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SUMMARY

Wireless multimedia sensor networks (WMSNs) are networks of wirelessly

interconnected devices that are able to retrieve multimedia content such as video and

audio streams, still images, and scalar data from the environment. Most applications

of WMSNs require the delivery of multimedia information with a certain level of

quality of service (QoS). This is a challenging task because sensors are constrained

in battery and processing capabilities, while the delivery of multimedia flows is a

resource-intensive task. In a densely deployed sensor network, there exists correlation

among the observations of camera sensors with overlapped coverage areas, which

could be exploited to remove data redundancy in the network.

The objective of this thesis is to design efficient communication protocols for WM-

SNs by leveraging the correlation of visual information of camera sensors. First, the

spatial correlation of visual information in WMSNs is studied. By studying the sens-

ing model and deployments of cameras in a WMSN, a spatial correlation coefficient is

derived to describe the degree of correlation of visual information observed by cam-

eras with overlapped field of views. The joint effect of multiple correlated cameras

is also studied. An entropy-based analytical framework is developed to measure the

amount of visual information provided by multiple correlated cameras.

The compression performance of correlated visual information is then studied. A

collaborative clustered compression framework is proposed with an objective to max-

imize the overall compression gain of the visual information gathered in WMSNs.

To achieve this, an Entropy-based Divergence Measure (EDM) scheme is proposed

to predict the compression efficiency of performing joint coding on the images col-

lected by spatially correlated cameras. Utilizing the predicted results from EDM,

xii



a Distributed Multi-cluster Coding Protocol (DMCP) is proposed to construct a

compression-oriented coding hierarchy.

The correlation of visual information is then utilized to design a network schedul-

ing scheme to maximize the lifetime of WMSNs. The scheduling scheme consists of

three components including MinMax Degree Hub Location (MDHL), Minimum Sum-

entropy Camera Assignment (MSCA), and Maximum Lifetime Scheduling (MLS).

The MDHL problem finds the optimal locations to place the multimedia processing

hubs such that the number of channels required for frequency reuse is minimized. The

MSCA problem assigns each camera sensor to a hub in such a way that the global

compression gain is maximized by jointly encoding the correlated images gathered by

each hub. At last, the MLS problem finds a schedule for the cameras to maximize

the network lifetime by letting highly correlated cameras perform differential coding.

Furthermore, a correlation-aware QoS routing algorithm is designed to efficiently

deliver visual information under QoS constraints. A correlation-aware inter-node

differential coding scheme is introduced to remove traffic redundancy along routing

paths, and a correlation-aware load balancing scheme is proposed to prevent network

congestion by splitting the correlated flows that cannot be reduced to different paths.

These correlation-aware operations are integrated into an optimization QoS routing

framework that minimizes energy consumption subject to delay and reliability con-

straints.
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CHAPTER I

INTRODUCTION

1.1 Background

The integration of low-power wireless networking technologies with inexpensive hard-

ware such as complementary metal-oxide semiconductor (CMOS) cameras and mi-

crophones is now enabling the development of distributed, networked systems that

we refer to as wireless multimedia sensor networks (WMSNs) [5]. In WMSNs, inter-

connected sensor devices collaborate to retrieve multimedia information such as video

and audio streams, still images, and scalar data from the environment. Apart from

the primary goal of retrieving multimedia data, WMSNs will also be able to store,

process in real time, correlate and fuse data originated from heterogeneous sources.

These networks can be an integral part of systems such as security surveillance, traffic

enforcement, health care delivery, environmental monitoring, and industrial process

control.

There are several factors that mainly influence the design of a WMSN [5]. First of

all, most WMSN applications require the delivery of multimedia information with a

certain level of quality of service (QoS), in terms of delay, jitter, bandwidth, reliability,

etc. To achieve this, one major factor we need to consider is the resource constraint:

sensor devices are constrained in terms of battery, memory, processing capability,

and achievable data rate. In multi-hop wireless networks, the capacity and the delay

attainable on each wireless link are location dependent, vary continuously, and may

be bursty in nature, thus making QoS provisioning a challenging task. There is also

interdependence among functions handled at all layers of the communication stack.

This interdependence must be explicitly considered when designing communication
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protocols aimed at QoS provisioning. In addition, multimedia contents, especially

the visual information (still images and video streams), require high bandwidth to

be delivered. Therefore, efficient multimedia processing and compression techniques

must be leveraged. Furthermore, the processing and delivery of multimedia contents

are not independent, and their interaction has a major impact on the achievable QoS.

It is necessary to investigate how to jointly optimize the performances of processing

and delivery of multimedia contents.

Protocols for providing QoS support in WMSNs have been proposed at different

layers of the communication stack. In the physical layer, the ultra wide band (UWB)

technology is proposed since it enables low power consumption and high data-rate

communication on simple-design and low-cost radios [44]. MAC layer protocols have

been designed that minimize energy consumption and provide application-specific

QoS by differentiating network services based on priority levels [54, 38]. In the net-

work layer, various routing protocols have been proposed to provide probabilistic QoS

guarantees by regulating traffic to proper paths in the network [20, 29, 11, 10]. For

example, the MMSPEED protocol [20] provides probabilistic guarantee in delay and

reliability through non-deterministic geographic and multi-path forwarding. As for

the transport layer, protocols such as Reliable Multi-Segment Transport (RMST) [59]

or the Pump Slowly Fetch Quickly (PSFQ) [63] can be used to enhance reliability as

they buffer packets at intermediate nodes, allowing for faster retransmission in case

of packet loss. A cross-layer QoS communication module is also designed in [45] to

provide an integrated solution for the communication in WMSNs.

To achieve efficient delivery of multimedia contents in a WMSN, apart from prop-

erly regulating the traffic flows from the networking perspective as introduced above,

it is necessary to reduce the redundancy in the network through various application

layer-level technologies [46]. Collaborative multimedia in-network processing is sug-

gested as an effective way to reduce the redundancy in network traffic, where sensor
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nodes can filter out uninteresting events locally, or coordinate with each other to

aggregate correlated data [5]. In [60] and [28], application-independent task mapping

and scheduling solutions are designed to schedule computation tasks and associated

communication events for WMSNs. In particular, many schemes have been proposed

on the compression and transmission of visual information (images and video streams)

in WMSNs. Low complexity image compression schemes are proposed in [39], and

algorithms aiming to efficiently transmit images in sensor networks are proposed in

[75] and [67].

In WMSNs, multiple camera sensors are deployed to provide multiple views, mul-

tiple resolutions, and enhanced observations of the environment [14]. There exists

correlation among the visual information observed by cameras with overlapped field

of views. This causes substantial redundancy in the network traffic. Previous work on

the correlation in sensor networks, such as the theoretical spatio-temporal correlation

model in [61], is designed for scalar data applications. As visual information is much

more complex than scalar data, the model in [61] cannot be directly applied to visual

information.

On the other hand, from the field of multimedia processing, image processing tech-

niques have been used to obtain correlation and design collaborative processing. In

[62], images from correlated views are roughly registered using correspondence anal-

ysis. Each sensor transmits a low-resolution version of a common area, and the sink

combines multiple low-resolution versions into a high-resolution image. In [71], spatial

correlation is obtained by an image shape matching algorithm, while temporal corre-

lation is calculated via background subtraction. Based on the spatial and temporal

correlation, images from correlated sensors are transmitted collaboratively. However,

the performance of image processing algorithms are application dependent: different

types of images will require different processing schemes [25]. Moreover, since image

processing techniques are complicated, it will bring about extra computation costs

3



for sensor nodes.

To this end, it is necessary to find light-weighted approaches to obtain the correla-

tion of visual information in WMSNs. Based on the correlation of visual information,

we can develop schemes to remove the redundancy in network traffic and also exploit

correlation to design efficient QoS communication protocols.

1.2 Research Objectives and Solutions

WMSNs allow the retrieving of video and audio streams, still images, and scalar data

from the environment. Of the different types of information in WMSNs, visual in-

formation (still images and video streams) is the dominating part of traffic. Visual

information requires sophisticated techniques to process and high bandwidth to de-

liver, which poses a major challenge for the design of WMSNs. It has been found that

the observation from camera sensors with overlapped field of views (FoVs) are corre-

lated with each other. By exploiting the correlation of camera sensors, we can remove

the redundancy of network traffic and achieve efficient delivery of visual information

in WMSNs.

The objective of this thesis is to develop a correlation-based communication frame-

work by exploiting the correlation of visual information observed by camera sensors.

First, we study the correlation characteristics of visual information in WMSNs and

develop a spatial correlation model that estimates the degree of correlation between

camera sensors with overlapped FoVs. Based on the correlation model, we then design

a collaborative image compression framework to reduce the redundancy of correlated

camera sensors. We also make use of correlation in the network scheduling process

and propose a correlation-based scheduling algorithm to maximize network lifetime.

To provide better QoS support for WMSN applications, we develop a correlation-

aware QoS routing scheme that provides probabilistic QoS support for the delivery

of visual information while minimizing energy consumption.
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1.2.1 A Spatial Correlation Model for Visual Information in WMSNs

As our first step, we study the correlation characteristics of visual information in

WMSNs. In many recent studies on WMSNs, image processing techniques, such as

shape matching and image registration, are used to obtain correlation and to design

collaborative processing schemes [62, 71]. However, there are some drawbacks to im-

plement image processing based methods in WMSNs [15]. On the one hand, image

processing methods are very complicated and can result in considerable energy con-

sumption for sensors. On the other hand, since the performance of image processing

methods is usually dependent on the specific features of images, we usually need to

choose different image processing methods based on specific applications and image

types, and thus, it is necessary to find out a more general way to estimate correlation.

Considering the above factors, we avoid using specific image processing methods;

in contrast, we develop a novel analytical spatial correlation coefficient based on the

projection geometry of camera sensors [15]. This correlation coefficient just takes in a

few parameters such as cameras’ locations, sensing directions, and focal lengths as in-

put, and calculates the degree of correlation for any two cameras with overlapped field

of views. This correlation coefficient allows us to estimate the degree of correlation

for camera sensors through very low communication and computation costs.

Furthermore, we propose an entropy-based framework that addresses how much

information can be gained from multiple correlated cameras. By definition, the joint

entropy of multiple cameras is calculated from the joint probability distribution of

multiple images [12]. To estimate the joint probability distribution is challenging

because of the difficulty in image modeling and the high computation and commu-

nication costs involved. Instead of estimating the joint probability distribution, we

estimate the joint entropy as a function of the spatial correlation coefficients between

camera sensors.
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The spatial correlation coefficient and the entropy-based framework together com-

plete the derivation of the correlation model. As a simple application of this model,

we study a camera selection problem: when multiple correlated cameras can observe

the same area of interest, how to select the minimum number of cameras that provides

the maximum amount of information for an application. This problem is equivalent

to maximizing the joint entropy for a certain number of cameras, and it is solved

using our entropy-based framework.

1.2.2 A Collaborative Image Compression Framework Using Clustered
Source Coding

The spatial correlation of camera sensors causes substantial redundancy in the ob-

served visual information in WMSNs, which can be removed to improve energy ef-

ficiency and network performance. In this work, we design a collaborative image

compression framework that maximizes the overall compression gain of WMSNs [65].

We propose to remove the redundancy of visual information through joint compres-

sion/coding among multiple correlated cameras. To maximize the compression gain

of the whole network, we partition the network into a set of clusters where camera

sensors with high joint compression gains are grouped together.

Since entropy serves as the lower bound of coding rates, we can estimate the joint

entropy of multiple cameras as a prediction of the joint coding efficiency. We refer to

this estimation as Entropy-based Divergence Measure (EDM). For a group of camera

sensors, we divide their FoVs into several disjoint regions, where each region belongs

to the FoVs of the same set of cameras. And then the entropy of each region can

be estimated from the spatial correlation coefficients between cameras based on our

spatial correlation model. The joint entropy is the sum of the entropies of all the

regions. The EDM is verified through image coding experiments using commercial

video coding standards.

With the joint entropy as a prediction of joint coding efficiency, we develop a
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Distributed Multi-cluster Coding Protocol (DMCP) to partition the entire network

into a set of coding clusters such that the global coding gain is maximized. The

DMCP works in a fully distributed manner. It does not involve much communication

cost, since each camera sensor just need to exchange its parameters such as sensing

direction and location with its one-hop neighbors, from which the joint entropy of

neighboring cameras can be estimated. Since the DMCP is a heuristic solution,

we also analyze its performance and derive its approximation ratio compared to an

optimal coding clustering problem.

1.2.3 Correlation-Based Scheduling

Network scheduling schemes have significant impact on the performance of sensor

networks. To support QoS requirements (such as delay constraints) for WMSNs,

contention-free scheduling is preferred in the MAC layer. We consider a clustered

network architecture where camera sensors within a cluster follows contention-free

TDMA scheduling. Under this architecture, we aim to utilize the correlation of visual

information to boost the performance of scheduling in WMSNs.

We propose a differential coding based scheduling framework for WMSNs that con-

sists of three components: MinMax Degree Hub Location (MDHL), Minimum Sum-

entropy Camera Assignment (MSCA), and Maximum Lifetime Scheduling (MLS).

The MDHL problem aims to find the optimal locations to place the multimedia pro-

cessing hubs, which operate on different channels for concurrently collecting images

from adjacent cameras, such that the number of channels required for frequency reuse

is minimized. With the locations of the hubs determined by the MDHL problem, the

objective of the MSCA problem is to assign each camera to a hub in such a way that

the global compression gain is maximized by jointly encoding the correlated images

gathered by each hub. At last, given a hub and its associated cameras, the MLS
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problem targets at designing a schedule for the cameras such that the network life-

time is maximized by letting highly correlated cameras perform differential coding

on the fly. We give performance bounds of these three problems, and then propose

approximation and heuristic algorithms to solve them.

1.2.4 Correlation-Aware QoS Routing

Since camera sensors usually have large sensing radius, sensors that are out of the

communication ranges of each other can still observe a common scene [58], (i.e., they

are correlated with each other). This motivates us to utilize the correlation of camera

sensors in the network layer. We can introduce correlation-aware operations in the

routing process. Moreover, routing protocols for WMSNs should address the challenge

of providing QoS support for various applications under the resource constraints of

sensors. Considering these factors, we propose to jointly design the correlation-aware

operations and QoS routing such that the energy consumption could be minimized

while satisfying QoS requirements.

Based on the correlation of camera sensors, we first design a correlation-aware

differential coding operation. In this operation, we evaluate the gains and costs

for performing differential coding along routing paths, and let a sensor find a down-

stream node with the maximum gain to perform differential coding. For the correlated

streams that cannot be further compressed, the presence of traffic congestion becomes

evident in that video sensors with large overlapped field of views tend to report the

same event and generate traffic concurrently. To solve this problem, we introduce a

correlation-aware load balancing operation. The basic idea is to split the correlated

flows that cannot be further compressed to different paths so that the probability

of network congestion could be reduced. Finally, we integrate the correlation-aware

operations in an optimization routing framework to minimize energy consumption

while providing QoS support in the timeliness and reliability domains.
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1.3 Organization of the Thesis

This thesis is organized as follows.

