12 research outputs found

    Variant Domination Types for a Complete h-ary Tree

    Get PDF
    يعتبر البيان أداة جيدة  لحلول بعض مشاكل الشبكات. من هذة المشاكل هي مسالة الهيمنة في الشبكات والتي تدرس عن طريق نظرية البيانات بعد تحويل الشبكة الي بيان الذي هو مجموعة من الرؤوس مع مجموعة من الحافات التي تربط بين هذه الرؤوس.  اي مجموعة جزيئة من رؤوس البيان هي مجموعة هيمنة في البيان اذا كان اي راس في البيان اما ينتمي لمجموعة الهيمنة او له جوار في هذه المجموعة. رقم الهيمنة هو قياس اصغر مجموعة تهيمن على البيان. لأهمية هذا الموضوع في مختلف المجالات ، انواع مختلف من الهيمنة في البيانات تم استخدامها في هذا البحث. وذلك بوضع شرط على مجموعة الهيمنة او شرط على مجموعة باقي رؤوس البيان او على المجموعتين. في هذا البحث تم اختيار نوعين من الهيمنة . الاول هو الهيمنة المقيدة حيث الشرط وضع على مجموعة الرؤوس خارج المجموعة المقيدة . اما النوع الثاني وهو الهيمنة الآمنة وهي المجموعة المهيمنة مع وضع شرط على المجموعة المهيمنة. تم دراسة الهيمنة الآمنة مع  انواع مختلفة من الهيمنة المقيدة على عائلة من الاشجاروهي اشجار شعاع الجذر المتكامل ذو العمق .Graph  is a tool that can be used to simplify and solve network problems. Domination is a typical network problem that graph theory is well suited for. A subset of nodes in any network is called dominating if every node is contained in this subset, or is connected to a node in it via an edge. Because of the importance of domination in different areas, variant types of domination have been introduced according to the purpose they are used for. In this paper, two domination parameters the first is the restrained and the second is secure domination have been chosn. The secure domination, and some types of restrained domination in one type of trees is called complete ary tree  are determined

    Secure domination number of kk-subdivision of graphs

    Full text link
    Let G=(V,E)G=(V,E) be a simple graph. A dominating set of GG is a subset DVD\subseteq V such that every vertex not in DD is adjacent to at least one vertex in DD. The cardinality of a smallest dominating set of GG, denoted by γ(G)\gamma(G), is the domination number of GG. A dominating set DD is called a secure dominating set of GG, if for every uVDu\in V-D, there exists a vertex vDv\in D such that uvEuv \in E and D{v}{u}D-\{v\}\cup\{u\} is a dominating set of GG. The cardinality of a smallest secure dominating set of GG, denoted by γs(G)\gamma_s(G), is the secure domination number of GG. For any kNk \in \mathbb{N}, the kk-subdivision of GG is a simple graph G1kG^{\frac{1}{k}} which is constructed by replacing each edge of GG with a path of length kk. In this paper, we study the secure domination number of kk-subdivision of GG.Comment: 10 Pages, 8 Figure

    Algorithmic Complexity of Isolate Secure Domination in Graphs

    Get PDF
    A dominating set SS is an Isolate Dominating Set (IDS) if the induced subgraph G[S]G[S] has at least one isolated vertex. In this paper, we initiate the study of new domination parameter called, isolate secure domination. An isolate dominating set SVS\subseteq V is an isolate secure dominating set (ISDS), if for each vertex uVSu \in V \setminus S, there exists a neighboring vertex vv of uu in SS such that (S{v}){u}(S \setminus \{v\}) \cup \{u\} is an IDS of GG. The minimum cardinality of an ISDS of GG is called as an isolate secure domination number, and is denoted by γ0s(G)\gamma_{0s}(G). Given a graph G=(V,E) G=(V,E) and a positive integer k, k, the ISDM problem is to check whether G G has an isolate secure dominating set of size at most k. k. We prove that ISDM is NP-complete even when restricted to bipartite graphs and split graphs. We also show that ISDM can be solved in linear time for graphs of bounded tree-width.Comment: arXiv admin note: substantial text overlap with arXiv:2002.00002; text overlap with arXiv:2001.1125

