5,029 research outputs found

    HRTFs Measurement Based on Periodic Sequences Robust towards Nonlinearities in Automotive Audio

    Get PDF
    The head related transfer functions (HRTFs) represent the acoustic path transfer functions between sound sources in 3D space and the listener’s ear. They are used to create immersive audio scenarios or to subjectively evaluate sound systems according to a human-centric point of view. Cars are nowadays the most popular audio listening environment and the use of HRTFs in automotive audio has recently attracted the attention of researchers. In this context, the paper proposes a measurement method for HRTFs based on perfect or orthogonal periodic sequences. The proposed measurement method ensures robustness towards the nonlinearities that may affect the measurement system. The experimental results considering both an emulated scenario and real measurements in a controlled environment illustrate the effectiveness of the approach and compare the proposed method with other popular approaches

    Volumetric diffusers : pseudorandom cylinder arrays on a periodic lattice

    Get PDF
    Most conventional diffusers take the form of a surface based treatment, and as a result can only operate in hemispherical space. Placing a diffuser in the volume of a room might provide greater efficiency by allowing scattering into the whole space. A periodic cylinder array (or sonic crystal) produces periodicity lobes and uneven scattering. Introducing defects into an array, by removing or varying the size of some of the cylinders, can enhance their diffusing abilities. This paper applies number theoretic concepts to create cylinder arrays that have more even scattering. Predictions using a Boundary Element Method are compared to measurements to verify the model, and suitable metrics are adopted to evaluate performance. Arrangements with good aperiodic autocorrelation properties tend to produce the best results. At low frequency power is controlled by object size and at high frequency diffusion is dominated by lattice spacing and structural similarity. Consequently the operational bandwidth is rather small. By using sparse arrays and varying cylinder sizes, a wider bandwidth can be achieved

    Simultaneous Measurement of Multiple Acoustic Attributes Using Structured Periodic Test Signals Including Music and Other Sound Materials

    Full text link
    We introduce a general framework for measuring acoustic properties such as liner time-invariant (LTI) response, signal-dependent time-invariant (SDTI) component, and random and time-varying (RTV) component simultaneously using structured periodic test signals. The framework also enables music pieces and other sound materials as test signals by "safeguarding" them by adding slight deterministic "noise." Measurement using swept-sin, MLS (Maxim Length Sequence), and their variants are special cases of the proposed framework. We implemented interactive and real-time measuring tools based on this framework and made them open-source. Furthermore, we applied this framework to assess pitch extractors objectively.Comment: 8 pages, 17 figures, accepted for APSIPA ASC 202

    Maximum length sequence and Bessel diffusers using active technologies

    Get PDF
    Active technologies can enable room acoustic diffusers to operate over a wider bandwidth than passive devices, by extending the bass response. Active impedance control can be used to generate surface impedance distributions which cause wavefront dispersion, as opposed to the more normal absorptive or pressure-cancelling target functions. This paper details the development of two new types of active diffusers which are difficult, if not impossible, to make as passive wide-band structures. The first type is a maximum length sequence diffuser where the well depths are designed to be frequency dependent to avoid the critical frequencies present in the passive device, and so achieve performance over a finite-bandwidth. The second is a Bessel diffuser, which exploits concepts developed for transducer arrays to form a hybrid absorber–diffuser. Details of the designs are given, and measurements of scattering and impedance used to show that the active diffusers are operating correctly over a bandwidth of about 100 Hz to 1.1 kHz. Boundary element method simulation is used to show how more application-realistic arrays of these devices would behave

    Illustrating multipath propagation by means of sound waves

    Get PDF
    A method is presented that uses sound waves to illustrate multipath propagation concepts. This is based on the existing analogy between radio and sound waves, and has the advantage that the required equipment is easily available. Different measurement techniques are introduced to respectively examine time dispersion, time variation, and both aspects of the multipath channel simultaneously. The proposed techniques are justified, example results are given, and the specific features that are illustrated by each type of measurement are discussed. Suggestions are given regarding application in courses on wireless communications

    Indoor Positioning Using Acoustic Pseudo-Noise Based Time Difference of Arrival

    Get PDF
    The Global Positioning System (GPS) provides good precision on a global scale, but is not suitable for indoor applications. Indoor positioning systems (IPS) aim to provide high precision position information in an indoor environment. IPS has huge market opportunity with a growing number of commercial and consumer applications especially as Internet of Things (IoT) develops. This paper studies an IPS approach using audible sound and pseudo-noise (PN) based time difference of arrival (TDoA). The system’s infrastructure consists of synchronized speakers. The object to be located, or receiver, extracts TDoA information and uses multilateration to calculate its position. The proposed IPS utilizes sound waves since they travel much slower compared to electromagnetic waves, allowing for easier measurements. Additionally, the audible spectrum has a large availability of low directivity speakers and microphones allowing for a large coverage area compared to highly directive ultrasonic transceivers. This paper experimentally evaluates the feasibility of the proposed IPS

    A Sliding Correlator Channel Sounder for Ultra-Wideband Measurements

    Get PDF
    This body of work forms a detailed and comprehensive guide for those interested in performing broadband wireless channel measurements. Discussion addresses the theoretical and practical aspects of designing and implementing a sliding correlator channel sounder, as well as how such a system may be used to measure and model the ultra-wideband wireless channel. The specific contributions of this work are as follows: Developed a systematic methodology for designing optimal sliding correlator-based channel sounders. Constructed a UWB channel sounder based upon a 17-bit LFSR that attained 1.66 ns of temporal resolution and 34 dB of dynamic range. Performed an exemplary measurement campaign of the UWB channel from which UWB angular spreads and RMS delay spreads are reported. The design procedure developed in Chapter 3 will allow researchers to build optimal channel sounders for investigating next-generation wireless channels. Chapter 4 s discussion addresses the real-world challenges of constructing a high performance sliding correlator channel sounder. Finally, the measurement campaign discussed in Chapter 5 outlines a procedure for investigating the spatio-temporal characteristics of the wireless channel and provides some of the first examples of UWB angular spread measurements.M.S.Committee Chair: Durgin, Gregory; Committee Member: Ingram, Mary Ann; Committee Member: Smith, Whi
    • …
    corecore