In Chapter 2, we present the spatial correlation model for visual information

in WMSNs. We introduce the derivation of the spatial correlation coefficient first,

followed by the entropy-based framework that estimates the amount of information

from multiple correlated camera sensors. In the last part of this Chapter, we introduce

the design of the correlation-based camera selection algorithm.

In Chapter 3, we present the collaborative image compression framework that

maximizes the overall compression gain of visual information gathered in WMSNs.

This framework consists of the Entropy-based Divergence Measure (EDM) that pre-

dicts the efficiency of joint coding among correlated camera sensors, and the Dis-

tributed Multi-cluster Coding Protocol (DMCP) that partitions a WMSN into a set

of clusters to perform joint source coding.

In Chapter 4, we describe the correlation-based scheduling framework for WM-

SNs. We explain the three components of the scheduling framework in details: the

MinMax Degree Hub Location (MDHL) problem that finds the optimal locations to

place multimedia processing hubs, the Minimum Sum-entropy Camera Assisgnment

(MSCA) problem that assigns camera sensors to processing hubs, and the Maximum

Lifetime Scheduling (MLS) problem that finds the optimal schedule of camera sensors

by enabling correlated camera sensors to perform differential coding in the scheduling

process.

In Chapter 5, we present the correlation-aware QoS routing algorithm. We start

by describing the correlation-aware operations: the correlation-aware inter-node dif-

ferential coding scheme and the correlation-aware load balancing scheme. We then

integrate the correlation-aware operations into a distributed QoS routing framework

that minimizes energy consumption while providing probabilistic QoS guarantee for

WMSN applications.
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Finally, in Chapter 6, we draw the main conclusions and outline future research

directions.
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CHAPTER II

A SPATIAL CORRELATION MODEL FOR VISUAL

INFORMATION IN WMSNS

2.1 Introduction

Since uncompressed raw video streams require excessive bandwidth that is impossible

to be supported by wireless multihop networks, multimedia source coding must be

employed to achieve high compression efficiency. Today’s standardized video coding

technologies, such as MPEG and H.26x [69], achieve high compression performance at

the expense of extensive computation at the encoder. In contrast, distributed video

coding [72] allows simple and low power encoder, while the decoder is high power

and loaded with extensive computation burden. Current distributed video coding

technologies rely on channel coding to exploit the correlation among adjacent frames

[23, 51]. However, it is not easy to attain accurate estimations of the correlation

structure among adjacent video frames, resulting in limited encoding efficiency of

distributed video coding.

Except for multimedia source coding, collaborative multimedia in-network pro-

cessing is suggested as an effective way to avoid the transmission of redundant in-

formation [5]. According to the requirements of specific applications, each sensor

node can filter out uninteresting events locally, or coordinate with each other to ag-

gregate correlated data. To design filtering and aggregation algorithms for WMSNs,

the correlation characteristics of visual information from different sensors need to be

studied.

In [61], a theoretical spatio-temporal correlation model is developed for scalar data

in wireless sensor networks. However, as visual information is much more complex
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than scalar data, the model in [61] cannot be directly applied to visual information.

In many recent research efforts for WMSNs, image processing techniques are

utilized to design collaborative processing. In [62], images from correlated views

are roughly registered using correspondence analysis. Each sensor transmits a low-

resolution version of a common area, and the sink combines multiple low-resolution

versions into a high-resolution image. In [71], spatial correlation is obtained by an

image shape matching algorithm, while temporal correlation is calculated via back-

ground subtraction. Based on the spatial and temporal correlation, images from

correlated sensors are transmitted collaboratively. However, the performance of im-

age processing algorithms are application dependent: different types of images will

require different processing schemes [25]. Also, image processing techniques are com-

plicated and computation extensive, which will bring about extra computation costs

for sensor nodes.

Cameras are directional sensors with limited field of views [42], and the image

observed by a camera is directly related to its field of view. In [42], the correlation

degree of two cameras is defined as the ratio of the overlapped sensing area to the

entire area of one camera’s field of view. A video processing scheme based on correla-

tion is also proposed in [42]: two sensors cooperate with each other, and each sensor

transmits a part of its observed image to the sink, and then the sink will combine the

partial images together. But this scheme is only valid when the sensing directions of

the two sensors do not differ very much. Besides, this processing method is limited

between two sensors. How to deal with the cooperative processing of more than two

sensors is a problem that has not been well investigated.

In this chapter, we study the correlation characteristics of visual information in

WMSNs. Rather than using any specific image algorithms, we propose a general

correlation model for visual information in WMSNs. Our main contributions are

summarized as follows.
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1. We design a novel spatial correlation coefficient to describe the correlation

characteristics for the images observed by cameras with overlapped field of

views. The spatial correlation coefficient will allow the estimation of correlation

through low computation and communication costs in WMSNs.

2. We propose an entropy-based analytical framework to evaluate the joint effect of

multiple correlated camera nodes, in which the joint entropy of multiple camera

sensors is estimated as a function of the spatial correlation coefficients among

the camera sensors.

3. Based on the entropy-based framework, we introduce a correlation-based camera

selection algorithm that maximizes the gain of information for a certain number

of sensors reporting to the sink.

2.2 Problem Statement

In a multimedia sensor network, multiple camera sensors are deployed to provide

multiple views, multiple resolutions, and enhanced observations of the environment

[14]. Fig. 1 gives an example of a WMSN deployed with cameras. A typical scenario

of WMSN is: the application specifies which area it is interested in, and the cameras

that can observe this area will report their observations to the sink. For a certain

area of interest, suppose there are N camera sensors that can observe it. We denote

them as a group S = {S1, S2, ..., SN}, and their observed images as {X1, X2, ..., XN}.

There exists correlation among the observations of this group of cameras, which can

be exploited to design multimedia in-network processing schemes.

2.2.1 Spatial Correlation

First, we study the correlation characteristics of the images observed by different

cameras. For Camera i and Camera j in the group S = {S1, S2, ..., SN}, we will

derive a correlation coefficient ρij to describe the degree of correlation between image
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Figure 1: WMSN with camera sensors and areas of interest.

Xi and image Xj . For the group of camera sensors, the correlation among the images

observed by these cameras ({X1, X2, ..., XN}) will be represented as a correlation

matrix C, denoted as C = (ρij)N∗N , where ρij is the correlation coefficient of image

Xi and image Xj .

2.2.2 Joint Effect of Multiple Correlated Cameras

After we obtain the spatial correlation coefficient, we study the joint effect of multiple

correlated cameras in WMSNs. In particular, we study how to measure the amount of

visual information from multiple cameras in a WMSN. Intuitively, the visual informa-

tion provided by multiple cameras should be related to the correlation characteristics

of the observed images. If the images observed by these cameras are less correlated,

they will provide more information to the sink. We develop an entropy-based frame-

work to estimate the amount of information from multiple correlated cameras.

2.2.3 Correlation-based Camera Selection

Since the delivery of visual information needs very high bandwidth, which may reduce

the lifetime of the network, the communication load in WMSNs should be reduced

as much as possible. Suppose a total number of N cameras can observe the area of

interest, if network resources permit, we can let all these N cameras transmit their

observed images to the sink, so that the users at the sink can obtain comprehensive
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information about the area. However, if the sink/application allows a certain level of

distortion of the observations, it may not be necessary for all the cameras to report

their observed information to the sink.

Consequently, we define a camera selection problem as follows: if only M cameras

(M ≤ N) are allowed to transmit their observed images to the sink, how to select

M cameras out of the N cameras so that the sink can gain the maximum amount of

information. Based on our study on the joint effect of multiple cameras, we design a

correlation-based algorithm to select cameras under distortion constraints.

2.3 Spatial Correlation Model for Visual Information

2.3.1 Sensing Model

Different from scalar data sensors, the sensing of a camera is characterized by direc-

tional sensing and 3-D to 2-D projection. In computer vision, this sensing process is

usually described by the pinhole camera model [21]. Fig. 2 illustrates an example of

a pinhole camera. The camera’s center of projection is at the origin of a Euclidean

coordinate system, and its sensing direction is along the x axis. The focal length

of the camera is f , so the image plane is the plane x = f . A scene point P with

coordinates (x, y, z)T is mapped to P ′(u, v)T on the image plane, where u and v are

given by 



u = fy/x

v = fz/x

(1)

A camera also has limited sensing range. It can only observe the objects within

its field of view (FoV). A simplified 2-D FoV model is proposed in [42]: as shown in

Fig. 3, a camera’s field of view is determined by four parameters (P, R, ~V , α), where

P is the location of the camera, R is the sensing radius, ~V is the sensing direction

(the center line of sight of the camera’s field of view), and α is the offset angle.

A camera’s focal length can be estimated by various calibration methods [21].
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Figure 3: Field of view.

More recently, several methods have been proposed for the calibration and localization

of cameras in sensor networks [9, 18]. Each camera’s focal length (f), location (P ),

and sensing direction (~V ) can be estimated as shown in [18]. In the following analysis,

we will derive a spatial correlation function based on these parameters.

2.3.2 System Model

We set up a world coordinate system (W ) = (OW , iW , jW , kW ) for the area of interest

as shown in Fig. 4(a), in which the origin is the center of the area of interest,

and the XOY plane is the ground plane. Seven reference points, which can also

be regarded as feature points or key points in a scene, are chosen as: O(0, 0, 0)T ,

A(1, 0, 0)T , B(−1, 0, 0)T , C(0, 1, 0)T , D(0,−1, 0)T , E(0, 0, 1)T , F (0, 0,−1)T . These

reference points form six unit reference vectors along the orthogonal directions in the

3-D world: ~OA, ~OB, ~OC, ~OD, ~OE, ~OF .

We consider the case when all the camera sensors are placed on the ground plane

(XOY ) and their sensing directions are also within the ground plane. For a camera
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sensor Si, the coordinates of its optical center can be denoted as (xi, yi)
T . The

sensing direction of Si can be described by a unit vector φ(φx, φy), where φx = cosθ,

φy = sinθ, and θ is the angle between the sensing direction and the x axis.

The projections of the reference points on a camera will change as the camera’s

location and sensing direction change. By comparing the projections of the same

reference points at different cameras, we can understand the correlation characteristics

among different cameras.

2.3.3 Projection Geometry

Fig. 4(b) shows the deployment of three cameras in the world coordinate system (W ),

where the origin is the center of the area of interest, and the XOY plane denotes the

ground plane. Camera 1 is located at (−d, 0)T with its sensing direction along the x

axis. Camera 2 is located at (−dcosθ,−dsinθ)T , and its sensing direction rotates an

angle of θ about the x axis. For both Camera 1 and Camera 2, their principle axes

pass the center of the area of interest (the origin). Camera 3 has the same sensing

direction as Camera 2, but its principle axis does not pass the origin. The distance

from the center to its principle axis is r, as shown in Fig. 4(b). The optical center of

Camera 3 is (−dcosθ + rsinθ,−dsinθ− rcosθ)T . Although the locations and sensing

directions of these three cameras are different, the depths for the center of the area
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Figure 5: Projections of reference points and vectors.

of interest in all the three cameras have the same value d. In addition, we assume

that all these cameras have the same focal length f .

To calculate the projections of the reference points in a camera, a coordinate

transform is first needed to obtain the coordinates of the points in the camera’s

coordinate system. For example, the coordinate system of Camera 1 (Fig. 2) and the

world coordinate system (W ) are separated by a pure translation. For an arbitrary

point P in the space, we have

1P =W P +1 OW , (2)

where 1P is the coordinate vector of point P in the coordinate system of Camera 1,

while WP is the coordinate vector in the world coordinate system (W ). These two

vectors are related by 1OW , the coordinate vector of the origin in (W ) seen in the

coordinate system of Camera 1. Here 1OW = (d, 0, 0)T .

Therefore, the coordinates of the reference points in the coordinate system of

Camera 1 are as follows: O1(d, 0, 0)T , A1(d + 1, 0, 0)T , B1(d− 1, 0, 0)T , C1(d, 1, 0)T ,

D1(d,−1, 0)T , E1(d, 0, 1)T , F1(d, 0,−1)T .

Based on the projection model in equation (1), we can find the projections of these

reference points in Camera 1: o1(0, 0)T , a1(0, 0)T , b1(0, 0)T , c1(
f
d
, 0)T , d1(−

f
d
, 0)T ,

e1(0,
f
d
)T , f1(0,−

f
d
)T . The projections of reference points on Camera 1 are plotted

in Fig. 5(a).

As for Camera 2, its coordinate system can be derived from the world coordinate

18



system (W ) as follows: rotate the world coordinate system counterclockwise for an

angle of θ, and then translate the rotated system along the negative direction of x

axis for a length of d, given as

2P = 2
W RW P + 2OW , (3)

where 2OW is the translation offset vector, 2OW = (d, 0, 0)T , and 2
W R is the rotation

matrix,

2
WR =




cosθ sinθ 0

−sinθ cosθ 0

0 0 1




.

Similarly, the relationship between the coordinate system of Camera 3 and the

world coordinate system is related as

3P = 3
W RW P + 3OW , (4)

where the rotation matrix is the same as that of Camera 2, 3
W R = 2

WR, while the

translation offset vector satisfies 3OW = (d, r, 0)T .

As the case of Camera 1, the projections of reference points on Camera 2 and

Camera 3 can be calculated in the same way. Table 1 lists the projections of the

seven reference points on the three cameras, and Fig. 5 illustrates the positions of

reference points on the three cameras. Based on the coordinates of the reference

points, the values of the corresponding unit vectors are also calculated, which are

listed in Table 2.

