25 research outputs found

    Seismic Wave Propagation Simulations on Low-power and Performance-centric Manycores

    Get PDF
    International audienceThe large processing requirements of seismic wave propagation simulations make High Performance Computing (HPC) architectures a natural choice for their execution. However, to keep both the current pace of performance improvements and the power consumption under a strict power budget, HPC systems must be more energy e than ever. As a response to this need, energy-e and low-power processors began to make their way into the market. In this paper we employ a novel low-power processor, the MPPA-256 manycore, to perform seismic wave propagation simulations. It has 256 cores connected by a NoC, no cache-coherence and only a limited amount of on-chip memory. We describe how its particular architectural characteristics influenced our solution for an energy-e implementation. As a counterpoint to the low-power MPPA-256 architecture, we employ Xeon Phi, a performance-centric manycore. Although both processors share some architectural similarities, the challenges to implement an e seismic wave propagation kernel on these platforms are very di↵erent. In this work we compare the performance and energy e of our implementations for these processors to proven and optimized solutions for other hardware platforms such as general-purpose processors and a GPU. Our experimental results show that MPPA-256 has the best energy e consuming at least 77 % less energy than the other evaluated platforms, whereas the performance of our solution for the Xeon Phi is on par with a state-of-the-art solution for GPUs

    Energy Efficient Seismic Wave Propagation Simulation on a Low-power Manycore Processor.

    No full text
    International audienceLarge-scale simulation of seismic wave propagation is an active research topic. Its high demand for processing power makes it a good match for High Performance Computing (HPC). Although we have observed a steady increase on the processing capabilities of HPC platforms, their energy efficiency is still lacking behind. In this paper, we analyze the use of a low-power manycore processor, the MPPA-256, for seismic wave propagation simulations. First we look at its peculiar characteristics such as limited amount of on-chip memory and describe the intricate solution we brought forth to deal with this processor's idiosyncrasies. Next, we compare the performance and energy efficiency of seismic wave propagation on MPPA-256 to other commonplace platforms such as general-purpose processors and a GPU. Finally, we wrap up with the conclusion that, even if MPPA-256 presents an increased software development complexity, it can indeed be used as an energy efficient alternative to current HPC platforms, resulting in up to 71% and 5.18x less energy than a GPU and a general-purpose processor, respectively

    On the Energy Efficiency and Performance of Irregular Application Executions on Multicore, NUMA and Manycore Platforms

    No full text
    International audienceUntil the last decade, performance of HPC architectures has been almost exclusively quantifiedby their processing power. However, energy efficiency is being recently considered as importantas raw performance and has become a critical aspect to the development of scalablesystems. These strict energy constraints guided the development of a new class of so-calledlight-weight manycore processors. This study evaluates the computing and energy performanceof two well-known irregular NP-hard problems — the Traveling-Salesman Problem (TSP) andK-Means clustering—and a numerical seismic wave propagation simulation kernel—Ondes3D—on multicore, NUMA, and manycore platforms. First, we concentrate on the nontrivial task ofadapting these applications to a manycore, specifically the novel MPPA-256 manycore processor.Then, we analyze their performance and energy consumption on those di↵erent machines.Our results show that applications able to fully use the resources of a manycore can have betterperformance and may consume from 3.8x to 13x less energy when compared to low-power andgeneral-purpose multicore processors, respectivel

    Towards seismic wave modeling on heterogeneous many-core architectures using task-based runtime system

    Get PDF
    International audienceUnderstanding three-dimensional seismic wave propagation in complex media remains one of the main challenges of quantitative seismology. Because of its simplicity and numerical efficiency, the finite-differences method is one of the standard techniques implemented to consider the elastodynamics equation. Additionally, this class of modelling heavily relies on parallel architectures in order to tackle large scale geometries including a detailed description of the physics. Last decade, significant efforts have been devoted towards efficient implementation of the finite-differences methods on emerging architectures. These contributions have demonstrated their efficiency leading to robust industrial applications. The growing representation of heterogeneous architectures combining general purpose multicore platforms and accelerators leads to redesign current parallel application. In this paper, we consider StarPU task-based runtime system in order to harness the power of heterogeneous CPU+GPU computing nodes. We detail our implementation and compare the performance obtained with the classical CPU or GPU only versions. Preliminary results demonstrate significant speedups in comparison with the best implementation suitable for homogeneous cores

