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Vı́ctor Martı́nez∗, David Michéa‡, Fabrice Dupros‡, Olivier Aumage§,
Samuel Thibault§, Hideo Aochi‡ and Philippe O. A. Navaux∗

∗ Informatics Institute, Federal University of Rio Grande do Sul (UFRGS),
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Abstract—Understanding three-dimensional seismic wave
propagation in complex media remains one of the main challenges
of quantitative seismology. Because of its simplicity and numerical
efficiency, the finite-differences method is one of the standard
techniques implemented to consider the elastodynamics equation.
Additionally, this class of modelling heavily relies on parallel
architectures in order to tackle large scale geometries including a
detailed description of the physics. Last decade, significant efforts
have been devoted towards efficient implementation of the finite-
differences methods on emerging architectures. These contribu-
tions have demonstrated their efficiency leading to robust indus-
trial applications. The growing representation of heterogeneous
architectures combining general purpose multicore platforms and
accelerators leads to re-design current parallel application. In this
paper, we consider StarPU task-based runtime system in order to
harness the power of heterogeneous CPU+GPU computing nodes.
We detail our implementation and compare the performance ob-
tained with the classical CPU or GPU only versions. Preliminary
results demonstrate significant speedups in comparison with the
best implementation suitable for homogeneous cores.

I. INTRODUCTION

The trend at the hardware level is to increase the complex-
ity of available computing node. This includes several level
of hierarchical memories, increasing number of heterogeneous
cores or low-level optimization mechanisms. Another concern
is coming from the increasing gap between the computing
power and the cost for data transfers. These evolutions lead
to progressively re-design current applications that mainly
exploit flat programming models. The challenge is therefore
to decouple as much as possible the algorithms and the
knowledge of the underlying architecture.
Consequently, many runtime systems have been designed
for programming and running applications on heterogeneous
architectures with accelerators; examples include G-Charm
[1], a framework for execution of message-driven parallel
applications on hybrid systems, based on Charm++, UTK’s
PaRSEC [2] framework, as well as OmpSs [3] from the
Barcelona Supercomputing Center. In [4] the XKaapi for data-
flow task programming model on heterogeneous architectures
is presented. StarPU is a tasking API that provides numerical

kernel designers with a convenient way to execute parallel
tasks over heterogeneous hardware on the one hand, and easily
develop and tune scheduling algorithms on the other hand.
StarPU is based on the integration of the data-management
facility with a task execution engine [5].
In this paper, we focus on seismic wave propagation algorithm
that is routinely both in the oil and gas industry and in
strong motion analysis in seismology. The finite-differences
numerical method used for this problem also lies at the
heart of a significant fraction of numerical solvers in other
fields. In terms of computational efficiency, one of the main
difficulties is to deal with the disadvantageous ratio between
the limited pointwise computation and the intensive memory
access required, leading to a memory-bound situation. This
situation is rather challenging for heterogeneous platforms as
one of the main difficulty is to deal with the costly memory
transfers.
We therefore introduce an optimized implementation of seis-
mic wave propagation model suitable for heterogeneous archi-
tectures and we demonstrate the efficiency of our approach on
two heterogeneous architectures using the maximum number
of processing units available. The paper proceeds as follows.
Section II discusses the fundamentals of seismic wave simula-
tion and presents the application under study (i.e. Ondes3D).
Classical implementations of finite-differences method, both
on multicore and GPU architectures are described at this level.
Section III introduces StarPU runtime system. Section IV
describes the task-based implementation of Ondes3D software
package on top of StarPU. Section V and VI discusses the
performances obtained with the influence of additional param-
eters of the task-based parallel algorithm. Section VII describes
related work and Section VIII concludes this paper.

II. SEISMIC WAVE PROPAGATION

In this section we introduce the governing equations asso-
ciated with the three-dimensional modelling of seismic wave
propagation in elastic media. We describe the standard imple-
mentations of the finite-differences discretization for x86 cores
and for GPU platforms corresponding to Ondes3D application
developed by the French Geological Survey (BRGM).



A. Elastodynamic equation

Seismic waves radiated from an earthquake are often
simulated under the assumption of an elastic medium although
the waves attenuate due to some anelasticity. Let us consider
a 3D isotropic elastic medium, the seismic wave equation is
given by :
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In the previous equations, v and σ represent the velocity
and the stress field respectively and f denotes a known
external source force. The medium is characterized by the
elastic (Lamé) parameters λ and µ and ρ is the density.