2.3.4 Spatial Correlation Coefficient

2.3.4.1 Scaling Effect

Comparing the projections of the reference vectors in Table 2, we find that the lengths

of OA, OB, OC, and OD are different in the three cameras, but the length of OE/OF

remains to be a constant value. The reason is that the points O, E, and F have the
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Table 1: Projections of reference points

Projections
Points Camera 1 Camera 2 Camera 3

O (0, 0)T (0, 0)T ( r
d
f, 0)T

A (0, 0)T ( −sinθ
d+cosθ

f, 0)T ( r−sinθ
d+cosθ

f, 0)T

B (0, 0)T ( sinθ
d−cosθ

f, 0)T ( r+sinθ
d−cosθ

f, 0)T

C (f
d
, 0)T ( cosθ

d+sinθ
f, 0)T ( r+cosθ

d+sinθ
f, 0)T

D (−f
d
, 0)T ( −cosθ

d−sinθ
f, 0)T ( r−cosθ

d−sinθ
f, 0)T

E (0, f
d
)T (0, f

d
)T ( r

d
f, f

d
)T

F (0,−f
d
)T (0,−f

d
)T ( r

d
f,−f

d
)T

Table 2: Projections of reference vectors

Projections
Vectors Camera 1 Camera 2 Camera 3

~OA (0, 0)T ( −sinθ
d+cosθ

f, 0)T ( r−sinθ
d+cosθ

f − r f
d
, 0)T

~OB (0, 0)T ( sinθ
d−cosθ

f, 0)T ( r+sinθ
d−cosθ

f − r f
d
, 0)T

~OC (f
d
, 0)T ( cosθ

d+sinθ
f, 0)T ( r+cosθ

d+sinθ
f − r f

d
, 0)T

~OD (−f
d
, 0)T ( −cosθ

d−sinθ
f, 0)T ( r−cosθ

d−sinθ
f − r f

d
, 0)T

~OE (0, f
d
)T (0, f

d
)T (0, f

d
)T

~OF (0,−f
d
)T (0,−f

d
)T (0,−f

d
)T
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same depth (d) in all the three cameras, and that the cameras also have the same

focal length (f). Both the depth and the focal length can influence the size of a

projection. Thus, we define a scaling factor, s, as the lengths of the projections of

OE and OF, given by

s =
f

d
. (5)

2.3.4.2 Translation Effect

As can be seen in Fig. 5, the projections on Camera 1 and Camera 2 are both in the

center of the image planes, but the projections on Camera 3 have an offset from the

center of the image plane. The deviation from the center of the area of interest to

the camera’s principle axis has caused the translation of the projections. Based on

the projections of reference points on Camera 3, we define a translation factor as

t = r
f

d
= rs. (6)

2.3.4.3 Correlation Coefficient

As shown in Table 2, the lengths of vectors OA, OB, OC, and OD will change as

the camera’s location and sensing direction change. Based on this observation, we

design a disparity function to reveal the disparity between the projections of reference

vectors on different cameras. Suppose that Camera i and Camera j are two arbitrary

cameras on the ground plane that can observe the area of interest, the disparity

function is derived as below:

1. Determine the positions and sensing directions of Camera i and Camera j;

2. Based on the projection model in (1), compute the projections of reference

vectors in each camera;

3. Divide the projections of reference vectors by the scaling factor s = f
d

(5), so

that we can get a set of normalized projection vectors for each camera;
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4. Compute the distance for each pair of normalized vectors OA, OB, OC, and

OD. For example, if the projection of OA is oiai = (ui, vi)
T on Camera i, and

ojaj = (uj, vj)
T on Camera j , the distance is calculated as

dOA =
√

(ui − uj)2 + (vi − vj)2; (7)

5. The disparity between the images at Camera i and Camera j, denoted by δ, is

defined as the average distance of the four vectors:

δ =
1

4
(dOA + dOB + dOC + dOD). (8)

For Camera 1 and Camera 2 in Fig. 4(b), according to the results in Table 2, the

disparity between the images at Camera 1 and Camera 2 is calculated as

δ =
1

4
(|

d sin θ

d + cos θ
|+ |

d sin θ

d− cos θ
|+ |

d cos θ

d + sin θ
− 1|+ |

−d cos θ

d− sin θ
+ 1|). (9)

Generally, for Camera i and Camera j with position parameters (di, ri, θi) and

(dj, rj, θj) (Fig. 4(b)), the disparity between the images at the two cameras is given

by

δij =
1

4
(|
−di sin θi − ri cos θi

di + cos θi
−
−dj sin θj − rj cos θj

dj + cos θj
|+

|
di sin θi + ri cos θi

di − cos θi

−
dj sin θj + rj cos θj

dj − cos θj

|+

|
di cos θi − ri sin θi

di + sin θi
−

dj cos θj − rj sin θj

dj + sin θj
|+

|
−di cos θi + ri sin θi

di − sin θi
−
−dj cos θj + rj sin θj

dj − sin θj
|).

(10)

We present a simulation to show how the disparity value δ varies as a function of

the deployments of cameras. Refer to Fig. 4(b), we let Camera 1 stay fixed, and let

the sensing direction of Camera 2 (θ) change from −90◦ to 90◦. The sensing direction

difference between Camera 2 and Camera 1 is also θ. Set the depth d = 2.5(meters)

for Camera 1 and Camera 2. The disparity between Camera 1 and Camera 2 in (9)

is illustrated as a function of θ (in degrees) in Fig. 6.
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Figure 6: Illustration of the disparity function.

The disparity value increases as the sensing direction difference increases. The

larger the disparity value, the more differences exist between the two images, i.e. the

images are less correlated. In the above scenario, the largest disparity value goes to

1 when the sensing directions of the two cameras are perpendicular, for which we

can say that the two cameras are weakly correlated. For the convenience of further

analysis, we bound the disparity value from 0 to 1 as follows:

δ = min(δ, 1). (11)

Consequently, we can define a correlation coefficient that is complementary to the

disparity function:

ρ = 1− δ. (12)

When the correlation coefficient is 0, it means that the two images are independent

of each other. If it equals to 1, the two images are highly correlated. The larger the

correlation coefficient, the more correlated are the two images.

2.3.5 Discussion

In WMSN applications, as long as the area of interest is specified, and the locations

and sensing directions of cameras are estimated, the correlation characteristics of
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cameras with overlapped field of views can be obtained as introduced above. The

proposed correlation model can help to design the differential source coding between

cameras, as well as the aggregation of visual information in the network.

The proposed model depends on the selection of reference points/vectors in the

area of interest. Six unit vectors along three orthogonal directions in the 3-D world

are chosen in the above analysis. For a WMSN application, the reference points

should be chosen properly based on specific application requirements. In addition,

a camera’s field of view will be reduced when it is blocked by some obstacles. To

guarantee that our model works well, a camera’s practical field of view needs to be

estimated.

2.4 Joint Effect of Multiple Correlated Cameras

In this section, we study the joint effect of multiple correlated cameras. We investigate

how to measure the amount of visual information from multiple correlated cameras

and then propose a correlation-based camera selection algorithm.

2.4.1 Entropy-based Approach

In information theory [12], the concept of entropy is used to measure the amount of

information of a random source. If an image is interpreted as a sample of a “gray-level

source”, the source’s symbol probabilities can be modeled by the gray-level histogram

of the observed image. An estimate of the source’s entropy can be generated as [25]

H̃ = −
L∑

k=1

p(rk)logp(rk), (13)

where L is the number of all possible gray-levels, and p(rk) is the probability of

the kth gray-level. It denotes the average amount of information per pixel in the

image.

If a camera Si transmits its observed image Xi to the sink, the amount of informa-

tion gained at the sink is H(Xi). (We do not consider the information loss caused by
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lossy compression or packet loss during transmission.) If the group of camera sensors,

S = {S1, S2, ..., SN}, transmit their observed images {X1, X2, ..., XN} to the sink, the

amount of information gained at the sink will be the joint entropy H(X1, X2, ..., XN).

Our objective is to estimate the joint entropy of multiple cameras.

2.4.2 Joint Entropy of Two Cameras

We consider two cameras that can observe the area of interest. Suppose each camera

has captured one image about the area of interest, denoted as image A and image B.

The joint entropy of A and B is

H(A, B) = H(A) + H(B)− I(A; B), (14)

where I(A; B) is the mutual information of the two sources. I(A; B) can be inter-

preted as the reduction in the uncertainty of one source due to the knowledge of the

other source:

I(A; B) = H(A)−H(A|B) = H(B)−H(B|A). (15)

The definition of I(A; B) in probability form is given as

I(A; B) =
∑

a

∑

b

p(a, b)log
p(a, b)

p(a)p(b)
. (16)

where p(a) and p(b) are the probability distributions of the pixels in image A and

image B, and p(a, b) is the joint probability distribution of the two sources.

Mutual information is a measure of dependence between two sources: the more A

and B are correlated, the larger the mutual information I(A; B).

In [50], a normalized form of mutual information, entropy correlation coefficient

(ECC), is defined as

ECC =
2I(A; B)

H(A) + H(B)
. (17)

The entropy correlation coefficient (ECC) ranges from zero to one, where zero

indicates that source A and B are independent, while one indicates that source A
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equals to source B. The larger the ECC value, the more these two sources are

correlated.

Based on (14) and (17), the joint entropy of A and B can be expressed as a

function of H(A), H(B) and ECC:

H(A, B) = (1−
1

2
ECC)(H(A) + H(B)). (18)

Since H(A) and H(B) can be calculated at each camera using (13), if ECC can be

estimated, the joint entropy H(A, B) will be obtained. However, to calculate I(A; B)

and ECC, a joint probability distribution of the two sources needs to be estimated

(16). Due to the complexity of image contents and the difficulty in image modeling,

it is difficult to get an accurate estimation of the joint probability distribution [50].

Besides, estimating the joint probability also requires large bulk of computation [50].

If joint probability distribution is to be estimated in a sensor network, cameras at

different locations must exchange their observed images, which will introduce a lot of

communication burden in the network.

It can be seen that the proposed correlation coefficient in (12) has the same intrin-

sic meaning as ECC: both ranging from 0 to 1 and denoting the degree of correlation

between two sources. However, if cameras’ parameters and deployment information

are given, it is much easier to obtain the proposed correlation coefficient. Considering

the limited processing capability of sensors, we propose to estimate ECC by the pro-

posed correlation coefficient. If we replace ECC in (18) by the proposed correlation

coefficient ρ, we can obtain an estimation of the joint entropy of A and B as

H(A, B) ≈ (1−
1

2
ρ)(H(A) + H(B)). (19)

Therefore, the amount of information that can be gained from image A and image

B together depends on the correlation degree between A and B. The more A and

B are correlated, the less joint entropy can be gained from A and B together. That
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is to say, if two camera sensors transmit their images to the sink, the amount of

information gained at the sink will be larger if the two sensors are less correlated.

2.4.3 Joint Entropy of Multiple Cameras

In this section, we extend our study of joint entropy to the case of more than two

cameras. Suppose there is a group of camera sensors S = {S1, S2, ..., SN} with their

observed images {X1, X2, ..., XN}. We are interested in estimating the joint entropy

H(X1, X2, ..., XN) for this group of sensors. If H(X1, X2, ..., XN) is to be computed by

its definition in probability, the joint probability distribution of these N images needs

to be estimated. However, it is difficult to estimate the joint probability distribution

of multiple sources, especially when N is large.

A feasible approach is to make use of the joint entropy of two cameras in the

last section. As there are N individual elements in the group {X1, X2, ..., XN}, we

can merge two of them together, so that the joint entropy of these two elements can

be calculated by (19). We treat these two elements as a whole element, then the

number of elements in the group reduces to N − 1. If we repeat this process, the

N individual sensors will be combined into a single element in the end. As the joint

entropy of merged sensors are calculated along the merging process, the joint entropy

H(X1, X2, ..., XN) can be obtained when the merging process is completed.

We design an algorithm to estimate the joint entropy of multiple cameras based

on the idea of hierarchical clustering [33]. As long as the entropy of each single image

(H(Xi), i = 1, 2, ..., N) and the correlation matrix (C = (ρij)N∗N) are given, the

joint entropy H(X1, X2, ..., XN) can be estimated through the hierarchical clustering

process. The details of the estimation algorithm are presented in Algorithm 1, where

χ denotes the set of clusters, and ρ({Xi}, {Xj}) is the correlation coefficient between

cluster {Xi} and cluster {Xj}.
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Algorithm 1 Estimate the Joint Entropy of Multiple Cameras

H(X1, X2, ..., XN) = JointEntropy(H(Xi), (ρij)N∗N )
begin
χ = {{X1}, {X2}, ..., {XN}}, ρ({Xi}, {Xj}) = ρij .
for k = 1 to N − 1 do

Find ({Xi}, {Xj}) = arg max
{Xi},{Xj}∈χ

{ρ({Xi}, {Xj})} {Find the most correlated

pair of clusters in χ.}
Merge {Xi} and {Xj} into a new cluster {XN+k}.
H(XN+k) = H(Xi, Xj) (19).
for Xl ∈ χ, l 6= i, l 6= j do

Compute ρ({XN+k}, {Xl}). (∗)
end for
Remove {Xi} and {Xj} from χ; Add the new cluster {XN+k} into χ.

end for
H(X1, X2, ..., XN) = H(X2N−1)
return H(X1, X2, ..., XN)
end

In step (∗) of Algorithm 1, the correlation coefficient between one cluster and an-

other cluster can be obtained by the greatest/shortest/average correlation coefficient

from any member of one cluster to any member of the other cluster [33], which are

referred to as single-linkage/complete-linkage/average-linkage clustering.

The following is an example of the estimation of joint entropy. Suppose there

is a group of five camera sensors. Without loss of generality, we assume that the

entropy of a single image is a constant value, denoted as H(Xi) = H(·)(i = 1, ..., 5).

A correlation matrix for these five sensors is given by

(ρij)5∗5 =




1 0 0.2942 0.9443 0

1 0 0 0.7359

1 0.3416 0

1 0

1




. (20)

Apply Algorithm 1 to this group of sensors, and use the average-linkage clustering

[33] metric in step (∗). The clustering process is illustrated in Fig. 7, and the results in

each step of clustering are shown in Table 3. Comparing the values in the correlation
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Figure 7: An example of hierarchical clustering.

Table 3: Hierarchical clustering steps

Steps Nodes for Clustering Estimation of joint entropy
(Relative value to H(·))

1 {X1},{X4} H(X1, X4) = 1.0557
2 {X2},{X5} H(X2, X5) = 1.2641
3 {X1X4},{X3} H(X1, X3, X4) = 1.7290
4 {X1X3X4},{X2X5} H(X1, X2, X3, X4, X5) = 2.9931

matrix (20) and the clustering steps in Fig. 7, one can find that in every clustering

step, nodes that contain the most correlated images are merged into one cluster. As

can be seen from (19), the value of the joint entropy decreases as the correlation

degree of the two images increases. Therefore, the joint entropies obtained from

the clustering process are always relatively small. The final result of the estimation

algorithm is a conservative estimation of joint entropy.

2.4.4 Correlation-based Camera Selection

Suppose for an area of interest in a WMSN, a total number of N cameras can observe

the area of interest. If network resources permit, all these cameras can transmit their

observed images to the sink, so that the applications at the sink can gain comprehen-

sive information about the area. However, as the processing capabilities of sensors

are limited, and the communication among sensors causes huge energy consumption,

sometimes the network cannot support all these cameras to report their observations

to the sink. Consequently, we define a camera selection problem: if only M cameras

(M ≤ N) are allowed to transmit their observed images to the sink, how to select

M cameras out of the N cameras so that the sink can gain the maximum amount of

information.
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As in the last section, we also assume that the entropy of a single image is a

constant value here. The estimation of joint entropy in (19) indicates that the less

correlated are the two sensors, the more information can be provided by the two

sensors together. Thus, to maximize the joint entropy of M cameras, we should

try to minimize the correlation among the cameras to be selected. We propose a

correlation-based algorithm to maximize the joint entropy of M cameras. At each

step of the algorithm, we select one camera that is least correlated with the cameras

that have already been selected. The details are presented in Algorithm 2, where

χ = {X1, X2, ..., XN} is the set of images observed by these N cameras, and S denotes

the set of cameras that are already selected.