    Algorithmic complexity of isolate secure domination in graphs

    Get PDF
    A dominating set S is an Isolate Dominating Set (IDS) if the induced subgraph G[S] has at least one isolated vertex. In this paper, we initiate the study of new domination parameter called, isolate secure domination. An isolate dominating set S subset of V is an isolate secure dominating set (ISDS), if for each vertex u is an element of V \ S, there exists a neighboring vertex v of u in S such that (S \ {v}) boolean OR {u} is an IDS of G. The minimum cardinality of an ISDS of G is called as an isolate secure domination number, and is denoted by gamma(0s) (G). We give isolate secure domination number of path and cycle graphs. Given a graph G = (V, E) and a positive integer k, the ISDM problem is to check whether G has an isolate secure dominating set of size at most k. We prove that ISDM is NP-complete even when restricted to bipartite graphs and split graphs. We also show that ISDM can be solved in linear time for graphs of bounded tree-width.Publisher's Versio

    On the Complexity of Co-secure Dominating Set Problem

    Full text link
    A set DVD \subseteq V of a graph G=(V,E)G=(V, E) is a dominating set of GG if every vertex vVDv\in V\setminus D is adjacent to at least one vertex in D.D. A set SVS \subseteq V is a co-secure dominating set (CSDS) of a graph GG if SS is a dominating set of GG and for each vertex uSu \in S there exists a vertex vVSv \in V\setminus S such that uvEuv \in E and (S{u}){v}(S\setminus \{u\}) \cup \{v\} is a dominating set of GG. The minimum cardinality of a co-secure dominating set of GG is the co-secure domination number and it is denoted by γcs(G)\gamma_{cs}(G). Given a graph G=(V,E)G=(V, E), the minimum co-secure dominating set problem (Min Co-secure Dom) is to find a co-secure dominating set of minimum cardinality. In this paper, we strengthen the inapproximability result of Min Co-secure Dom for general graphs by showing that this problem can not be approximated within a factor of (1ϵ)lnV(1- \epsilon)\ln |V| for perfect elimination bipartite graphs and star convex bipartite graphs unless P=NP. On the positive side, we show that Min Co-secure Dom can be approximated within a factor of O(lnV)O(\ln |V|) for any graph GG with δ(G)2\delta(G)\geq 2. For 33-regular and 44-regular graphs, we show that Min Co-secure Dom is approximable within a factor of 83\dfrac{8}{3} and 103\dfrac{10}{3}, respectively. Furthermore, we prove that Min Co-secure Dom is APX-complete for 33-regular graphs.Comment: 12 pages, 2 figure

    Algorithmic Aspects of Secure Connected Domination in Graphs

    Full text link
    Let G=(V,E)G = (V,E) be a simple, undirected and connected graph. A connected dominating set SVS \subseteq V is a secure connected dominating set of GG, if for each uVS u \in V\setminus S, there exists vSv\in S such that (u,v)E(u,v) \in E and the set (S{v}){u}(S \setminus \{ v \}) \cup \{ u \} is a connected dominating set of GG. The minimum size of a secure connected dominating set of GG denoted by γsc(G) \gamma_{sc} (G), is called the secure connected domination number of GG. Given a graph G G and a positive integer k, k, the Secure Connected Domination (SCDM) problem is to check whether G G has a secure connected dominating set of size at most k. k. In this paper, we prove that the SCDM problem is NP-complete for doubly chordal graphs, a subclass of chordal graphs. We investigate the complexity of this problem for some subclasses of bipartite graphs namely, star convex bipartite, comb convex bipartite, chordal bipartite and chain graphs. The Minimum Secure Connected Dominating Set (MSCDS) problem is to find a secure connected dominating set of minimum size in the input graph. We propose a (Δ(G)+1) (\Delta(G)+1) - approximation algorithm for MSCDS, where Δ(G) \Delta(G) is the maximum degree of the input graph G G and prove that MSCDS cannot be approximated within (1ϵ)ln(V) (1 -\epsilon) ln(| V |) for any ϵ>0 \epsilon > 0 unless NPDTIME(VO(loglogV)) NP \subseteq DTIME(| V |^{O(log log | V |)}) even for bipartite graphs. Finally, we show that the MSCDS is APX-complete for graphs with Δ(G)=4\Delta(G)=4