B. Numerical method and standard implementations

Due to its simplicity, the finite-differences method is widely
used to compute the propagation of seismic waves. The nu-
merical kernel under study relies on the classical 4-th order in
space and second-order in time approximation [6], [7].
Figure II.1 provides an overview of the computational
flowchart where indices i, j, ij represent a component of a
vector or tensor field in Cartesian coordinates (x, y, z), vi
and σij represent the velocity and stress field. After a pre-
processing phase devoted to the initialization of the velocity,
stress and external force components, the algorithm goes
through a time-dependent double triple-nested loops. The stress
and velocity components are evaluated following and odd-even
dependency (i.e.the computation of the stress field reuses the
results of the update of the velocity field).

Algorithm II.1: FINITE-DIFFERENCES FLOWCHART(σ, v)

for x← 1 to x dimension

do


for y ← 1 to y dimension

do
{

for z ← 1 to z dimension
do {COMPUTE VELOCITY(σij)

for x← 1 to x dimension

do


for y ← 1 to y dimension

do
{

for z ← 1 to z dimension
do {COMPUTE STRESS(vi)

C. Reference parallel implementations

1) CPU: On shared-memory architectures, a popular way
to extract the parallelism for such applications is to exploit
the triple nested loops coming from the spatial dimensions
of the problem under study. This strategy allows a straight-
forward benefits of OpenMP directives. Additional optimiza-
tions should be considered in order to limit the impact of
NUMA (Non-Uniform Memory Access) architectures. The
kernel used in this paper is similar to the implementation
described in [8].

2) GPU: Regarding the finite-differences method, several
applications have been ported to GPUs, particularly for seismic
wave modelling [9]–[11]. The high reading redundancy (13/1)
coming from the fourth-order stencil used in space makes GPU
a very efficient architecture for such memory-bound applica-
tions. A full description of the implementation corresponding
to Ondes3D application could be found in [12].

III. STARPU RUNTIME SYSTEM

The StarPU [5] Runtime System developed by Team
STORM provides a framework for task scheduling on het-
erogeneous platforms. It is able to calibrate the relative
performance of multiple, heterogeneous implementations of
computing kernels, as well as the cost of data transfers between
the main memory space and accelerator memory spaces, such
as to optimize work mapping dynamically among heteroge-
neous computing units, during the execution of the application.
This scheduling framework jointly works with a distributed
shared-memory manager in order to optimize data transfers, to
perform replication and consistency management for avoiding
redundant transfers, and to overlap communications with com-
putations. A complete description of the available schedulers
could be found in [13]. In this study, we consider the following
scheduling algorithms :

eager A central queue from which all workers pick tasks
concurrently.

ws A work-stealing scheduler, where idle workers
may steal work from busy workers.

dm The Deque Model (DM) scheduler maps tasks
onto workers using an history-based kernel per-
formance model.

dmda An variant of the DM scheduler also taking trans-
fer costs into account.

dmdar A variant of the DMDA scheduler such that per-
worker task queues are sorted according to the
number of already available dependent pieces of
data.

IV. ELASTODYNAMICS NUMERICAL KERNEL ON TOP OF
STARPU RUNTIME SYSTEM

Finite-differences methods naturally express data paral-
lelism whereas StarPU works at tasks level. In order to express
task-based parallelism with such numerical approach, one
needs to split the model into a fine-grained grid of blocks
where each part of the code (mainly the update of the velocity
and the stress components) is executed on a single block
as a computing task. Each block includes inner grid-points
corresponding to the physical domain and outer ghosts zones