Algorithm 2 Correlation-based Camera Selection

S = CorrSelection({X1, X2, ..., XN}, (ρij)N∗N , M)
begin
S =Ø, χ = {X1, X2, ..., XN}, ρ(Xi, Xj) = ρij .
Find (Xi, Xj) = arg min

Xi,Xj∈χ
{ρ(Xi, Xj)} {Find the least correlated pair of cameras.}

Add the corresponding Xi and Xj into S. {M = 2}
if M > 2 then

for k = 1 to M − 2 do
for Xl ∈ χ, Xl /∈ S do

ρ(Xl, S) = max
Xj∈S
{ρ(Xl, Xj)}.

end for
Xm = arg min

Xm∈χ,Xm /∈S
{ρ(Xm, S)}; Add Xm into S.

end for
end if
return S = {Xi1, Xi2, ..., XiM}
end

2.4.5 A Distortion Function

For an area of interest in WMSN, we suppose a total number of N cameras can

observe it, and denote their observed images as {X1, X2, ..., XN}. The joint entropy

of all these N sensors, H(X1, X2, ..., XN), is the maximum amount of information

that can be gained for the area of interest. If a subset of these sensors, denoted

30



Figure 8: Images. (a) θ = 0◦, (b) θ = 15◦, (c) θ = 30◦, (d) θ = 45◦, (e) θ = 60◦.

as {Xi1, Xi2, ..., XiM}, are selected to report their observed images to the sink, the

information gained at the sink is H(Xi1, Xi2, ..., XiM).

We define a distortion function as the ratio of the decrease in the amount of

information to the maximum amount of information, given by

D =
H(X1, X2, ..., XN)−H(Xi1, Xi2, ..., XiM)

H(X1, X2, ..., XN)
. (21)

The value of D satisfies 0 ≤ D ≤ 1. It can be interpreted as the percentage of

information loss due to network resource constraints. Applications of WMSNs can

use this distortion function as a metric to describe their requirements. For example,

an application may ask the network to transmit information within 10% or 20 % of

information loss.

It should be emphasized that the proposed distortion function is different from

existing image/video quality metrics. Commonly used image quality metrics, such as

PSNR (peak signal-to noise ratio) and the recently developed SSIM (structural simi-

larity) [68], are designed to evaluate the degradation of a distorted image compared

to an original image, where distortion is caused by lossy compression or loss during

transmission.

However, our proposed distortion function is designed to evaluate the joint effect of

multiple images. Distortion is the percentage of information loss caused by reporting a

subset of images to the sink. According to the derivation of joint entropy in Algorithm

1, we can find that the value of distortion is related to the number of selected cameras

as well as the correlation among the selected cameras.
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2.5 Performance Evaluation

2.5.1 Spatial Correlation Coefficient

In this section, we present a set of experiments to evaluate the performance of our

spatial correlation model.

2.5.1.1 Validity of the Proposed Spatial Correlation Coefficient

We set up a scene as shown in Fig. 4(b): Camera 1 and Camera 2 are placed to

take pictures of an area of interest. Camera 1 is placed along the x axis, and Cam-

era 2 rotates an angle of θ, so the sensing direction difference between Camera 2

and Camera 1 is θ. Set d = 2.5(meters). A reference image is obtained at Camera

1, and then a group of 10 images are taken for Camera 2 with the following θ val-

ues: {−75◦,−60◦,−45◦,−30◦,−15◦,15◦,30◦,45◦,60◦,75◦}. Fig. 8 presents some of the

images.

In Section 2.3, we showed that the degree of correlation is relevant to cameras’

sensing directions and their relative positions. Since the sensing directions and po-

sitions are already known, the disparity between the test images on Camera 2 and

Camera 1 can be easily calculated by function (10). The results of the disparity values

are presented in Fig. 9(a) as a function of the sensing direction difference θ. The

disparity increases as the sensing direction difference increases.

The correlation between images can also be obtained by applying image process-

ing algorithms. Here, we refer to a commonly used feature extraction algorithm in

[43]. In this algorithm, texture features are extracted from the images by Gabor

wavelet transform, and based on the wavelet coefficients, feature vectors in multiple

scales and multiple directions are constructed. Finally, an average distance is calcu-

lated by averaging all the feature distances in each feature space [43]. The average

feature distances between the test images on Camera 2 and Camera 1 are calculated

accordingly, and the results are presented in Fig. 9(b).
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Figure 9: Proposed disparity function vs. feature extraction algorithm.

Comparing the results of the proposed model (Fig. 9(a)) and the results of the

feature extraction algorithm in [43] (Fig. 9(b)), we find that in both cases the dis-

parity/distance value increases as the sensing direction difference increases. This is

also in accordance with our common sense: if we just observe the test images in Fig.

8 with our eyes, we can also find that the two images from Camera 2 and Camera

1 look more different when their sensing direction difference (θ) is larger. Therefore,

the proposed spatial correlation coefficient is effective as it can reveal the correlation

characteristics between images.

The slight differences between the results in Fig. 9(a) and Fig. 9(b) may be

explained by the intrinsic differences of the two schemes. The proposed model is

derived by studying cameras’ sensing model and deployments, thus, the results are

just dependent on a few parameters. In contrast, the feature extraction algorithm

goes into details in an image. It is sensitive to the noise in the images, and even a

little change of the light condition might influence the final results.

2.5.1.2 Costs for Exploiting Correlation

In this section, we discuss about the costs for exploiting correlation in WMSNs. As

shown in the example of WMSN in Fig. 1, a typical scenario of WMSN application

33



0 10 20 30 40 50 60 70 80
0

2

4

6

8

10

12

14
x 10

4

Distance between the two cameras (meters)

A
vg

 e
ne

rg
y 

co
ns

um
pt

io
n 

(n
J/

no
de

)

(a) A comparison in energy consumption for communication

0 10 20 30 40 50 60 70 80
6000

8000

10000

12000

Distance between the two cameras (meters)

A
vg

 e
ne

rg
y 

   
   

   
 

co
ns

um
pt

io
n 

(n
J/

no
de

)
(b) Energy consumption for the proposed scheme

Feature Extraction
Proposed Scheme 

Proposed Scheme 

Figure 10: Average energy consumption for communication per node.

is: the application specifies which area it is interested in, and the cameras that

can observe this area will work together to provide enhanced observations for the

application. Given an area of interest, suppose a group of N cameras can observe

it. If the cameras in this group want to know their correlation characteristics with

each other, communication and computation operations are needed for these camera

sensors. Note that it is a repetitive process to exploit correlation in the network:

the correlation characteristics are obtained with respect to a certain area of interest,

therefore, once the application specifies for a different area of interest, the correlation

characteristics need to be investigated again.

We study a single hop case between two cameras, so that the results will be

independent of specific communication protocols and network topologies. Assume two

arbitrary cameras in the group, Camera i and Camera j, are within the transmission

range of each other, and they will cooperate with each other to obtain the correlation

of their observed images.

The proposed correlation model is derived based on the sensing model and deploy-

ment information of camera sensors. In most sensor networks, localization algorithms

are already implemented, so that each camera knows its position in the network. The
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focal length and sensing direction for each camera can be estimated [18] and recorded

in the deployment stage of the network. Thus, when the application specifies a certain

area of interest, each camera can easily figure out its position with respect to the area

of interest (d, r, and θ as shown in Fig. 4(b)).

To calculate the correlation between Camera i and Camera j, Camera i just needs

to transmit its four parameters to Camera j: d, r, θ as shown in Fig. 4(b), and its

focal length f . Once Camera j receives the four parameters, it can calculate the

correlation coefficient based on (12). The total energy consumption will be composed

of the energy consumption for transmitting and receiving the four parameters and

the energy consumption to calculate the correlation coefficient. It can be seen that

the energy consumption for the proposed model is independent of image sizes.

We take the commonly used feature extraction scheme in [43] as a representative

of the various image processing schemes. As we have introduced above, the feature

extraction scheme [43] implements Gabor Wavelets to extract features vectors from

multiple scales and multiple resolutions. If this scheme is implemented in sensor

networks, Camera i will need to exchange its extracted features with Camera j to

obtain the correlation degree between Camera i and Camera j. A typical process is

as follows: Camera i extracts the features of its observed image using Gabor Wavelet,

and transmits its feature vectors; Camera j receives the feature vectors from Camera

i, and also implement the Gabor wavelet to extract the features of its own image.

Finally, the correlation of images at Camera i and Camera j can be calculated by

comparing their feature vectors.

The proposed scheme needs to transmit four parameters. As each parameter needs

32 bits to present, the total bits for transmission is 4*32 bits. In the feature extraction

scheme [43], features are extracted from 4 resolutions and 6 orientations, and each

feature space contains 2 elements. We also assume that each element in the feature

space needs 32 bits to present, so the total bits for transmission is 4*6*2*32 bits.
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According to the energy model for communications in [30], we can calculate the

energy consumption for communication between Camera i and Camera j. The av-

erage energy consumption for communication to exploit correlation is illustrated in

Fig. 10. Fig.10(a) is a comparison of energy consumption for both schemes, and

Fig.10(b) shows the energy consumption per node for the proposed scheme. For both

schemes, the energy consumption per node increases as the distance between the two

nodes increases. But the proposed correlation model requires much less energy for

communication than the feature extraction scheme.

It is commonly believed that communication is the most energy consuming op-

eration for sensors, which requires much more energy than processing, however, due

to the complexity of processing algorithms for visual information, the energy con-

sumption for processing visual information is not negligible. The feature extraction

algorithm [43] depends on wavelet transform that makes the energy consumption

for computation comparable to communication energy dissipation [39]. Moreover, as

image processing schemes are usually implemented in the unit of pixels, the energy

consumption for processing is proportional to the size/resolution of the observed im-

age. When the resolution increases, the energy consumption of the image processing

based scheme will increase accordingly. In contrast, the computation process for the

proposed model is very simple and straightforward, and the energy consumption for

computation will not be influenced by image resolutions.

We have evaluated the validity as well as the costs of the proposed spatial cor-

relation coefficient. From the above experimental results, we can conclude that the

proposed correlation coefficient can effectively model the correlation characteristics

of visual information through low computation and communication costs.
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2.5.2 Joint Effect of Multiple Cameras

In this section, we present a set of simulations to evaluate the joint effect of mul-

tiple cameras and the correlation-based camera selection algorithm. In a field of

500m*500m, we set an area of interest that is located in the center of the field and

has a radius of 10 meters. We randomly deploy N cameras that can observe this area

of interest. Let M be the number of cameras to be selected by the sink to transmit

their observed images. Suppose each camera obtains one image about the area of

interest. Let {X1, X2, ..., XN} denote the images observed by these N cameras, and

let {Xi1, Xi2, ..., XiM} denote the images observed by the M selected cameras.

Without loss of generality, we assume that the entropy of a single image is a

constant value, denoted as H(Xi) = H(·)(i = 1, 2, ..., N). For these N cameras,

we can obtain a correlation matrix (ρij)N∗N as introduced in Section 2.3. So the

joint entropy of H(X1, X2, ..., XN) and H(Xi1, Xi2, ..., XiM) can be estimated using

Algorithm 1.

We compare the following two camera selection schemes:

• Random selection. Randomly select M cameras out of the N cameras. For each

M, repeat the experiment for 50 times. Compute the joint entropy at each time,

and take the average value of the 50 trials as the final joint entropy.

• Correlation-based selection.This is the proposed method described in Algorithm

2. It makes use of correlation by selecting a group of M cameras that are least

correlated with each other, so that the amount of information from the selected

cameras can be maximized.

In our first experiment, we randomly deploy 10 cameras in the field (N = 10),

and let M change from 2 to 10. The results of both schemes are shown in Fig. 11.

The value of joint entropy increases as the number of nodes increases, which indicates

that if more cameras transmit their observed images to the sink, more information
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Figure 11: Estimation of joint entropy.

can be gained about the area of interest at the sink. When M = 10, all the cameras

are selected to transmit their obsereved images, so both schemes produce the same

results. But for M = 2 to 9, the correlation-based algorithm always results in larger

joint entropy than the random selection of cameras.

According to the numerical results, when the number of selected cameras are the

same for these two schemes, the correlation-based algorithm can increase the joint

entropy by 0.5466 ∗H(·) in average (increase by 18.37% in average compared to the

random selection algorithm). It should be noted that the values of joint entropy in

our simulation are expressed as relative values to the entropy of a single image, H(·).

We find in our experiments that a typical value of H(·) is 5-6 bits/pixel for images of

8-bits depth, so the correlation-based scheme can result in about 3 bits/pixel increase

in joint entropy than the random selection scheme.

Next we introduce more simulations to evaluate the distortion performance of

both schemes. We implement both schemes for three different network topologies,

where the total number of cameras, N , equals to 6, 10, and 15, respectively. Fig.

12 plots the distortion performance of both schemes. The distortion decreases as the

number of selected nodes increases. For the same number of selected cameras (M),
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Figure 12: Distortion function.

the proposed correlation-based scheme results in lower distortion compared to the

random selection scheme.

From another perspective, if a certain distortion bound is required at the sink,

we may need fewer cameras to transmit their information using the correlation-based

selection scheme. For example, in Fig. 12(b), a total number of 10 cameras are

deployed to observe an area of interest. If the sink wants to obtain 80% of the total

information, the maximum distortion is 0.2. As shown in Fig. 12(b), 7 cameras

are needed on average when cameras are randomly selected, but only 5 cameras

are needed when the correlation-based selection scheme is used. Therefore, given a

distortion bound at the sink, the correlation-based selection scheme requires fewer

cameras to report to the sink than the random selection scheme.
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CHAPTER III

A COLLABORATIVE IMAGE COMPRESSION

FRAMEWORK USING CLUSTERED SOURCE CODING

3.1 Introduction

Multimedia source coding [69, 51] is a common approach to remove the redundancy

of visual information. However, the resource constraints of the sensor nodes bring

new challenges when applying source coding globally in the entire network. The

conventional video coding standards, such as MPEG/H.26x [69], can achieve high

compression performance. However, they require extensive computation at the en-

coder, which places heavy burden on the resource-constrained sensor nodes. In [70]

and [39], energy-efficient image compression is achieved by distributing the workload

of compressing an image over several adjacent sensor nodes. Although promising for

compressing the images generated by a single node, these solutions do not explore the

correlation of the observed images among adjacent sensors. In contrast, distributed

source coding, such as Slepian-Wolf Coding [57], only requires low-complexity en-

coding and leaves the intensive computations at the decoder. However, this coding

strategy requires each sensor node to have the knowledge of global correlation struc-

ture, which would incur significant additional costs. For these reasons, multimedia

source coding is infeasible to be applied globally in a large-scale network.

