE WORK

This abstract introducedxSADF and its semantics by ex-
ample. We are working on the full formal definitions, actually
aimng at a proof that all nondeterminism outside of delays
and subscenario selection does not affect analysis results,
evaluating the approach on case studies of concrete and larger
models, and possibly implementing support for the SDF3 file
format in the MODEST TOOLSET, we seethe potential for
a significant extension in the way energy usage is currently
handled in xSADF:

Currently, energy consumption can be observed in (reward-
based) properties during the analysis of the model, but this
information is not available to the kernels and detectors during
their execution within the model itself. Allowing them to
observe and react to data such as the current (aggregate)
energy consumption rate or the available energy supply could

make it possible to represent power management schemes
like dynamic voltage and frequency scaling (DVFS) inside an
SADF model, and study their effects in the analysis of that
model. Of particular interest would be the inclusion of battery
models, which would allow a detector to, for example, switch
off components when the battery runs low. Adding features
like these means that the semantics of such an SADF graph
becomes a network of stochastic hybrid automata (SHA [2]).
While SHA are well-understood and their analysis w.r.t. the
same properties as for STA is possible in theory [3], tools
(such asprohver [5]) are currently still in a prototypical stage
and limited to very small state spaces.

VII. C ONCLUSION

We have presented generally-timed energy SADF, or
xSADF for short. By allowing general stochastic and non-
deterministic processing delays, it is an extension of both the
discrete probabilistically-timed SADF of Theelen et al. [12]
and the exponentially-timed eSADF of Katoen and Wu [7]. In
addition, it supports scenario-dependent energy usage annota-
tions. We have outlined a compositional semantics of xSADF
in terms of stochastic timed automata (STA), which in turn
can be analysed using recently developed model checking
techniques for STA [4]. We look forward to experimenting
with this new model and studying its applicability in terms of
both modelling expressiveness and scalability of the analysis
techniques.
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Abstract—The timing predictability of multi-core platforms
with hard real-time applications is much more challenging than
that of traditional platforms due to their large number of shared
processing, communication and memory resources. Yet, this is
an indispensable challenge for guaranteeing their safe usage in
safety critical domains (avionics, automotive).

In this paper, a real-time analysis based on model-checking is
proposed. The model-checking based method allows to guarantee
timing bounds of multiple Synchronous Data Flow Application
(SDFA) implementations. This approach utilizes Timed Automata
(TA) as a common semantic model to represent WCET of
software components (SDF actors) and shared communication
resource access protocols for buses, DMA, private local and
shared memories of the multi-core platform. The resulting
network of TA is analyzed using the UPPAAL model-checker
for providing safe timing bounds of the implementation.

We demonstrate our approach using several image processing
algorithms and a multi-phase electric motor control algorithm
mapped to Infineon’s TriCore-based Aurix multi-core hardware
platform with two different inter-core communication styles:
burst- and single-beat transfer. Our approach shows a significant
precision improvement compared with the worst-case bound
calculation based on analytical upper-bound delays for every
shared resource access.

I. INTRODUCTION AND MOTIVATION

The growing computational demand of real-time applica-
tions (in automotive, avionics and multimedia) requires exten-
sions in the traditional design process to support multi-core
architectures. Due to their significantly increased performance
and Space Weight and Power (SWaP) reductions, multi-cores
offer an appealing alternative to traditional single core archi-
tectures. Yet, the timing analysis of hard real-time applications
running on multi-core platforms is much more challenging
compared to traditional single processor. This comes from
the large number of shared processing, communication and
memory resources available in today’s multi-core platforms.

There are mainly two performance analysis approaches for
embedded applications: simulative and formal methods. Both
methods have their assets and drawbacks. Even exhaustive
simulations never guarantee completeness (i.e. they provide
no guarantee that all interesting corner cases are covered), but
simulations are capable to handle systems with a huge state
space. Formal methods guarantee completeness, but suffer
from state explosion and scalability issues. For giving safe
timing guarantees under all conditions, a formal approach is
needed to calculate safe upper bounds based on Worst-Case-
Execution Times (WCETs) of the application and platform
dependent upper bounds for communication.

In this work, a mathematical (static) real-time analysis
methodology for a subset of data flow oriented applications

using model-checking is proposed. Model-checking techniques
are capable of verifying the performance properties of a system
with rigor, in contrast to simulative approaches. Furthermore,
for unmet timing properties counter examples are provided.
Unfortunately, these techniques do not scale well with the
number of applications and hardware resources of full featured
multi-core systems (considering preemption and contention on
shared memories and on-chip communication media).