    Enhancing Energy Production with Exascale HPC Methods

    Get PDF
    High Performance Computing (HPC) resources have become the key actor for achieving more ambitious challenges in many disciplines. In this step beyond, an explosion on the available parallelism and the use of special purpose processors are crucial. With such a goal, the HPC4E project applies new exascale HPC techniques to energy industry simulations, customizing them if necessary, and going beyond the state-of-the-art in the required HPC exascale simulations for different energy sources. In this paper, a general overview of these methods is presented as well as some specific preliminary results.The research leading to these results has received funding from the European Union's Horizon 2020 Programme (2014-2020) under the HPC4E Project (www.hpc4e.eu), grant agreement n° 689772, the Spanish Ministry of Economy and Competitiveness under the CODEC2 project (TIN2015-63562-R), and from the Brazilian Ministry of Science, Technology and Innovation through Rede Nacional de Pesquisa (RNP). Computer time on Endeavour cluster is provided by the Intel Corporation, which enabled us to obtain the presented experimental results in uncertainty quantification in seismic imagingPostprint (author's final draft

    Applying future Exascale HPC methodologies in the energy sector

    Get PDF
    The appliance of new exascale HPC techniques to energy industry simulations is absolutely needed nowadays. In this sense, the common procedure is to customize these techniques to the specific energy sector they are of interest in order to go beyond the state-of-the-art in the required HPC exascale simulations. With this aim, the HPC4E project is developing new exascale methodologies to three different energy sources that are the present and the future of energy: wind energy production and design, efficient combustion systems for biomass-derived fuels (biogas), and exploration geophysics for hydrocarbon reservoirs. In this work, the general exascale advances proposed as part of HPC4E and its outcome to specific results in different domains are presented.The research leading to these results has received funding from the European Union's Horizon 2020 Programme (2014-2020) under the HPC4E Project (www.hpc4e.eu), grant agreement n° 689772, the Spanish Ministry of Economy and Competitiveness under the CODEC2 project (TIN2015-63562-R), and from the Brazilian Ministry of Science, Technology and Innovation through Rede Nacional de Pesquisa (RNP). Computer time on Endeavour cluster is provided by the Intel Corporation, which enabled us to obtain the presented experimental results in uncertainty quantification in seismic imaging.Postprint (author's final draft

    A Comprehensive Performance Evaluation of the BinLPT Workload-Aware Loop Scheduler

    Get PDF
    International audienceWorkload-aware loop schedulers were introduced to deliver better performance than classical loop scheduling strategies. However, they presented limitations such as inexible built-in workload estimators and suboptimal chunk scheduling. Targeting these challenges, we proposed previously a workload-aware scheduling strategy called BinLPT, which relies on three features: (i) user-supplied estimations of the workload of the loop; (ii) a greedy heuristic that adaptively partitions the iteration space in several chunks; and (iii) a scheduling scheme based on the Longest Processing Time (LPT) rule and on-demand technique. In this paper, we present two new contributions to the state-of-the-art. First, we introduce a multiloop support feature to BinLPT, which enables the reuse of estimations across loops. Based on this feature, we integrated BinLPT into a real-world elastodynamics application, and we evaluated it running on a supercomputer. Second, we present an evaluation of BinLPT using simulations as well as synthetic and application kernels. We carried out this analysis on a large-scale NUMA machine under a variety of workloads. Our results revealed that BinLPT is better at balancing the workloads of the loop iterations and this behavior improves as the algorithmic complexity of the loop increases. Overall, BinLPT delivers up to 37.15% and 9.11% better performance than well-known loop scheduling strategies, for the application kernels and the elastodynamics simulation, respectively
    corecore