Figure 1: Grid of blocks including inner grid-points corre-
sponding to the physical domain and outer ghosts zones

for the grid points exchanged between neighboring subdo-
mains 1. The three-dimensional domain is cutted along the
horizontal directions as models in seismology often describe a
thin and wide crust plate in order to evaluate surface effects.
A naive implementation would require expensive copies be-
tween blocks because the boundary data are not contiguous
in memory (several calls of memcpy (or cudaMemCpy) for
small size data). Therefore a GRAM buffer which is filled
using a CUDA kernel is created and then copied only once.
StarPU framework allows us to simply define handlers bound
to the data in order to smoothly manage the mapping on the
heterogeneous architecture.
The task-based parallelism model leads to the creation of a

large number of tasks, ideally loosely coupled. StarPU frame-
work arranges these tasks in a Directed Acyclic Graph (DAG)
according to the data dependency. Typically, we can identify
the tasks devoted to data transfers (used to save data from block
boundaries to buffers and vice versa) and the two computing
kernels (computation of the six stress and the three velocity
components). For each timestep, the same pattern of task cre-
ation is repeated. At this stage, we have simplified the original
implementation by discarding the absorbing boundary condi-
tions. As these numerical conditions introduce load imbalance
at the boundaries of the computational domain, it makes much
more complex the analysis of the results on heterogeneous
platforms [8]. The time spent in data management kernels is
very small compared to the elapsed time for the computation
kernels. Nevertheless, these tasks are crucial as they express
the dependencies between blocks that are adjacent in horizontal
directions.
Figure 2 illustrates this situation considering a grid of 3×3

blocks. For instance, if a single task is scheduled on a slow
computing resources and the remaining tasks are executed on
faster resources, the colored tasks cannot be scheduled before
finishing the the first one. The main programming effort has
been the creation of the relevant CPU and the GPU kernels
corresponding to the numerical scheme. Figure 3 provides a
detailed description of the algorithm.

Figure 2: Tasks dependency on a grid of 3×3 blocks

1: STARPU INITIALIZATION
2: procedure INITIALIZATION OF DATA STRUCTURES
3: READ PARAMETERS(file)
4: MODEL SLICING(Create blocks)
5: ALLOCATE MEMORY(blocks, nodes)
6: READ(sources, source time, stations positions)
7: READ(model)
8: SET(material properties)
9: end procedure

10: procedure CREATE ALL TASKS
11: CREATE DUMMY START TASK(Time measurement)
12: for each iteration do
13: for each block do
14: CREATE TASK(update source)
15: CREATE TASK(compute velocity)
16: CREATE TASK(save boundaries for velocity)
17: CREATE TASK(compute stress)
18: CREATE TASK(save boundaries for stress)
19: CREATE TASK(record seismograms)
20: end for
21: CREATE DUMMY END TASK(Synchronization)
22: end for
23: RELEASE DUMMY START TASK
24: WAIT(end of the dummy end task)
25: end procedure

Figure 3: Task-based workflow for Ondes3D application

V. EXPERIMENTAL SETUP

In this section we describe the architectures used for our
experiments.

1) Commodity Computing node. We use a standard
many-core CPU-GPU machine. For this machine
we have: one processor Intel R© CoreTM i7-3720QM



@2.60GHz. (4 physical cores). And one accelerator
NVIDIA R© GeForce R© GTX 670M with 1.3 GB of
RAM (336 CUDA cores).

2) High Performance Computing node. We use a
machine that supports 16 nodes, each one with
8 GPUs [14]. We use one node with follow-
ing features: two processors Intel R© Xeon R© E5645
@2.40GHz. (2x6 physical cores). And eight accel-
erators NVIDIA R© TeslaTM M2075 with 4.9 GB of
RAM (8x448 CUDA cores).

We have created several scenarios for each machine, based
on the memory consumption on the GPU (in-core and out-of-
core) and the number of parallel tasks. The first example is
based on a Cartesian mesh of an average of 2 million grid
points (160×160×80) in order to fits in the memory available
on the GPU of both machines. For the out-of-core example,
requiring several data transfers between global and GPU RAM,
we have selected two different sizes of problem.
For the commodity computing node we use a three-
dimensional grid of size (640×640×80) points and a grid
of size (1000×1000×80) for the High Performance Com-
puting node. The other parameters (number of tasks for
instance) strongly depends on the blocksize variable de-
scribed in section IV. Table I presents memory consump-
tion, number of blocks and parallel tasks for blocksize=256.
The STARPU CUDA ASYNC flag enables concurrent kernel

In-core Out-of-core
Commodity node HPC node

Memory (MB) 179 2711 6577
Number of blocks 1 9 16
Computation Tasks 40 200 600
Communication Tasks 0 424 1800

Table I: Memory consumption, number of blocks and number
of parallel task for the simulated scenarios

execution on graphics cards that support this feature [13].
In our case, this flag is available on both machines. We
perform our experiments using several configurations in terms
of processing cores usage. For pure GPU experiments, the
model is simulated only using the GPU cores available on the
target architecture. Symmetrically, the pure CPU executions
only target x86 cores. The hybrid experiments tackle all the
computing cores available (CPU and CPU cores). Using one
GPU, three and eleven CPU cores are respectively used on
the commodity platform and on the HPC node (one CPU core
is dedicated for the management of each GPU). MultiGPU
simulations exploit eight GPU cards and four CPU cores on
the larger platform.

