52,395 research outputs found

    Color Image Clustering using Block Truncation Algorithm

    Get PDF
    With the advancement in image capturing device, the image data been generated at high volume. If images are analyzed properly, they can reveal useful information to the human users. Content based image retrieval address the problem of retrieving images relevant to the user needs from image databases on the basis of low-level visual features that can be derived from the images. Grouping images into meaningful categories to reveal useful information is a challenging and important problem. Clustering is a data mining technique to group a set of unsupervised data based on the conceptual clustering principal: maximizing the intraclass similarity and minimizing the interclass similarity. Proposed framework focuses on color as feature. Color Moment and Block Truncation Coding (BTC) are used to extract features for image dataset. Experimental study using K-Means clustering algorithm is conducted to group the image dataset into various clusters

    A CNN-RNN Framework for Image Annotation from Visual Cues and Social Network Metadata

    Full text link
    Images represent a commonly used form of visual communication among people. Nevertheless, image classification may be a challenging task when dealing with unclear or non-common images needing more context to be correctly annotated. Metadata accompanying images on social-media represent an ideal source of additional information for retrieving proper neighborhoods easing image annotation task. To this end, we blend visual features extracted from neighbors and their metadata to jointly leverage context and visual cues. Our models use multiple semantic embeddings to achieve the dual objective of being robust to vocabulary changes between train and test sets and decoupling the architecture from the low-level metadata representation. Convolutional and recurrent neural networks (CNNs-RNNs) are jointly adopted to infer similarity among neighbors and query images. We perform comprehensive experiments on the NUS-WIDE dataset showing that our models outperform state-of-the-art architectures based on images and metadata, and decrease both sensory and semantic gaps to better annotate images

    Big Data Analysis: A New Scheme for the Information Retrieving Based on the Content of Multimedia Documents

    Get PDF
    Big Data analysis is one of the hot topics now days for knowledge discovery in databases process. It’s considered as significant field of knowledge management. Roughly, the Ÿ of organizations have been adopted some form of analytics today. The most posed question in big data analysis is how to manage and operate in it? In this study, we explain the concept of the proposed information system architecture for retrieving information. This system scheme operates basing on the content of the document.  Digitized visual media: images and videos captured from real time video surveillance system require high storage capacity. This work describes the steps of indexation and content modeling for retrieving and managing information in multimedia documents databases. Keywords: big data analysis, multimedia documents, indexing, modeling, classification, content representation

    Correlation-based communication in wireless multimedia sensor networks

    Get PDF
    Wireless multimedia sensor networks (WMSNs) are networks of interconnected devices that allow retrieving video and audio streams, still images, and scalar data from the environment. In a densely deployed WMSN, there exists correlation among the observations of camera sensors with overlapped coverage areas, which introduces substantial data redundancy in the network. In this dissertation, efficient communication schemes are designed for WMSNs by leveraging the correlation of visual information observed by camera sensors. First, a spatial correlation model is developed to estimate the correlation of visual information and the joint entropy of multiple correlated camera sensors. The compression performance of correlated visual information is then studied. An entropy-based divergence measure is proposed to predict the compression efficiency of performing joint coding on the images from correlated cameras. Based on the predicted compression efficiency, a clustered coding technique is proposed that maximizes the overall compression gain of the visual information gathered in WMSNs. The correlation of visual information is then utilized to design a network scheduling scheme to maximize the lifetime of WMSNs. Furthermore, as many WMSN applications require QoS support, a correlation-aware QoS routing algorithm is introduced that can efficiently deliver visual information under QoS constraints. Evaluation results show that, by utilizing the correlation of visual information in the communication process, the energy efficiency and networking performance of WMSNs could be improved significantly.PhDCommittee Chair: Akyildiz, Ian; Committee Member: Ammar, Mostafa; Committee Member: Ji, Chuanyi; Committee Member: Li, Ye; Committee Member: Romberg, Justi

    Hybrid Information Retrieval Model For Web Images

    Full text link
    The Bing Bang of the Internet in the early 90's increased dramatically the number of images being distributed and shared over the web. As a result, image information retrieval systems were developed to index and retrieve image files spread over the Internet. Most of these systems are keyword-based which search for images based on their textual metadata; and thus, they are imprecise as it is vague to describe an image with a human language. Besides, there exist the content-based image retrieval systems which search for images based on their visual information. However, content-based type systems are still immature and not that effective as they suffer from low retrieval recall/precision rate. This paper proposes a new hybrid image information retrieval model for indexing and retrieving web images published in HTML documents. The distinguishing mark of the proposed model is that it is based on both graphical content and textual metadata. The graphical content is denoted by color features and color histogram of the image; while textual metadata are denoted by the terms that surround the image in the HTML document, more particularly, the terms that appear in the tags p, h1, and h2, in addition to the terms that appear in the image's alt attribute, filename, and class-label. Moreover, this paper presents a new term weighting scheme called VTF-IDF short for Variable Term Frequency-Inverse Document Frequency which unlike traditional schemes, it exploits the HTML tag structure and assigns an extra bonus weight for terms that appear within certain particular HTML tags that are correlated to the semantics of the image. Experiments conducted to evaluate the proposed IR model showed a high retrieval precision rate that outpaced other current models.Comment: LACSC - Lebanese Association for Computational Sciences, http://www.lacsc.org/; International Journal of Computer Science & Emerging Technologies (IJCSET), Vol. 3, No. 1, February 201