For this reason we constrain our hardware platform to a
multi-core architecture where each core has its own instruction
and data memory, called a “tile”. Tiles are connected through
one (or more) arbitrated shared interconnect(s) (bus(s), shared
DMA(s)). Communication between tiles is realized through
FIFO-style message passing on a shared memory. The multi-
core is represented as Architecture Resource Graph (ARG).
We also limit applications to the Synchronous Dataflow Flow
(SDF) [12] Model of Computation (MoC). In the context of
multi-core research [12, 11, 6, 8, 10, 13], the SDF MoC is
gaining consideration due to its analyzability (e.g. deadlocks
and bounded buffer properties are decidable for such models).
In an SDF specification, parallelism is represented explicitly
and static schedules can be obtained. Furthermore, SDF se-
mantics supports a clean separation between computation and
communication since no communication (resource access) is
allowed during the computation phase. This enables a com-
positional timing analysis where SDF actor execution times
can be analyzed independently from communication delays
of message passing between SDF actors. A mapping relation
between SDF graphs and the multi-core ARG describes the
implementation of the application on the multi-core archi-
tecture. With these constraints and assumptions an analytical
timed-automata model can be constructed as a common se-
mantic model to represent execution time boundaries (Best
Case and Worst Case Execution Times) of SDF actors and
communication FIFOs, as well as their mapping and utilization
of multi-core resources, such as scheduling of SDFs, shared
communication resource access protocols for buses, local and
shared memories. The resulting network of TA is analyzed
using the UPPAAL model-checker for obtaining safe timing
bounds of the chosen implementation.

In this paper, we briefly present our state-based real-
time analysis framework, which enables (using the UPPAAL
model-checker) calculating safe timing bounds of multiple
(hard real-time) SDF-based applications on multi-core plat-
forms (represented as network of TA), considering variable
access delays due to the contention on shared communication
resources. We will summarize the most relevant achievements
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Figure 1: Overall model-based real-time analysis flow

of this approach, focusing on the developed SDF2TA tool. Due
to space limitations, the reader is encouraged to refer to [3, 4]
for more information.

II. MODEL-BASED REAL-TIME ANALYSIS OF SDFGS

Fig. 1 depicts the overall analysis flow proposed in this
work. Typically, the focus of the system designer is on the
representation of the application in the proper MoC and
mapping it to the available platform resources. The mapping
constraints considered in this article depend mainly on the
timing requirements. The input of our analysis flow is an
SDF Model of Computation (MoC) and a Model of Archi-
tecture (MoA). If the functional input model is described in
Matlab/Simulink, an SDFG can be obtained from the Mat-
lab/Simulink model using the translation procedure described
in [2]. This transformation transforms the top-level Simulink
blocks into SDF actors, while keeping the structure as well as
the precedence/activation relationships of all blocks.

The target platform is represented in the MoA by combining
tiles (processor with private memories) with other hardware
components (DMA, buses, shared memories see Fig. 1 top
right). Afterwards a WCET analysis (using aiT [5] or chronos
[9]) is performed for all combinations of actors and available
processing elements (PEs) of the platform. It is important to
note that this WCET analysis estimates lower/upper bounds of
the actors’ execution time on single PEs without considering
the timing effects of inter-core communication on shared com-
munication resources in the platform. To enable this timing
analysis, C-code implementation of each actor is needed. In
the case the application is available as a Simulink model, C-
code can be generated from it using a code-generator (e.g.
Simulink Coder). Next, a synthesis activity takes place, which
takes mapping and scheduling decisions (manually chosen by
the designer) as an input, maps all SDF actors to tiles and all
SDF edges to communication resources, and configures the
scheduling and arbitration strategies of resources, resulting
into an annotated parallel Hardware/Software model (called

Model of Structure (MoS)). The MoS would then be used for
further refinement steps (such as implementation on a virtual-
or on a real hardware platform) which is not considered in
this work.

In order to be able to verify that the timing of all mapped
SDFGs stay within specified bounds, we must keep track
of all possible timing delays including delays caused by
communication interferences in the multi-core platform. To
achieve this, a Model of Performance (MoP) is extracted from
the synthesis process. The MoP is a network of TA represent-
ing all actor WCETs, communication delays, scheduling and
communication resource access protocols of the platform [3].
Pre-defined TA templates are configured and instantiated in the
UPPAAL framework, taking into account the mapping, timing
and platform configuration. After converting the timing re-
quirements into UPPAAL CTL queries, performance analysis
(e.g. end-to-end deadline) is done using the UPPAAL model-
checker.