    Total protection in graphs

    Get PDF
    Suposem que una o diverses entitats estan situades en alguns dels vèrtexs d'un graf simple, i que una entitat situada en un vèrtex es pot ocupar d'un problema en qualsevol vèrtex del seu entorn tancat. En general, una entitat pot consistir en un robot, un observador, una legió, un guàrdia, etc. Informalment, diem que un graf està protegit sota una determinada ubicació d'entitats si hi ha almenys una entitat disponible per tractar un problema en qualsevol vèrtex. S'han considerat diverses estratègies (o regles d'ubicació d'entitats), sota cadascuna de les quals el graf es considera protegit. Aquestes estratègies de protecció de grafs s'emmarquen en la teoria de la dominació en grafs, o en la teoria de la dominació segura en grafs. En aquesta tesi, introduïm l'estudi de la w-dominació (segura) en grafs, el qual és un enfocament unificat a la idea de protecció de grafs, i que engloba variants conegudes de dominació (segura) en grafs i introdueix de noves. La tesi està estructurada com un compendi de deu articles, els quals han estat publicats en revistes indexades en el JCR. El primer està dedicat a l'estudi de la w-dominació, el cinquè a l'estudi de la w-dominació segura, mentre que els altres treballs estan dedicats a casos particulars d'estratègies de protecció total. Com és d'esperar, el nombre mínim d'entitats necessàries per a la protecció sota cada estratègia és d'interès. En general, s'obtenen fórmules tancades o fites ajustades sobre els paràmetres estudiats.Supongamos que una o varias entidades están situadas en algunos de los vértices de un grafo simple y que una entidad situada en un vértice puede ocuparse de un problema en cualquier vértice de su vecindad cerrada. En general, una entidad puede consistir en un robot, un observador, una legión, un guardia, etc. Informalmente, decimos que un grafo está protegido bajo una determinada ubicación de entidades si existe al menos una entidad disponible para tratar un problema en cualquier vértice. Se han considerado varias estrategias (o reglas de ubicación de entidades), bajo cada una de las cuales el grafo se considera protegido. Estas estrategias de protección de grafos se enmarcan en la teoría de la dominación en grafos, o en la teoría de la dominación segura en grafos. En esta tesis, introducimos el estudio de la w-dominación (segura) en grafos, el cual es un enfoque unificado a la idea de protección de grafos, y que engloba variantes conocidas de dominación (segura) en grafos e introduce otras nuevas. La tesis está estructurada como un compendio de diez artículos, los cuales han sido publicados en revistas indexadas en el JCR. El primero está dedicado al estudio de la w-dominación, el quinto al estudio de la w-dominación segura, mientras que los demás trabajos están dedicados a casos particulares de estrategias de protección total. Como es de esperar, el número mínimo de entidades necesarias para la protección bajo cada estrategia es de interés. En general, se obtienen fórmulas cerradas o cotas ajustadas sobre los parámetros estudiadosSuppose that one or more entities are stationed at some of the vertices of a simple graph and that an entity at a vertex can deal with a problem at any vertex in its closed neighbourhood. In general, an entity could consist of a robot, an observer, a legion, a guard, and so on. Informally, we say that a graph is protected under a given placement of entities if there exists at least one entity available to handle a problem at any vertex. Various strategies (or rules for entities placements) have been considered, under each of which the graph is deemed protected. These strategies for the protection of graphs are framed within the theory of domination in graphs, or in the theory of secure domination in graphs. In this thesis, we introduce the study of (secure) w-domination in graphs, which is a unified approach to the idea of protection of graphs, that encompasses known variants of (secure) domination in graphs and introduces new ones. The thesis is structured as a compendium of ten papers which have been published in JCR-indexed journals. The first one is devoted to the study of w-domination, the fifth one is devoted to the study of secure w-domination, while the other papers are devoted to particular cases of total protection strategies. As we can expect, the minimum number of entities required for protection under each strategy is of interest. In general, we obtain closed formulas or tight bounds on the studied parameters
    corecore