The clustering strategy has been proved to be an effective way to improve network

scalability and energy efficiency for sensor networks [31, 8]. This strategy uses the

hierarchical concept where the entire network is divided into regions. In many existing

algorithms, the metrics for clustering are distance between nodes or node residual

energy [4]. However, in this work, we aim to construct clusters based on the potential
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coding gains so as to minimize the redundancy of network traffic. We divide the

entire network into different regions. Each region corresponds to a cluster, in which

a group of camera sensors collaboratively perform data compression, according to

different coding algorithms. In the case of conventional coding standards, a powerful

cluster head, such as the GARCIA robotic platform [5], can be placed within each

cluster to serve as a single encoder, which has all correlated multimedia streams

as inputs, thereby avoiding the computationally intensive operations draining the

limited sensor energy store. In contrast to the conventional coding schemes that

require centralized realization, distributed source coding allows each sensor to encode

its own data separately, assuming a priori knowledge of local correlation structure in

its own cluster [57]. Since each cluster only covers a limited number of nodes, it is

feasible to acquire the correlation within a cluster without incurring much extra cost.

Therefore, the clustered coding strategy paves the way for the practical application

of multimedia source coding in large-scale WMSNs.

In this chapter, we propose an information theoretic data compression framework

that maximizes the overall compression gain of the visual information retrieved from

a WMSN. This framework consists of two components: (i) compression efficiency pre-

diction, and (ii) coding hierarchy construction. Both components are independent of

the specific coding algorithms and images types, thus providing a generic architecture

that allows users to freely customize the WMSN applications based on them. The

compression efficiency prediction aims to estimate the compression gain from joint

encoding of multiple cameras before the actual images are captured. To achieve this,

an entropy-based divergence measure (EDM) is proposed, which only takes the cam-

era settings as inputs without requiring the statistics of real images. In the EDM,

the overlapping pattern of the FoVs of multiple cameras is first identified. Then, the

correlation degree among the observations from cameras with overlapped FoVs is ob-

tained through a spatial correlation model. Based on the correlation characteristics,
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a dependency graph based algorithm is designed to estimate the joint entropy of mul-

tiple cameras. This joint entropy effectively predicts the compression performance

for joint encoding of multiple cameras.

Using the results from EDM, the next problem is how to establish a compression-

oriented coding hierarchy, which can achieve a substantial compression gain and de-

coding reliability. This problem can be further formulated as an optimal coding

clustering (OCC) problem, which we define as: find a set of coding clusters with the

minimum total entropy, such that each camera node is covered by at least two different

clusters. The minimization of total entropy guarantees that the global compression

gain is maximized, while the coverage requirement ensures that the impact of cluster

failures on the decoding reliability is mitigated. We prove that the OCC problem

is NP-hard. As a heuristic solution, a fully distributed protocol, called distributed

multi-cluster coding protocol (DMCP), is presented to provide a ln ∆ approximation

to the optimal solution, where ∆ is the maximum node degree in the network. More-

over, it is shown that ln ∆ is the best achievable approximation ratio for the OCC

problem.

The rest of this chapter is organized as follows. Section 3.2 mathematically for-

mulates the problems in the proposed data compression framework. In Section 3.3,

the EDM algorithm is introduced to provide a valid assessment of joint coding per-

formance of multiple cameras. The DMCP for establishing the efficient and robust

coding hierarchy is proposed in Section 3.4. The performance of this framework is

evaluated in Section 3.5

3.2 Problem Formulation

3.2.1 Spatial Correlation of Visual Information

In a WMSN, multiple camera sensors are deployed to provide multiple views, multiple

resolutions, and enhanced observations of the environment. As shown in Fig. 13,
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multiple cameras are deployed in a field of interest, and the cameras’ field of views

(FoVs) overlap with each other. A camera can only observe the objects within its

FoV. And the sensing process of a camera is characterized by projection from a 3-D

scene to a 2-D image. The observed images from cameras with overlapped FoVs are

correlated with each other. We define the correlation of observed images caused by

overlapped FoVs as spatial correlation in our context. The spatial correlation of the

observed images further leads to data redundancy in WMSNs.

For two arbitrary camera sensors Cj and Ck with FoVs Aj and Ak, suppose

at a same time, their observed images are Xj and Xk, respectively. Xj and Xk

are correlated when Ai and Aj overlap with each other. We introduce a spatial

correlation coefficient ρj,k to quantify the degree of correlation between Xj and Xk.

This coefficient will be used as an important parameter in the following problems.

3.2.2 Clustered Source Coding

To remove the redundancy for correlated cameras, a group of camera sensors can

form a cluster to collaboratively compress their data. Consider a cluster consisting

of a cluster head (CH) and N camera sensors, where each sensor i produces image

Xi, which is encoded with rate Ri. According to basic coding theorems, we have the

following observation:

Observation 1. The total coding rate of all nodes within a cluster is lower bounded

by the joint entropy H(X1, X2, . . . , XN) no matter centralized or distributed source

coding is applied.

For centralized source coding, each member in a cluster sends its raw or prepro-

cessed data to the CH, while the CH acts as a single encoder that takes all collected

data as inputs. According to Shannon’s source coding theorem [12], each cluster can

generate a total rate lower-bounded by the joint entropy H(X1, X2, . . . , XN), which
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Figure 13: Field of views of multiple cameras.

is given by
N∑

i=1

Ri ≥ H(X1, X2, · · · , XN) (22)

where the equality holds when an optimal encoder is used.

For distributed source coding (DSC), each node in a cluster separately encodes

its own data, and the CH only acts as a relay node to forward the received data to

data sink, where the compressed data are jointly decoded. In this case, Slepian-Wolf

coding theorem [57] provides a conceptual basis for DSC and establishes the rate

region for the rate vector (R1, R2, ...RN):

∑

i∈U

Ri ≥ H(X(U)|X(U c)) ∀U ⊆ {1, 2, · · · , N} (23)

where X(U) = {Xj |j ∈ U} and U c is the complementary set of U.

Surprisingly, Slepian-Wolf coding theorem (23) indicates that the sum of rates,

∑N
i=1 Ri, can achieve the joint entropy H(X1, X2, · · · , XN), just as for joint encoding

the sources (X1, X2, · · · , XN), despite separate encoders for them. Therefore, a cluster

with N nodes can be optimally encoded with H(X1, X2, · · · , XN) bits no matter

centralized or distributed source coding is applied.
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3.2.3 Multi-camera Entropy Estimation Problem

Joint entropy serves as a lower bound of the overall coding rate of multiple sources

for both centralized and distributed source coding. If the joint entropy for a cluster of

cameras can be estimated, we will be able to predict the performance of joint coding

within the cluster. However, to estimate the joint entropy of visual information from

multiple cameras is a challenging task. Because of the intrinsic complexity of visual

information, it is difficult to model the dependency characteristics of visual sources,

and moreover, it usually requires expensive computation and communication costs.

Our objective is to estimate the joint entropy of multiple cameras in WMSNs

through low computation and communication costs. Given a cluster of cameras with

observations X1, X2, · · · , XN , the joint entropy H(X1, X2, · · · , XN) will be described

as a function of the individual entropy (H(Xi)) and field of view (Ai) of each camera,

and the correlation coefficients between any two cameras (ρj,k) in the cluster.

3.2.4 Optimal Coding Clustering Problem

Since joint entropy provides a benchmark on the compression gain from joint encoding

of multiple sources, we can utilize a similar entropy-based concept, called cluster

entropy, to measure the collaborative compression gain within the scope of a single

coding cluster. The target of optimal coding clustering can then be correspondingly

interpreted as to select a set of coding clusters according to their cluster entropies such

that total entropy of the entire network is minimized. We describe two definitions

involved in the discussion above.

Definition 1. A coding cluster is a finite set comprising a camera sensor and all

sensors within its transmission range.

Definition 2. For each coding cluster A, its cluster entropy H(A) is equal to the

joint entropy of all cameras in A.
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Now, the Optimal Coding Clustering (OCC) problem can be formally stated as:

given a network consisting of a finite set of camera sensors E = e1, e2, ...en and a set

of n subsets of E, S = {S1, S2, ...Sn}, where each set Si corresponds a coding cluster

with its entropy H(Si), the goal is to find a collection C from S of minimum total

entropy
∑

Si∈C H(Si), such that each element ei is covered by at least two sets in C.

The minimization of total entropy guarantees that the maximum global compres-

sion gain is achieved, while the coverage requirement ensures that the visual infor-

mation encoded by each camera has more chance to be successfully delivered to, and

properly decoded at data sink.

3.3 Joint Entropy Estimation

In this section, we propose a novel Entropy-based Divergence Measure (EDM) scheme

to estimate the joint entropy of observations from multiple cameras. This scheme only

takes cameras’ settings as inputs without requiring the knowledge of specific appli-

cations, thereby providing a generic framework for prior evaluation of compression

under different coding solutions. Moreover, it induces little communication costs

since camera nodes only need to exchange their settings via short messages among

their 1-hop neighbors, and low complexity computations are required for joint entropy

estimation. The EDM scheme consists of the following two components.

1. Area division for FoVs. Given a group of cameras, their FoVs are divided into

several regions, such that each region is covered by the same set of cameras.

2. Joint entropy estimation for regions. For each region, a dependency graph is

constructed based on the correlation among the cameras. The joint entropy of

the region is then estimated by traversing the dependency graph. Finally, the

total joint entropy for the group of cameras is the sum of the entropies of all

the regions.
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3.3.1 Area Division for Overlapped Field of Views

A camera is a directional sensor with limited sensing range. It can only observe

the objects within its field of view (FoV). If a camera sensor is deployed on a ground

plane, we can use a simplified 2-D FoV model [42] that models the shape of a camera’s

FoV as a sector. As shown in the left part of Fig. 13, a camera’s FoV is determined

by four parameters: O, R, ~V , and α, where O is the location of the center of the

camera, R is the sensing radius, ~V is the sensing direction (the center line of sight

of the camera’s FoV), and α is the offset angle between the sensing direction and a

radius of the sector. An arbitrary point O1 is in the FoV of the camera if it satisfies





| ~OO1| ≤ R

θ ≤ α,

(24)

where θ is the angle between ~OO1 and ~V .

Another key parameter for a camera’s sensing process (3-D to 2-D projection) is

the camera’s focal length (f). Both the FoV parameters and the focal length could

be estimated through calibration methods for WMSNs, e.g., [18].

We consider the case when N cameras (C1, C2, · · · , CN) are deployed on the

ground plane and all the cameras are homogeneous, i.e., they have the same focal

lengths (f), sensing radiuses (R), and offset angles (α). Denote the FoV of an in-

dividual camera Ci by Ai(Oi,Ri,~Vi,αi), and the overall FoV for these cameras by A

(A = {A1, · · · ,AN}). The goal of area division is to divide A into several regions

(P1, P2, · · · , PM), such that each region belongs to the FoVs of the same set of cam-

eras. As shown in Fig. 13, the FoVs of the three cameras are divided into six different

regions.

We introduce a grid-based approach to divide the overall FoV A into regions. As

shown in Fig. 13, the overall FoV A is divided into small grids (G(k), k = 1, · · · , K).

And then we can check if a grid G(k) is in a camera’s FoV (An, n = 1, · · · , N) as
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follows: we find the center point of the grid, and using the condition in (24), we can

tell if it is in the camera’s FoV; if this center point is in the camera’s FoV, we regard

that this grid is in the camera’s FoV. (This approximation is valid as long as the size

of the grid is much smaller than the size of the FoV.) After traversing all the grids

in the overall FoV, regions could be formed by grouping the grids that belong to the

same set of cameras.

3.3.2 Estimating the Joint Entropy of a Region

In this section, we introduce an algorithm to estimate the joint entropy of a region.

Denote the cameras that can observe region Pi by (C1, · · · , Cn). For the kth camera

Ck, denote its observed visual information by Xk, and denote its observation about

this region by Xk(Pi). The amount of information of the region Pi is the joint entropy

of the observations about this region from the cameras (C1, · · · , Cn), given by

H(Pi) = H(X1(Pi), · · · , Xn(Pi)). (25)

Since there is no unified probability model for images, and estimating the joint

probability distribution of multiple sources requires large bulk of computation, it is

difficult to calculate joint entropy in resource-constrained WMSNs. (See Chapter

2 and [15] for details.) In this chapter, we introduce a novel approach to estimate

joint entropy based on the spatial correlation model [15] in Chapter 2. Our solution

consists of three steps:

1. Estimate the individual entropy H(Xk(Pi)) in (25);

2. Study the correlation characteristics among the individual observations using

the correlation model in Chapter 2, which can also be found in [15];

3. With the results from the above two steps, apply a dependency graph based

algorithm to estimate H(Pi) in (25).

We explain these steps in details in the following paragraphs.
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3.3.2.1 Individual Entropy Estimation

For an arbitrary camera Ck, the entropy of its observed image Xk is H(Xk). The

entropy of the observation Xk about the region Pi, H(Xk(Pi)), can be estimated as

H(Xk(Pi)) ≈
S(Pi)

S(Ak)
H(Xk) (26)

where S(Pi) is the area of Pi and S(Ak) is the area of the FoV. The entropy H(Xk)

is the total amount of information of Xk, which is provided by the projections of all

the 3-D points in the FoV. As there is no prior knowledge about where a camera is

deployed or what type of scene is observed, it is assumed that when all the 3-D points

in the FoV are projected on the camera’s image plane, each point provides the same

amount of information. Considering that the cameras are deployed on a ground plane

and a 2-D FoV model is used, the amount of information that camera Ck contributes

to Pi is approximately proportional to the area of Pi, so we use the ratio S(Pi)
S(Ak)

to

estimate H(Xk(Pi)) in (26).

This assumption works well when there are no large obstacles in a camera’s FoV. A

camera’s FoV might be reduced in case of obstacles, therefore, when implementing the

proposed algorithm in practical applications, we might need to update the camera’s

FoV model to reflect the effect of obstacles.

There are many different models for images, and different values of entropy may

be obtained for the same image sources. In our algorithm, we avoid calculating the

exact values of entropy of images. As we consider the case that all the camera sensors

in a WMSN are homogeneous, without loss of generality, we assume that the entropies

of the single observed images are the same, denoted by H(Xi) = H(·)(i = 1, · · · , N).

All the joint entropy terms in our algorithm will be expressed as relative values of

H(·).
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3.3.2.2 Spatial Correlation Motivated Entropy Estimation

In our earlier work, we proposed a novel spatial correlation model for visual infor-

mation in WMSNs [15]. Given an area of interest and two cameras that can observe

it, a spatial correlation coefficient was derived to quantify the degree of correlation

between the two cameras. For example, if we take region P4 in Fig. 13 as the area of

interest, both camera C1 and camera C2 can observe it, with observations X1(P4) and

X2(P4). We pick some reference vectors in region P4, and calculate the projections

of these reference vectors in C1 and C2 using the projection model of cameras. By

studying the correlation between the projected reference vectors on the two cameras,

the spatial correlation coefficient ρ1,2 can be calculated.