VI. RESULTS

To illustrate the complexity of task-based scheduling on
heterogeneous architectures, we represent on Figure 4 the
distribution of the computing load using three CPU cores
and one GPU. The red and the green squares represent the
velocity and the stress computing kernels, possibly at differ-
ent timesteps, and the blue line illustrates data dependency
between the subdomains. We can observe the speedup ratio
disparity between CPU or GPU computing tasks with size
of the squares. Moreover, significant amount of the total

elapsed time could correspond to idle time depending on the
granularity of the problem and the scheduling strategy.

A. In-core results

In this section, we analyze the overall performance of our
methodology considering a problem size that fit in the GPU
memory. Obviously this situation is not the most suitable to
benefit from the heterogeneous implementation as the price
to pay for data transfers between the CPU and the GPU may
overcome expected gains from the additional CPU cores.

Table II shows the results obtained on the commodity

pure GPU hybrid (dmdar) hybrid (ws)
Speedup ×5.03 ×5.02 ×0.42

Table II: Speedup on the commodity-based hardware configu-
ration (in-core dataset)

computing node (the four CPU cores elapsed time is the
baseline). Firstly, we can notice that the speedup measured
with one GPU over four CPU cores (×5.03) is in the same
order of magnitude of the results reported in [9]–[11]. In
this case the overhead coming from StarPU runtime system
is limited as the number of blocks is very small and the
computing kernels are solely scheduled on the GPU.
Hybrid simulations are supposed to exploit both GPU and
CPU cores with the DMDAR scheduler that takes into account
the cost of data transfer. Indeed, this strategy schedules all
the computing tasks on the GPU because of the high cost
of data transfers. As a results, we observe similar level of
performance compare to the pure GPU implementation. In
order to force the usage of both type of cores, we change
the scheduling policy using the work-stealing algorithm. This
strategy simply implement a situation where idle workers
steal work from busy workers. The results is very poor as the
original elapsed time is almost multiplied by a factor 2.3.

Figure 5 shows the results for the large computing
node (the twelve cores results are the baseline). Similarly to the
previous results, the speedup measured with one GPU appears
consistent with the scientific literature (×6.94). The impact
of the Tesla card available on the HPC node is significant as
we observe a ratio of 4.27 between the pure GPU results on
these two architectures. Previous remarks on the DMDAR and
the work-stealing algorithm remain also valid. In this case, we
notice a stronger degradation of the speedup when using all
the CPU cores compare to previous experiments. This probably
could be explained by the higher level of performance of the
GPU on this machine. The situation is even worst when we use
eight GPU and four CPU cores. The elapsed time is increasing
by more than a factor eleven due to the data transfers and the
poor usage of the available resources. The granularity of the
problem also plays an important role in this degradation.

B. Out-of-core results

This section discusses the results on heterogeneous
architectures when the size of the data exceeds the memory
available on the GPU. In this case, the accelerators are fully
used as an additional computing resources to the computing
power delivered by the CPU cores. Data transfers is of



Figure 4: Gantt chart on the commodity-based architecture using three CPU cores and one GPU
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Figure 5: Speedup on the HPC node (in-core dataset)

great importance and should be carefully controlled by the
scheduling strategies.

pure GPU hybrid (4 CPU cores and 1 GPU)
Speedup ×0.92 ×1.32

Table III: Speedup on the commodity-based configuration (out-
of-core dataset)

We detail the performance obtained on the commodity
node in Table III. We use the four CPU cores results as
a baseline. With one GPU, the simulation is slowed down
in comparison with the baseline configuration. In this case,
we pay the price of data movements between the CPU and
the GPU main memory. Indeed, the idle time ratio for the
GPU cores reach a maximum of 80.16% preventing any
acceleration over the pure CPU version.
The heterogeneous results are slightly better with a speedup
of ×1.32. The best results are obtained with the DMDAR
scheduler that takes into account the cost of data transfers.
Contrary to the results obtained with the in-core dataset, the
fine-grained of the decomposition of the large problem (at
least 624 tasks) allows to schedule the computing load on
all the the computing resources available. Nevertheless, the
usage of the cores remains low. The idle time for the three
CPU cores varies between 41% and 79%, for the GPU we
measure a maximum value of 79%.
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Figure 6: Speedup for out-of-core dataset when running on the
HPC node.