    Adaptive image retrieval using a graph model for semantic feature integration

    Get PDF
    The variety of features available to represent multimedia data constitutes a rich pool of information. However, the plethora of data poses a challenge in terms of feature selection and integration for effective retrieval. Moreover, to further improve effectiveness, the retrieval model should ideally incorporate context-dependent feature representations to allow for retrieval on a higher semantic level. In this paper we present a retrieval model and learning framework for the purpose of interactive information retrieval. We describe how semantic relations between multimedia objects based on user interaction can be learnt and then integrated with visual and textual features into a unified framework. The framework models both feature similarities and semantic relations in a single graph. Querying in this model is implemented using the theory of random walks. In addition, we present ideas to implement short-term learning from relevance feedback. Systematic experimental results validate the effectiveness of the proposed approach for image retrieval. However, the model is not restricted to the image domain and could easily be employed for retrieving multimedia data (and even a combination of different domains, eg images, audio and text documents)

    Content-based Image Retrieval by Information Theoretic Measure

    Get PDF
    Content-based image retrieval focuses on intuitive and efficient methods for retrieving images from databases based on the content of the images. A new entropy function that serves as a measure of information content in an image termed as 'an information theoretic measure' is devised in this paper. Among the various query paradigms, 'query by example' (QBE) is adopted to set a query image for retrieval from a large image database. In this paper, colour and texture features are extracted using the new entropy function and the dominant colour is considered as a visual feature for a particular set of images. Thus colour and texture features constitute the two-dimensional feature vector for indexing the images. The low dimensionality of the feature vector speeds up the atomic query. Indices in a large database system help retrieve the images relevant to the query image without looking at every image in the database. The entropy values of colour and texture and the dominant colour are considered for measuring the similarity. The utility of the proposed image retrieval system based on the information theoretic measures is demonstrated on a benchmark dataset.Defence Science Journal, 2011, 61(5), pp.415-430, DOI:http://dx.doi.org/10.14429/dsj.61.117

    Non-parametric spatially constrained local prior for scene parsing on real-world data

    Full text link
    Scene parsing aims to recognize the object category of every pixel in scene images, and it plays a central role in image content understanding and computer vision applications. However, accurate scene parsing from unconstrained real-world data is still a challenging task. In this paper, we present the non-parametric Spatially Constrained Local Prior (SCLP) for scene parsing on realistic data. For a given query image, the non-parametric SCLP is learnt by first retrieving a subset of most similar training images to the query image and then collecting prior information about object co-occurrence statistics between spatial image blocks and between adjacent superpixels from the retrieved subset. The SCLP is powerful in capturing both long- and short-range context about inter-object correlations in the query image and can be effectively integrated with traditional visual features to refine the classification results. Our experiments on the SIFT Flow and PASCAL-Context benchmark datasets show that the non-parametric SCLP used in conjunction with superpixel-level visual features achieves one of the top performance compared with state-of-the-art approaches.Comment: 10 pages, journa

    A graph theory-based online keywords model for image semantic extraction

    Get PDF
    Image captions and keywords are the semantic descriptions of the dominant visual content features in a targeted visual scene. Traditional image keywords extraction processes involves intensive data- and knowledge-level operations by using computer vision and machine learning techniques. However, recent studies have shown that the gap between pixel-level processing and the semantic definition of an image is difficult to bridge by counting only the visual features. In this paper, augmented image semantic information has been introduced through harnessing functions of online image search engines. A graphical model named as the “Head-words Relationship Network” (HWRN) has been devised for tackling the aforementioned problems. The proposed algorithm starts from retrieving online images of similarly visual features from the input image, the text content of their hosting webpages are then extracted, classified and analysed for semantic clues. The relationships of those “head-words” from relevant webpages can then be modelled and quantified using linguistic tools. Experiments on the prototype system have proven the effectiveness of this novel approach. Performance evaluation over benchmarking state-of-the-art approaches has also shown satisfactory results and promising future applications
    • 

    corecore