In general, for cameras Cj and Ck that can observe region Pi, with Pi as the area

of interest, a spatial correlation coefficient between the observations of Pi at Cj and

Ck was derived as a function as follows:

ρj,k = f(Oj, ~Vj, Ok, ~Vk, Pi) (27)

where Oj and Ok are the two cameras’ locations, ~Vj and ~Vk are their sensing directions,

The spatial correlation coefficient was designed as a normalized symmetric metric, i.e.,

it satisfies ρj,k = ρk,j and 0 ≤ ρj,k ≤ 1.

More importantly, the spatial correlation coefficient was related to the estimation

of joint entropy in [15]. We briefly introduce the relevant results here.

To evaluate the dependency between two visual sources, an entropy correlation

coefficient (ECC) was introduced in [50]. The ECC for two visual sources A and B

was defined as

ECC =
2I(A; B)

H(A) + H(B)
. (28)

Moreover, the joint entropy H(A, B) can be given as

H(A, B) = (1−
1

2
ECC)(H(A) + H(B)). (29)
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By definition, the joint probability distribution of the two sources is needed to es-

timate the joint entropy. Due to the complexity of image contents and the difficulty

in image modeling, it is difficult to get an accurate estimation of the joint probability

distribution [50]. Besides, camera sensors in a WMSN must exchange their observed

images to estimate the joint probability distribution, which introduces a lot of com-

munication burden in the network. In [15], it was found that the spatial correlation

coefficient (27) had the same intrinsic meaning as ECC: both ranging from 0 to 1

and denoting the degree of correlation between two sources, while the spatial correla-

tion coefficient could be obtained through low computation and communication costs.

Therefore, the ECC term in (29) was replaced by the spatial correlation coefficient.

Consequently, for cameras Cj and Ck that can observe region Pi, the joint entropy

of the observations of Pi at Cj and Ck was estimated as

H(Xj(Pi), Xk(Pi)) ≈ (1−
1

2
ρj,k)(H(Xj(Pi)) + H(Xk(Pi))) (30)

where Xj(Pi) is the observation of Pi at camera Cj, and Xk(Pi) is the observation

of Pi at camera Ck. This equation indicates that the amount of information gained

from the observations of two cameras depends on the correlation between them. The

more the two observations are correlated, the less joint entropy can be gained from

them together.

From (19) we can obtain the conditional entropy as follows:

H(Xj(Pi)|Xk(Pi)) = H(Xj(Pi), Xk(Pi))−H(Xk(Pi))

≈ (1−
ρj,k

2
)H((Xj(Pi))−

ρj,k

2
H(Xk(Pi))

(31)

where H(Xj(Pi)|Xk(Pi)) is the entropy of Xj(Pi) with the knowledge of Xk(Pi).

3.3.2.3 Dependency Graph Based Joint Entropy Estimation

Based on the correlation coefficient (27) and the conditional entropy term (31), we

propose a dependency graph based algorithm to estimate the joint entropy of a region.
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We study a two cameras’ case first. Suppose there are only two cameras (C1

and C2) in a region Pi. We can depict their relationship using a dependency graph:

C2 → C1. The joint entropy of the observations from C1 and C2 can be calculated by

traversing the dependency graph. The source node C2 contributes the entropy of its

observations, H(X2(Pi)), and the node C1 contributes the conditional entropy with

respect to C2, H(X1(Pi)|X2(Pi)), so the joint entropy is calculated by adding these

two terms: H(X1(Pi), X2(Pi)) = H(X2(Pi)) + H(X1(Pi)|X2(Pi)). The dependency

graph can also be constructed as C1 → C2, from which we can get the same result of

joint entropy.

The two cameras’ case can be extended to estimate the joint entropy of more

than two cameras. Generally, for an arbitrary number of cameras, we construct a

dependency graph to describe the dependency characteristics among them. Denote

the dependency graph by G(V, E), where V is a collection of cameras, and E is a

collection of directed edges that stand for dependencies. Joint entropy of the region

is calculated by traversing all the nodes in the graph along the directed edges. The

detailed steps are described in Algorithm 3.

For a group of cameras (C1, C2, · · · , Cn) that can observe the region Pi, we can

obtain a correlation matrix (ρj,k)n∗n based on (27). To simplify the problem, we

assume limited number of dependencies: each camera is dependent on the camera

that is most correlated with it. For example, if camera Cj is most correlated with

camera Ck, we say that Cj is dependent on Ck, and we can construct a directed edge

starting from Ck and ending at Cj : Ck → Cj. Cj is said to be a direct successor of

Ck, and Ck is a direct predecessor of Cj.

The dependency graph is designed to be a directed acyclic graph with the following

constraints: a camera is either a source node (i.e., a node that has no predecessors),

or a direct successor of one of the other cameras; a dependency graph may have

several source nodes, but each node can have at most one direct predecessor; and
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there should be no loops in the graph, e.g., Ck → Cj and Cj → Ck cannot exit

in the same graph. These properties could be guaranteed through the procedure of

constructing the dependency graph (lines 5-12 in Algorithm 3). For each node Ck, if

another node Cj is most correlated with it, i.e., neighbor(Cj) = k, the algorithm adds

Ck → Cj into the graph only when two conditions are met: i) Cj has no predecessors,

and ii) Cj is not a predecessor of Ck (line 7 in Algorithm 3). The first condition

guarantees that each node can have at most one direct predecessor, and the second

one guarantees that there are no loops in the graph.

Given a dependency graph with the above features, the joint entropy is estimated

by traversing all the nodes in the graph and adding the entropies of the nodes to-

gether, which corresponds to lines 13-19 in Algorithm 3. A source node contributes

its individual entropy to the joint entropy, while a non-source node contributes its

conditional entropy with respect to its direct predecessor to the joint entropy.

Algorithm 3 Dependency Graph Based Entropy Estimation
1: Pi: {C1, C2, ..., Cn} with correlation matrix (ρj,k)n∗n.
2: for j = 1 to n do

3: neighbor(Cj) = arg max
k 6=j

(ρj,k);

4: end for

5: for k = 1 to n do

6: for j = 1 to n and j 6= k do

7: if neighbor(Cj) = k and Cj has no predecessors and Cj is not a predecessor of Ck

then

8: Add Ck → Cj into the dependency graph;
9: Predecessor(Cj) = Ck;

10: end if

11: end for

12: end for

13: for j = 1 to n do

14: if Cj has no predecessor then

15: Add H(Xj(Pi)) to H(Pi);
16: else if Predecessor(Cj) = Ck then

17: Add H(Xj(Pi)|Xk(Pi)) (31) to H(Pi);
18: end if

19: end for

20: return H(Pi).

53



Since the FoVs for a group of cameras are divided into several independent re-

gions, the total joint entropy is the sum of the entropies of all the regions. For a

group of cameras with observations (X1, . . . , XN), with their FoVs divided into re-

gions (P1, . . . , PM), the total joint entropy is given by

H(X1, · · · , XN) = H(P1) + · · ·+ H(PM) (32)

where H(Pi)(i = 1, · · · , M) is obtained by Algorithm 3.

To provide an overview of the EDM algorithm, we illustrate the steps for estimat-

ing the joint entropy of the three cameras in Fig. 13. The FoVs of the three cameras

are divided into six regions. We take the sixth region (P6) as an example. All the three

cameras (C1, C2, C3) can observe P6. Suppose we find from the geometry of the cam-

eras’ FoVs that S(P6) = 0.1S(A). The entropy of a single image is H(·), by applying

(26), the individual entropies about this region are H(Xi(P6)) = 0.1H(·)(i = 1, 2, 3).

Furthermore, from (27) we can obtain a correlation matrix for P6:

(ρjk)3∗3 =




1 0.1 0

0.1 1 0.5

0 0.5 1




.

By applying Algorithm 3 on the correlation matrix, we can obtain a dependency

graph as C3 → C2 → C1. Therefore, the joint entropy of region P6 is H(P6) =

H(X3(P6))+H(X2(P6)|X3(P6))+H(X1(P6)|X2(P6)), where the conditional entropies

can be calculated from (31). For example, H(X2(P6)|X3(P6)) = (1−ρ2,3

2
)·H(X2(P6))−

ρ2,3

2
· H(X3(P6)) = 0.05H(·). In the same way, we can obtain H(X1(P6)|X2(P6)) =

0.09H(·). Thus, the joint entropy of P6 is H(P6) = 0.24H(·). After the entropy

of each region is calculated, the joint entropy of the three cameras is calculated by

H(X1, X2, X3) = H(P1) + · · ·+ H(P6).

The entire EDM algorithm can be run at each sensor node. To estimate joint

entropy, a node just need to acquire the FoV parameters, locations, and sensing
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directions of its neighbors. Therefore, it does not require expensive communication

costs in the network. The estimated joint entropy will serve as a criteria for the

DMCP protocol in the following section.

3.4 Data Compression using Clustered Source Coding

After a WMSN is deployed in a field, we would like to select a set of coding clusters

to cover the entire network with maximum compression ratio. Due to the distributed

manner of WMSNs and the changing environment, a centralized algorithm is not

suitable for use here. The coding cluster selection should only depend on local in-

formation. In this section, we first formulate the optimal coding clustering (OCC)

problem as an integer program, and shows that the OCC problem is NP hard. Ac-

cordingly, we propose a distributed multi-cluster coding protocol (DMCP), which is

shown to achieve an approximation guarantee of ln ∆, where ∆ is the maximum node

degree in the network.

3.4.1 Integer Program Formulation of OCC Problem

To formulate the OCC problem as an integer program, we assign a variable xS for

each set S ∈ S, which is allowed 0/1 values. This variable will be set to 1 iff set S

is selected for the coding hierarchy. The objective function is the sum of the entropy

values of all selected coding clusters. The constraint is that for each node e ∈ E we

want that at least two of the clusters containing it are selected.

MIN
∑

S∈S

H(S)xS (33)

s.t
∑

S:e∈S

xS ≥ 2, e ∈ E

xS ∈ {0, 1}, S ∈ S

If we treat H(S) as the cost c(S) associated with each coding cluster S ∈ S and

let the second constraint be coverage requirement for each node e ∈ E, the OCC

55



problem can be reduced to the constrained set multicover (CSMC) problem. The

CSMC problem is NP hard and the greedy algorithm is essentially the best one can

hope for [53]. In other words, the approximation ratio ln ∆ achieved by the greedy

algorithm is best one for CSMC problem. Therefore, the greedy strategy applies

naturally to our OCC problem: let us say that the node e is uncovered if it occurs

in fewer than 2 of the selected coding clusters. In each iteration, the algorithm

selects, from the currently unselected clusters, the most compression-efficient cluster,

where the compression efficiency of a cluster is defined to be the average entropy of

the uncovered nodes it covers. The algorithm terminates when there are no more

uncovered nodes, e.g., each node has been included by two different clusters. The

pseudo-code of the above procedures is described in Algorithm 4.

Algorithm 4 Greedy Coding Cluster Selection Algorithm

1: C ← ∅, and E′ ← E
2: For each S ∈ S, x(S)← 0.
3: while E′ 6= ∅ do

4: s← arg minX∈S H(X)/ |X ∩ E|, and x(s)← 1.
5: C ← C ∪ s, and S ← S \ s.
6: E′ ← E′ \

{
e ∈ s ∩ E :

∑
S:e∈S x(S) ≥ 2, S ∈ C

}
.

7: end while

The greedy algorithm for the OCC problem can be computed in O(n) rounds if a

central controller (e.g., data sink) provides the full information of the network topol-

ogy along with the detailed settings (e.g., sensing direction, sensing offset angle, and

sensing range) for each camera. However, in a large-scale distributed network like

WMSN, the centralized operations have limited flexibility and scalability. Moreover,

the energy constraint of sensor nodes prohibits network-wide information exchange.

Next, we will propose a distributed protocol that only needs local information ex-

change to achieve global compression optimization.
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3.4.2 Distributed Multi-Cluster Coding Protocol

After a WMSN is initially deployed, each camera node leads its neighbors to constitute

a candidate coding cluster. At this time, each sensor node could be in one of the

following four states: black, grey, half grey, and white. We call sensor nodes black

if they are selected as the CH (CH) locaters. The CH locaters will not serve as the

normal CHs but indicate the coordinates at which the future mobile or fixed CHs

should be placed. We call the nodes grey if they are covered by at least two black

nodes, and half grey if they are covered by exactly 1 black node. A node stays in the

white state if there exists no black node within its 1-hop range. The half grey nodes

and white nodes are collectively referred to as uncovered nodes. We now describe

several useful definitions.

Definition 3. The neighbor set of a node is a set consisting of the node itself and all

nodes in its 1-hop range.

Definition 4. The serving set of a node is a set comprising the uncovered nodes that

are residing in its 1-hop range.

Definition 5. The coding effectiveness of a node is the average entropy of all nodes

in its serving set.

Definition 6. The CH counter of a node records the current number of the black

nodes among its 1-hop neighbors.

Now, the proposed DMCP establishes a clustered coding hierarchy as follows.

Initially (lines 1 - 5 in Algorithm 5), no black nodes exist in the network. Thus, every

node is uncovered. Nodes in the uncovered state send out their camera settings to

their neighboring nodes. After receiving the setting information, an uncovered node

discovers its serving set and calculates its cluster entropy. Based on these information,

an uncovered node evaluates its coding effectiveness, which is sent out along with the

node state in an advertising (ADV) message to its 2-hop neighbors.
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Algorithm 5 Distributed Multi-cluster Coding Protocol
1: state(e) ∈ {black, grey, half grey,white, uncovered}
2: state(e)← white, send & receive state(e) and camera settings
3: Ne ← {e

′ : state(e′) = white} ∪ {e}
4: {Discover neighbor set Ne}
5: counter(e) = 0 {Set CH counter}
6: while state(e) = uncovered do

7: Ue ← {e
′ ∈ Ne : state(e′) = uncovered}

8: {Calculate serving set Ue}
9: ECe ← H(Ne)/ |Ue|

10: {Calculate coding effectiveness ECe }
11: if ECe = mine′∈Ue

{ECe′} then

12: state(e)← black, and counter = 1
13: send COV ERAGE msg
14: else

15: wait until the selection of a new black node times out
16: if no COV ERAGE received then

17: state(e) remains
18: else if counter = 0 then

19: state(e)← halfgrey, and counter(e) = 1
20: else if counter = 1 then

21: state(e)← grey, and counter(e) = 2
22: send & receive ADV msg containing state(e)
23: end if

24: end if

25: end while

26: Process Grey Black()
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A node in the uncovered (e.g., half grey or white) state collects ADV messages and

extracts the coding effectiveness values from its 2-hop neighbors. If the node itself

is the most coding-effective node amongst its 2-hop neighbors, it becomes a black

node and sends COVERAGE messages to other uncovered nodes within its 1-hop

range (lines 11 - 13 in Algorithm 5). Otherwise, an uncovered node can encounter

the following scenarios: 1) if no COVERAGE message is received within the prede-

fined maximum duration of selecting a new black node, the node remains uncovered,

recalculates its coding effectiveness, and sends out an ADV message (lines 16 - 17 in

Algorithm 5). 2) If a COVERAGE message is received, and its CH counter is equal

to zero, the node enters half grey state and increments its CH counter by 1 (lines 18

- 19 in Algorithm 5). 3) If a COVERAGE message is received, and its CH counter

already reaches 1, the node becomes a grey node and sets the CH counter to 2 (lines

20 - 21 in Algorithm 5). For the last two cases, a ADV message containing the node

state is sent out to its immediate neighbors.