We summarize the results on the HPC node in Figure 6. All
configurations show a speedup over the baseline results. For
the pure GPU experiments, the acceleration reported (×1.72)
demonstrates the benefits from task-based programming even
when only the GPU card is used. In comparison with the
commodity-based architecture, we benefit from larger band-
width at the I/O bus level. This value is still far from the
average acceleration reported when the problem fits in the GPU
memory (×6.94).
Combining one GPU and the eleven remaining CPU cores
leads to an increase of the speedup compared with the GPU
only configuration. In this case, our implementation is able
to smoothly benefits from this additional computing power
by almost doubling the performance level obtained with one
GPU. Using both GPU and CPU cores could provide more
flexibility for the scheduling of the computing tasks. As a side
effect, we also observe a better usage of the GPU resources.
The multi-GPU results confirm this trend with a maximum
speedup of 25.22. Considering the various parameters that
need to be taken into account, any tentative of exhaustive
scalability analysis would be false. Indeed, this result should
be compare to the corresponding speedup for in-core dataset
with one GPU (×6.94) to understand the remaining effort to
fully optimized our implementation on multi-GPU.



C. Impact of the tuning parameters

Several parameters may significantly influence the perfor-
mance of our task-based implementations of the seismic wave
numerical kernel. In this section we underline the impact of
the granularity but also of the scheduling algorithms. This
section puts the stress on two major features of our algorithm
but several other parameters (calibration of StarPU, NUMA
effects, shape of the subdomains, scheduling overhead) may
also be critical.

1) Size of the block: In this section, we show that selecting
the best granularity is crucial to maximize the performance.
Considering heterogeneous platforms, this parameter is of great
importance. Figure 7 shows the speedups over one CPU core
for in-core and out-of-core data set. The results have been ob-
tained on the commodity node. We can observe that depending
on the hardware configuration, the most efficient granularity
may vary. In both cases, the efficiency with one GPU is optimal
with a size of block of 256. When we decrease the size of the
block the GPU efficiency is significantly reduces (from ×17.3
to ×4.3 for in-core problems). This is coming from the GPU
architecture that could deliver an optimal level of performance
when all vector units are used. This means that larger block
perform better on such architecture. The situation is rather
different on CPU platforms as tiny blocks could improve
locality and cache effects. In this case, using a large number of
blocks is also mandatory to extract enough concurrency from
our task-based algorithm. Indeed, our wavefront decomposition
reach a good level of efficiency with blocks of size equal to 64
or less for the in-core problem. For the out-of-core problem,
we generate enough tasks to benefit from the four CPU cores
in all cases. The bigger problem size corresponding to more
computing tasks explains this result.
Indeed, the choice of the appropriate granularity relies on
a tradeoff between the performance level of the computing
tasks depending on their sizes and the suitable number of
tasks necessary to provide enough parallelism. Obviously, the
optimal configuration is not always possible depending on the
overall size of the domain and speedup ratio between the
processing units.

2) Scheduling strategies: One of the key contribution of
StarPU runtime system is to provide several scheduling al-
gorithms adapted to various computing load and hardware
heterogeneity. In this section, we compare several different
schedulers. Figure 8 shows the speedup over the worst result
on each platform. On commodity-based platform, we consider
one GPU and three CPU cores. In this case the best results
are provided by the DMDAR algorithm that takes into account
the cost of data transfers. Eager and Work Stealing algorithm
appear like alternatives to DMDAR. These two algorithms do
not use information from the memory bus. The rather good
results underline the limited contention at the memory bus
level for this configuration.
The situation is rather different on the HPC node. The best
results are also obtained with the DMDAR algorithm but the
performance with the other schedulers is very poor. In this case
we use eight GPU and four CPU cores and data transfers opti-
mization is critical, especially for multi-accelerator platforms
with major bottlenecks.
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Figure 8: Impact of the scheduling algorithms for experiments
on heterogeneous platforms. Relative speedup over the worst
situation on each platform.