For the purpose of automating these last steps, as high-
lighted in Fig. 1, we developed the SDF2TA editor using the
Eclipse Modeling Framework (EMF) 1 Ecore-model, where
the developer can provide all needed parameters (SDFGs,
mapping, hardware constraints) and the equivalent UPPAAL
system is generated automatically.

Fig. 2 shows the work flow of the SDF2TA tool. First,

1http://www.eclipse.org/modeling/emf/

Figure 2: Work flow of the SDF2TA tool
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the developer needs to provide all relevant timing properties
as an input to the SDF2TA editor. The SDF2TA editor is
already provided with an Ecore-model (which is an XML like
format) of the supported MoP and can validate if the input
conforms with the model definition. If the input validation step
is successful, the developer can now choose some property
to be checked on the given MoP. Properties which can be
checked are either timing properties such as the period, end-
to-end deadline or liveness properties such as checking if
repetition vector of an SDFG is valid or if specific states are
reached (for e.g. is finishing of sink actors always guaranteed
to be after finishing source actors for all possibilities) during
execution. Now, the SDF2TA generates an XML equivalent
representation of the input model and processes it by applying
pre-defined XSLT (Extensible Stylesheet Language Transfor-
mations) rules to transform it into an equivalent UPPAAL
XML representation. This step includes the parametrization
and instantiation of our pre-defined UPPAAL Timed-Automata
templates, which represent different components of the MoP.
At the end, the generated UPPAAL model is checked against
CTL (Computation Tree Logic) queries using the verifyta2

tool. The verification results are provided to the developer
through the SDF2TA editor.
SDF2TA editor (see Fig. 3) provides a user-friendly GUI,

supports tool-tips and validates input models in order to gen-
erate a correct timed-automata model. Furthermore, the usage
of Ecore as the common modeling language for capturing
the MoP makes SDF2TA maintainable. If any extensions or
changes should be done on the MoP, the developer only needs
to change the Ecore-model and with minimal additional effort,
modified the SDF2TA editor is generated. In addition, our
SDF2TA editor allows to import SDFGs from the well known
SDF 3 tool [14], and is able to run SDF 3 in the background to
perform different analysis of the SDFGs created in SDF2TA,
such as finding and adopting values of repetition vector, buffer
sizes, etc.

III. REAL-TIME ANALYSIS RESULTS

Our approach was first presented and evaluated in [3]
with a focus on reducing overestimates in the Worst Case
Period (WCP) of an SDF in comparison to a an existing
analytical approach [11]. In this work, the authors calculate
the worst-case waiting times for a non-preemptive SDF actor
scheduling using a FCFS (First-Come-First-Serve) strategy, by
assuming that all other competing actors, mapped to the same
resource, always run before the waiting actor. We use the
system, shown in Fig. 5, which consists of two SDFGs mapped
to a 4-tile shared bus platform, configured with the same
parameters as used in [11]. Afterward, we calculated the WCP
using our model-checking-based approach (MC WCP) and
the analytical approach from [11] (Pess. WCP) for different
mappings of the SDFGs (see Fig. 4). We define improvement
as ((Pess.WCP/MC.WCP )−1)×100 which describes how
far could the results be tightened through our approach (in
percent) compared to the analytical approach from [11].

We have also started to evaluate our approach with regard to
scalability in terms of tiles and actors. Our current restrictions

2This is the stand-alone UPPAAL timed-automata verification tool.

Figure 3: SDF2TA GUI

on the system model made it possible to analyze up to 36
actors on 4 tiles and up to 96 actors on 2 tiles without running
into state-space induced complexity problems of the model-
checker. In future work, we intend to further increase the actual
number of actors by applying an actor partitioning and fusion
algorithm [1] before applying model checking.

In [4] we demonstrated the applicability of our analysis
method to an industrial automotive case-study of a multi-phase
electric motor control algorithm running on a commercially
available state-of-the-art multi-core platform (Aurix TC275
[7]). Furthermore, we have successfully used our approach
to obtain upper and lower bounds on the execution times
of two different communication implementation styles (see
Fig. 6). Excessive simulation has been used to analyze the
over-approximation of our approach, resulting in an acceptable
range between 37% up to 63%.

Figure 4: Worst Case Period (WCP) analysis results
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IV. CONCLUSION

In this article, we have summarized our previously published
model-checking-based performance analysis method for the
validation of multiple hard real-time SDFGs mapped to multi-
core platforms with shared communication resources. Our
method shows a significant reduction in the worst-case period
time prediction, compared to an existing analysis method.
Furthermore, we have demonstrated the applicability of our
approach to a multi-phase electric motor control algorithm
mapped to Infineon’s TriCore-based Aurix multi-core plat-
form, using DMA-based burst-transfer and non DMA single-
beat inter-core communication.
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