For a grey node, if the CH counters of all its neighbors already reach 2, the

node remains grey for the rest of cluster selection procedure and becomes a cluster

member in the end. Otherwise, the node sends out an ADV message containing its

coding effectiveness and collects ADV messages from all the uncovered nodes within

its 2-hop range. If the node itself has the highest coding effectiveness, it enters black

state and send out COVERAGE messages to its uncovered neighbors (lines 5 - 6 in

Algorithm 6). Otherwise, if the maximum duration of generating a new black node

passes, and there still exist uncovered nodes within its 1-hop range, the node remains

grey (lines 8 - 10 in Algorithm 6). A black finally becomes a CH locater until the

value of its CH counter reaches 2 on receiving a COVERAGE message (lines 13 - 17

in Algorithm 6).

The above procedures are performed by all nodes until each of them becomes

either a CH locater or a cluster member. At the end, there is no uncovered node in
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Algorithm 6 Process Grey Black()

1: Ue ← {e ∈ Ne : counter(e) < 2}
2: while |Ue| < |Ne| do

3: if state(e) = grey then

4: recalculate coding effectiveness ECe

5: if ECe = mine′∈Ue
{ECe′} then

6: state(e)← black, and send COV ERAGE msg
7: else

8: wait until the new black selection times out
9: if |Ue| < |Ne| then

10: state(e)← grey
11: end if

12: end if

13: else if state(e) = black then

14: wait until a COV ERAGE is received
15: counter(e) = 2
16: send ADV msg containing state(e) and counter(e)
17: Node e becomes a CH locator
18: end if

19: end while

20: Node e becomes a cluster member

the network, and the established clustered coding hierarchy covers the entire network.

The pseudo-code of the above procedures is described in Algorithm 5 and Algorithm

6.

3.4.3 Correctness and Complexity

Theorem 1. If the minimum node degree in a network is 2, each node will be covered

by at least two coding clusters when DMCP terminates.

Proof. Assume when DMCP terminates, a node v does not belong to any coding

cluster or it is only covered by one coding cluster. This implies that v stays in the

uncovered state. Thus, the condition in line 6 of Algorithm 5 is satisfied. Since the

minimum node degree of v is larger than 1, v has at least one neighbor, say u. If u

has higher coding efficiency than v, then u becomes a black node and v is covered by

the coding cluster led by u. Otherwise, v enters black state, and thus v is covered by

the coding cluster led by itself. Both cases contradict the assumption that v does not
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belong to any coding cluster. On the other hand, if v is only covered by one cluster,

this means that either v itself or one of its neighbors is a black node. In this case, v’s

neighbor or v will become a CH. (i.e., the operations in lines 12 - 14 of Algorithm 5 or

lines 5 - 6 of Algorithm 6 are executed). This implies that v is covered by two clusters,

thus contradicting the assumption that v is only covered by one coding cluster.

Theorem 2. The DMCP protocol has a worst case processing time complexity of

O(N2) per node per round, where N is the number of nodes in the network.

Proof. In Algorithm 5 and 6, the computational operations include two parts: the

estimation of the cluster entropy (line 9 of Algorithm 5 and line 4 of Algorithm 6)

and the search of the minimum average entropy (line 12 of Algorithm 5 and line 5 of

Algorithm 6). The first part is calculated by the EDM scheme presented in Section

3.3. As indicated in Algorithm 3, the EDM has a time complexity of O(N2). The

second part is realized by binary tree sorting, which takes O(Nlog(N)) iterations.

Thus, in each round, DMCP protocol has a worst case processing time complexity of

O(N2) per node.

Theorem 3. The DMCP terminates in O(N) rounds, where N is the number of

nodes in the network.

Proof. Given a network with N sensor nodes, there exist total N candidate coding

clusters, each of which consists of a sensor node and its neighboring nodes. As

indicated in Algorithm 5, in each round, at least one candidate coding cluster is

selected as the final coding cluster. Thus, the DMCP takes a time in O(N) rounds

in the worst case.

Theorem 4. The DMCP protocol has a worst case message exchange complexity of

O(1) per node.

Proof. During the execution of Algorithm 5, an uncovered (white or halfgrey) node is

silent until it sends notification messages COV ERAGE to become black node or sends
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the joint messages ADV to become grey node. The number of these COV ERAGE

messages are strictly less than N , since at most N nodes will enter black state.

In addition, uncovered nodes generate at most N ADV messages, since at least

one node will decide to be a CH. Besides uncovered nodes, during the execution

of Algorithm 6 black nodes and grey nodes also send out ADV and COV ERAGE

messages. Specifically, black nodes broadcast at most N ADV messages to advertise

their final status, and grey nodes generate at most N COV ERAGE messages to

announce a status change from the grey to the black. Hence, the number of messages

exchanged in the network is upper-bounded by 4N , i.e., O(N).

Since the clustered coding hierarchy only needs to be constructed when the net-

work is initially deployed in the field of interest. Thus, the linear time and message

complexity of the proposed protocol has trivial impact on the network performance,

compared with the significantly enhanced energy efficiency induced by the established

coding hierarchy. In addition, to reduce the computational delay, the protocol pa-

rameters, such as the duration of each round, can be the properly adjusted. The

proposed framework can be implemented on a variety of camera sensor platforms,

which are equipped with a wide range of microprocessors including ARM7, AVR, and

Atmel ATmega128L [6]. Generally, users are provided with the dedicated compilers

for the specific camera sensor platforms. To facilitate the cross compiling on different

hardware platforms, we believe that the gcc compiler collection [1] can be a good

choice because it is available for most embedded platforms equipped with a variety

of microcontrollers.

3.4.4 Approximation Ratio

Theorem 5. The DMCP computes a ln ∆ approximation for the optimal coding clus-

tering problem.

Proof. According to DMCP, the cluster entropy of a node is only related to camera
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settings of the nodes in its neighbor set, and the neighbor set is only determined by

the local topology, the value of the cluster entropy will not change as the protocol

proceeds. On the other hand, the cardinality of the serving set, which is equal to the

number of its uncovered neighboring nodes, can be reduced as protocol proceeds since

some uncovered neighboring nodes could be included by some other clusters. Thus,

we conclude that the coding effectiveness of a non-black node can only be reduced if

the cardinality of its serving set decreases.

Based on this conclusion, we can further show that the DMCP is equivalent to

the centralized greedy algorithm. According to DMCP, a non-black node v with the

highest coding effectiveness within its 2-hop neighborhood is eligible to become a black

node. The selection of other non-black nodes outside v’s 2-hop range as black nodes

will not affect v’s eligibility to enter the black state because the status change of the

nodes outside v’s 2-hop range can not reduce v’s serving set cardinality, and according

to the conclusion above, v’s coding effectiveness remains the same. Therefore, the

DMCP chooses v as a black node before any nodes within its 2-hop range. On the

other hand, the centralized greedy algorithm always selects the most compression

efficient cluster, and v leading its neighbors represents the most compression efficient

cluster within its 2-hop range. Therefore, the centralized approach will select the

cluster led by v as a final coding cluster as the algorithm proceeds. This means that

the DMCP obtains the same result as the centralized algorithm, thus achieving the

same ln ∆ approximation ratio as the centralized algorithm.

As shown in Section 3.4.1, the OCC problem can be reduced to CSMC problem, for

which ln ∆ is the best approximation ratio. Thus, we can conclude that no protocols

perform better than the proposed DMCP in terms of application factor.
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3.4.5 Intercluster Connectivity

After the DMCP is performed, the selected CH locaters send out messages to advertise

their states and coordinates. Then, some more powerful multimedia nodes, such as

the GARCIA robotic platform [5], can automatically move to or be manually placed

at these locations, and act as normal CHs. Since the CHs are interconnected by

multi-hop connections, the CHs should properly adjust their transmission range to

maintain inter-cluster connectivity. We address this problem by proving the following

theorem.

Theorem 6. In a WMSN with the minimum node degree δ ≥ 1, i.e., there is no

isolated node in the network, any two CHs are two hops away at most.

Proof. Since every node has at least one neighbor, each cluster member belongs to

at least two clusters after the DMCP is performed. This means that each cluster

member has two different CHs within its 1-hop range. Suppose a CH v can reach the

nearest CH w at least three hop away. Then, there exists a cluster member u of the

CH v in the path between v and w. This implies that the CH w is at least 2-hops

away from the cluster member u. Therefore, u can not be covered by the CH w,

and there has to be another CH, say x, within 1-hop range of u to meet its coverage

requirement. Now, the cluster member u has two CHs, v and x, within its immediate

neighborhood. This means that v and x are at most 2 hops away from each other,

which contradicts with the assumption that a CH v can reach the nearest CH at least

three hops away.

Therefore, in order to maintain inter-cluster connectivity, each CH only needs to

adjust its transmission range to twice the 1-hop distance.
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Figure 14: (a) Indoor scene “Tables”. (b) Outdoor scene “Trees”.

3.5 Performance Evaluation

We evaluate the performance of the proposed data compression framework through

simulations. We first investigate the effectiveness of the EDM scheme by comparing

its predicted results with the actual joint coding performance of practical coding

schemes. Then, we study the compression performance of DMCP under changing

network sizes and camera settings.

3.5.1 Validity of the EDM Predictions

For a cluster of N camera sensors with observations X1, · · · , XN , the joint entropy

H(X1, · · · , XN) is a theoretical lower bound of the total coding rate for these cameras.

To predict the percentage of rate savings of joint coding, we define an estimated joint

coding efficiency as

ηH = 1−
H(X1, · · · , XN)

H(X1) + · · ·+ H(XN)
(34)

where H(X1) + · · · + H(XN) corresponds to the total coding rate needed when the

cameras compress their observations individually.

We verify the estimated joint coding efficiency using practical video coding exper-

iments. Similar as the definition above, we introduce an actual joint coding efficiency

as

ηR = 1−
R(X1, · · · , XN)

R(X1) + · · ·+ R(XN)
(35)

where R(X1, · · · , XN) is the total rate from joint coding, and R(X1) + · · ·+ R(XN)

is the total rate from individual coding.
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Table 4: Parameters for entropy-based divergence measure

H.264 Baseline H.264 MVC

RD optimization on on
Entropy coding UVLC CABAC
Search range 128 pixels 128 pixels

Num of reference frames 1 1

We consider an indoor scene and an outdoor scene as representatives of various

WMSN applications. We deploy 12 camera nodes at different view points around

each scene, and let each camera capture one image of the scene, with a resolution of

512 ×384. Fig. 14 shows two of the captured images. We record each camera’s FoV

parameters, so that the joint entropy and the corresponding ηH can be estimated

using EDM. We also perform joint coding on the captured images, and from the

resulting coding rates we can obtain ηR.

Experiments on different cluster sizes, coding schemes, and coding parameters

are performed to evaluate the joint coding efficiency. The cluster size is set to three

different values (N=2, 3, and 4). As for coding schemes, there are many standardized

solutions such as the JPEG/JPEG 2000 and the MPEG/H.26x series. For joint

coding on multiple images, the redundancy among different images should be removed.

The JPEG/JPEG 2000 standards can only reduce the redundancy within a single

image, thus they are not suitable for use here. We use two coding schemes of the

H.264 standards: the Baseline profile and the recently developed Multi-View Coding

(MVC) extension. And the H.264 reference softwares JM 8.5 [2] and JMVC 2.5 [3]

are used, respectively. For both coding schemes, we obtain the coding rates under

three quantization steps (QP=28, 32, and 37). Other key parameters in the coding

experiment are listed in Table 4.

In (35), the rates of individual coding are obtained by performing intra coding on

each image in the cluster, while the rate of joint coding are obtained by performing
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Figure 15: Joint coding performance of the indoor scene “Tables”.
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Figure 16: Joint coding performance of the outdoor scene “Trees”.

predictive coding among the images. For predictive coding, the images in the cluster

are coded in a sequential order. We also use the dependency graphs in the EDM

algorithm to guide the coding process. In a dependency graph each camera is con-

nected with the camera that is most correlated with it, thus, it is beneficial to perform

predictive coding between cameras that are connected in the graph. For example, if

three cameras have a dependency graph as C1 → C2 → C3, for joint coding of the

images {X1, X2, X3}, we take X1 as the reference image and encode it first, and then

encode X2 based on the prediction of X1, and X3 based on the prediction of X2. The

total joint coding rate is a sum of the coding rates of the three images.

When deploying the cameras around a scene, we let their locations and sensing

directions be pairwisely symmetric with respect to the center of the scene. Conse-

quently, we can have several (at least two) groups of cameras that lead to the same

estimated joint coding efficiency (ηH), according to our spatial correlation model and
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the EDM algorithm. For each value of ηH , we perform joint coding on the corre-

sponding groups of cameras, and take the average value of the resulting actual coding

efficiencies (ηR). Comparisons of the corresponding ηH and the average ηR values for

the two scenes are given in Fig. 15 and Fig. 16. For both scenes, although the actual

joint coding efficiency might be smaller than the estimated joint coding efficiency,

the actual joint coding efficiency increases as the estimated joint coding efficiency

increases.

As shown in Fig. 15 and Fig. 16, for the same coding scheme, the value of ηR

increases as the quantization step increases: as larger quantization steps result in more

distortion, they may have more potential bit savings for joint coding. In particular,

compared to the indoor scene “Tables”, the outdoor scene “Trees” contains more

details such as the textures in the tree leafs and the grass fields. Therefore, the coding

performance of the outdoor scene is more sensitive to the extent of quantization. As

shown in the figures, the results for the outdoor scene have more deviation when

the quantization step varies. The H.264 MVC extension is more advanced than the

H.264 Baseline profile, and our experiments also show that the MVC extension always

produces lower bit rates under the same coding parameters. However, the joint coding

efficiency of the MVC extension is not necessarily larger than that of the Baseline

profile. This is because the MVC extension results in smaller denominators in (35)

than the Baseline profile.

In general, the actual joint coding efficiency is proportional to the estimated joint

coding efficiency, and such feature is independent of cluster sizes, coding methods,

and levels of distortion. Therefore, the EDM scheme can effectively predict the joint

coding performances for different sets of cameras for typical applications of wireless

multimedia sensor networks.
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Figure 17: Compression performance vs. network size n and sensing radius R

3.5.2 Compression Performance of DMCP

We now study the compression performance of DMCP in terms of clustered coding

efficiency, which has the form similar to equation (34), except that the joint entropy in

the entire network is equal to the total entropy produced in the entire network after

DMCP is performed. We consider a network with camera sensor nodes uniformly

deployed in a 100×100 region. We vary the network size n and sensing radius R, and

measure the cluster coding efficiency in Fig. 17. We observe that the DMCP incurs

up to 10% - 23 % coding rate reduction in WMSNs. The increase in the clustered

coding efficiency under larger sensing radius can be attributed to the following: larger

sensing radius leads to higher probability of two adjacent nodes having overlapped

FoVs, thus inducing more visual redundancy in the network. The DMCP ensures that

these increased redundancy can be effectively identified and removed, thus giving a

better compression performance. We also observe that the increase in the number

of nodes does not impact the coding efficiency significantly, and thus the DMCP

provides good compression scalability.