VII. RELATED WORKS

Several references implement scientific applications on het-
erogeneous architectures, but most of these works don’t exploit
all the computing resources available or depend on a low-
level programming approach. Linear algebra is the standard
domain that exploits task-based programming model. This is
coming from from the Blas-based formulation available for
most standard solvers (i.e. LU, QR). In [15], [16], Agullo
et al. implement LU and QR decomposition algorithm for
heterogeneous architectures exploiting task-based parallelism
on top of StarPU runtime system. A comparison between
StarPU and Parsec runtime systems is provided in [17], the
authors conclude that both runtime systems are able to benefit
from heterogeneous platforms with comparable levels of per-
formance.
If we focus on seismic wave propagation numerical kernels,
a large body of the recent scientific literature is devoted to
the adaptation of this algorithm on homogeneous multicore
architectures. This is coming from the versatility of the Finite
Difference Method (FDM) implemented both in the oil and gas
industry and also for earthquakes modeling. Several strategies
have been proposed mainly to optimize CPU or GPU imple-
mentations.
On x86 architecture a review of scalability issues could be
found in [8]. Recent efforts are mainly devoted to low-level
optimizations including auto-tuning strategies to fully benefits
from vectorization [18], [19]. On Graphics Processing Unit
(GPU) reference implementations that optimize flops/bytes ra-
tio and reduce data transfers are described in [9], [12]. Finally,
Intel and NVIDIA have introduced highly-tuned versions of
such kernels [11], [20].
One can also underline relevant references that tackle energy-
efficiency issues considering a co-desing strategy [21], many-
core embedded architecture [22] or efficient numerical space-
time decomposition based on the parareal method [23].
Recent contributions have been made to improve seismic wave
modeling on heterogeneous platforms. In [24], the authors
implement a seismic model using task-based programming
but they don’t use heterogeneous cores for the simulations.
Calandra et al. [25] evaluate execution of a finite-differences
stencil on CPUs, APUs and GPUs but they don’t combine
heterogeneous cores, neither parallel tasks programming.
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VIII. CONCLUSION AND PERSPECTIVES

In this paper, we have presented a task-based implemen-
tation of the elastodynamics equation. Revisiting the stan-
dard data-parallelism arising from finite-differences numerical
method, we define a graph of tasks corresponding to the
fourth-order stencil formulation. We therefore benefit from
StarPU runtime system in order to smoothly schedule this
DAG (Directed Acyclic Graph) on current heterogeneous plat-
form. In this way, we decouple the numerical algorithm and
the underlying architecture by fully exploiting the versatility
of modern runtime systems. This approach allows us to tackle
the complexity of this memory-bound problem by minimizing
data movements to and from the accelerators.
We demonstrate the efficiency of our approach on a two
heterogeneous architectures using the maximum number of
processing units available. Considering realistic problem that
could not fit in the GRAM memory, we observe a maximum
speedup of 25.22 using four CPU cores and eight GPU in
comparison with the same experiments using twelve CPU
cores. Using a commodity-based architecture with four CPU
cores and one GPU, we measure an acceleration of 32% over
the CPU version. The analysis of the performance underlines
the significant impact of the granularity and the scheduling
strategy.
These promising first steps open several promising ways to
optimize the efficiency of our approach on heterogeneous plat-
form. Firstly, a detailed comprehension of the tradeoff between
the granularity and the scheduling policies is necessary in order
to tackle more complex architecture. For instance, the regular-
ity of the finite-differences numerical method could allow us
to derive a cost-model that could help the runtime system to
improve task scheduling. This includes potential irregularity in
the granularity of the task to maximize efficiency on multiple
devices. Secondly, we plan to extend the implementation of
our elastodynamics equation by including absorbing boundary
conditions [26]. This additional layer generates load imbalance
that could be smoothly reduced by the fine-grained task-based
programming model. Finally, the emerging of integrated cores
architectures that deliver higher bandwidth between GPU and
CPU appears like an opportunity to tackle both the PCI-express
bottleneck and the energy-efficiency challenge.
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