We now study the impact of sensing direction ~V and offset angle α on the com-

pression performance of DMCP. The deviation in the sensing directions of multiple
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Figure 18: Compression performance vs. sensing direction ~V and offset angle α

camera sensors directly affects the similarity among their retrieved images. For a

group of sensors with similar sensing directions, there is high probability that they

may capture the similar visual content, thus leading to more redundancy in the net-

work. The DMCP ensures that the sensor nodes with similar directions are grouped

together, aiming to reduce the redundancy to the maximum extent. Fig. 18 depicts

the coding efficiency of DMCP under changing sensing direction patterns. Here, each

sensor node is randomly assigned a sensing direction within a degree region, and wider

region leads to larger direction deviation. We observe that a substantial coding effi-

ciency (10% - 15 %) is achieved even in the worst scenario, e.g., each sensor randomly

selects a direction within a region of 0◦ − 360◦, while the optimal coding scenario

(20% - 29%) occurs when all the cameras have identical sensing directions.

Besides sensing direction, offset angle also has significant impact on compression

efficiency. In Fig. 18, as the offset angle increases, we observe the elevation in

coding efficiency, followed by a gradual decrease. This phenomenon is attributed

to the following: a wide offset angle leads to a large FoV. Thus, there is greater

probability that adjacent cameras cover a large common area. This indicates that

more redundancy exists in the network. Therefore, higher compression performance

is achievable by DMCP. When the offset angle is over a threshold, e.g., 60◦ − 70◦ in
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Figure 19: Average and minimum number of cluster heads covering each node

Fig. 18, the increase in offset angle leads to larger size of nonoverlapped FoVs than

overlapped ones, thus incurring a reduced compression efficiency.

We now investigate the decoding reliability of DMCP by examining the minimum

and average number of CHs covering each camera sensor. As shown in Fig. 19, the

minimum number of CHs for each sensor is 2. Meanwhile, we observe that the average

number of CHs covering each node exceeds 2. This indicates that some camera sen-

sors are included in more than 2 coding clusters, thus providing additional decoding

robustness at data sink. In addition, low variance in the number of CHs is shown in

Fig. 19, which proves the fairness of DMCP in terms of coverage performance.

We next compare DMCP to the hybrid energy-efficient distributed clustering

(HEED) protocol [74] and its modified version MHEED. HEED is a well known

clustering protocol that is specially designed for wireless sensor networks that deal

with scalar data. This protocol constructs a hierarchical network architecture by two

phases: CH selection and cluster member assignment. In the first phase, sensor nodes

are selected as CHs probabilistically. More specifically, each node is given a initial

probability p (i.e., 0.05 in [74]) with which it becomes a CH. In the first iteration,

each sensor uniformly draws a value between 0 and 1 and compares this value with

the initial probability. If this value is less than p, the sensor becomes a CH and all its
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Figure 20: Coding efficiency of DMCP compared with HEED

neighbors are covered. After this iteration, many sensors may still be uncovered since

the initial probability (i.e., 0.05) is very small. Therefore, in each of the following iter-

ations, every sensor doubles p and with this probability the uncovered sensors become

new CHs. When p reaches 1, the first phase completes. In the second phase, each sen-

sor is assigned to the closest CH as its cluster member. Different from DMCP, HEED

protocol is a compression-unaware approach. To fairly compare DMCP with HEED,

we design a modified HEED (MHEED) by incorporating the proposed entropy-based

divergence measure (EDM) scheme. Specifically, MHEED uses the same procedure

as HEED for the CH selection phase. In the second phase, we use the average cluster

entropy, instead of node proximity to the CHs, as the metric to associate sensors with

CHs. That is, each sensor joins the cluster with the minimum average entropy, a

ratio of the estimated joint entropy of the cameras covered by a CH to the number

of cameras it covers.

In Fig. 20 and 21, we measure the coding efficiency of HEED and MHEED,

respectively and evaluate the coding efficiency enhancement of DMCP, compared

with HEED and MHEED, varying the network size n and sensing radius R. Since
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Figure 21: Coding efficiency of DMCP compared with modified HEED

DMCP exploits the inherent correlation structure of multiple cameras, it is expected

that DMCP can achieve higher coding efficiency by finely identifying and properly

selecting a set of clusters that leads to higher compression performance. Accordingly,

as shown in Fig. 20 and 21, DMCP achieves 28%−50% and 20%−40% enhancement,

compared with the coding efficiency of HEED and MHEED, respectively. Meanwhile,

in Fig. 20 and 21, we observe that higher enhancement is achieved under smaller

network size (i.e., smaller camera density because of the fixed deployment area).

This phenomenon is attributed to the fact that smaller camera density leads to higher

variability of the joint entropy of different clusters. In this case, the correlation based

strategy, DMCP, has more evident advantage over compression-unoriented approaches

like HEED and MHEED. Moreover, we observe that less enhancement is achieved in

Fig. 21 than in Fig. 20. This implies that MHEED achieves higher coding efficiency

than HEED. This is as expected because MHEED uses the average entropy as the

metric in selecting CHs, which is superior to just selecting the closest CH, because

the average entropy of a node is a measure of the expected coding performance if this

node is selected as CH. It is also worth to notice that in Fig. 21 the enhancement

under different sensing radius settings is comparable, which indicates MHEED is
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Figure 22: Percentage of cameras covered by more than 2 clusters

less sensitive to the changing sensing radius than HEED because MHEED partially

exploits the correlation of visual information in clustering procedures.

We now investigate the reliability of HEED and MHEED by examining the per-

centage of 2-covered cameras, i.e., the cameras that are covered by more than two

clusters. As shown in Fig. 22, the percentage of 2-covered cameras under HEED

and MHEED is around 30%, comparing with 100% under DMCP. This implies that

DMCP establishes a more robust coding hierarchy than HEED and MHEED. Mean-

while, we also observe a slight elevation in the percentage of 2-covered cameras under

HEED and MHEED as the network size or node density increases. This is due to

the fact that higher node density gives rise to more 2-covered cameras. This could

further increase the percentage of cameras covered by more than two clusters in the

network.
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CHAPTER IV

CORRELATION-BASED SCHEDULING

4.1 Introduction

MAC layer protocols for WMSNs should enable energy-efficient channel access policies

and differentiated scheduling of heterogeneous traffic to support application-specific

QoS requirements [5]. Based on the channel access policies, MAC protocols could be

classified into contention-based protocols and contention-free protocols. Contention-

based protocols are mostly based on variants of the Carrier Sense Multiple Access with

Collision Avoidance (CSMA/CA) protocol. For example, the S-MAC [73] and the T-

MAC [17] protocols are in this type. These protocols alternate between sleep cycles

and listen cycles to save energy in sensor networks, but energy saving is accomplished

at the cost of latency and by allowing throughput degradation. Some contention-based

MAC protocols also provide differentiating network services based on priority levels to

satisfy QoS requirements [54]. However, there is little performance guarantee due to

the random access nature of contention-based protocols. Contention-free protocols are

primarily based on reservation of time slots or channels. The Time Division Multiple

Access (TDMA) is a representative protocol of this class, in which the cluster head

or sink helps in slot assignment, querying particular sensors and maintaining time

schedules. There have been studies on TDMA for sensor networks, such as how to

perform slot allocation [48] and how to customize TDMA for different communication

patterns in sensor networks [35]. We believe that contention-free protocols will be

more promising for providing QoS support in WMSNs.

In this work, we consider a clustered network architecture consisting of pow-

erful multimedia processing hubs as cluster heads and ordinary camera sensors as
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cluster members. Within each cluster, camera sensors report their observations to

the multimedia hubs following TDMA scheduling, while the communication between

multimedia hubs is through different spectrum channels. We believe that such archi-

tecture can facilitate QoS provisioning in WMSNs. Using this network architecture,

we propose a scheduling framework that finds the optimal schedules of camera sen-

sors by leveraging the correlation of visual information. The design principles of this

framework are explained as follows.

The images observed by cameras with overlapped FoVs are correlated, thus leading

to substantial redundancy in the network traffic. To remove such redundancy, camera

sensors can perform inter-camera differential coding with each other by allowing a

camera to encode its image based on the reference of the image from another camera,

so that the coding rate could be reduced. This differential coding rate depends on

the degree of the correlation between the two cameras. As introduced in Chapter 2,

the correlation of visual information among multiple cameras is explicitly measured

by the sensing parameters and locations of cameras, which are independent of image

and coding algorithms. By leveraging this unique characteristic, we can introduce

differential coding in the network scheduling process to reduce the redundancy in the

network.

We propose a scheduling framework consisting of three fundamental problems [66].

The first problem is how to construct a scalable network architecture that improves

spectrum utilization. In a WMSN, a multi-tier network architecture is recommended

[5]. For example, many WMSN testbeds, such as the SensEye [34] and the IrisNet

[47], adopt multi-tiered network topology, and it has been shown to improve energy

efficiency. Therefore, we propose to partition the energy-constrained camera sensors

into multiple clusters with each cluster coordinated by a multimedia processing hub,

which is equipped with higher communication and processing capabilities. Under this

network architecture, the network throughput is enhanced by applying the concept
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of frequency reuse, which allows concurrent transmissions within multiple clusters.

However, in a WMSN, the effectiveness of frequency reuse may be jeopardized by the

constrained resource of camera sensors. More specifically, the number of available

orthogonal channels that camera sensors can switch to is limited by their hardware

specifications and the spectrum availability. On the other hand, vertex coloring theo-

rems [27] imply that the number of orthogonal channels should exceed the maximum

number of neighboring clusters in a network to guarantee that all neighboring clusters

can be assigned with different channels, Therefore, to increase network throughput

of a WMSN, placing hubs at proper locations that facilitate frequency reuse is of

paramount importance.

After hubs are located, our second problem is how to assign each camera to a hub in

such a way that the overall image compression efficiency is enhanced. Specifically, we

consider a joint coding-based camera assignment approach (JCA). In JCA, each hub

acts as a single encoder and perform joint coding on the images collected from multiple

cameras. The coding rate a hub can achieve depends on the correlation among its

member cameras. Specifically, associating a hub with a group of cameras having

high correlation can remove a substantial amount of redundancy and lead to small

coding rate. Therefore, the design of a correlation-based assignment strategy, which

optimizes the global compression performance, is another primary task in WMSNs.

After cameras are assigned to proper hubs, our third problem is how to design an

image gathering schedule within each cluster so that the network lifetime is increased.

Specifically, we design a differential coding-based scheduling approach (DCS). In DCS,

a camera is allowed to wake up at a certain time slot and overhear the on-going trans-

mission of a neighboring camera. After that, it encodes its own image conditionally

based on the prediction of the previously overheard image, and sends its image with

a reduced coding rate. The differential coding rate a camera can generate depends on
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the degree of the correlation between this camera and the one whose image it over-

hears. Thus, the design of a correlation-oriented schedule, which significantly reduces

the differential coding rates, helps to prolong the network lifetime.

The rest of this chapter is organized as follows. Section 4.2 mathematically for-

mulates the problems. In Section 4.3, we propose an algorithm to find the optimal

locations to place the multimedia processing hubs. The camera assignment problem

is investigated in Section 4.4, and the problem of scheduling within a cluster is studied

in Section 4.5. The performance of the scheduling framework is evaluated in Section

4.6.

4.2 Problem Formulation

We propose a correlation-based scheduling framework to efficiently gather the images

generated by camera sensors. This framework consists of three components including

MinMax Degree Hub Location (MDHL), Minimum Sum-entropy Camera Assignment

(MSCA), and Maximum Lifetime Scheduling (MLS). The MDHL problem aims to

find the optimal locations to place the multimedia processing hubs, which operate on

different channels for concurrently collecting images from adjacent cameras, such that

the number of channels required for frequency reuse is minimized. With the locations

of the hubs determined by the MDHL problem, the objective of the MSCA problem

is to assign each camera to a hub in such a way that the global compression gain

is maximized by jointly encoding the correlated images gathered by each hub. At

last, given a hub and its associated cameras, the MLS problem targets at designing a

schedule for the cameras such that the network lifetime of the cameras is maximized

by letting highly correlated cameras perform differential coding on the fly.

4.2.1 Correlation-based Joint Coding and Differential Coding

To remove the redundancy among correlated camera sensors, a group of camera sen-

sors can collaboratively compress their data by joint coding and differential coding.
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Consider a cluster consisting of a multimedia hub with high processing capabilities

and N ordinary camera sensors {v1, . . . , vN}, where each camera vi produces image

Xi. We can perform multi-camera joint coding in the cluster: each camera sends its

individual images to the hub, while the hub acts as a single encoder that takes all col-

lected images as inputs and perform joint coding. We denote the total coding rate of

all the images by R(X1, · · · , XN). According to Shannon’s source coding theorem, the

total coding rate of all nodes within a cluster is lower bounded by the joint entropy of

the observations H(X1, X2, . . . , XN), given by R(X1, · · · , XN) ≥ H(X1, X2, · · · , XN).

On the other hand, two camera sensors can also perform inter-camera differential

coding with each other. For two images Xi and Xj observed by cameras vi and vj , we

can compress Xi based on the prediction of Xj. We denote the resulting differential

coding rate of Xi by R(Xi|Xj), and R(Xi|Xj) satisfies R(Xi|Xj) ≥ H(Xi|Xj), where

H(Xi|Xj) is the conditional entropy of Xi given the knowledge of Xj . The conditional

entropy can be derived from joint entropy as H(Xi|Xj) = H(Xi, Xj)−H(Xj).

Our previous results in Chapter 2 and Chapter 3 show that the joint entropy

for multiple images can be effectively estimated based on the correlation between

cameras, and this correlation is given by a function of camera settings before the

actual images are captured. Specifically, if two cameras Cj and Ck can both observe

an area of interest Pi, a spatial correlation coefficient ρj,k for the observations of Pi

at Cj and Ck is derived as

ρj,k = f(Oj, ~Vj, Ok, ~Vk, Pi) (36)

which indicates that ρj,k is a function of the two cameras’ locations (Oj, Ok) and

sensing directions ( ~Vj, ~Vk) as well as the location of the area of interest Pi.

4.2.2 MinMax Degree Hub Location Problem

Consider a camera network modeled by a graph G = (V, E), where V is a set of

cameras, i.e., V = {v1, v2, ...vn}, and E is a set of links. A link (vi, vj) exists if vi and
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vj are within 1-hop range of each other.

Definition 7. The degree of a hub h, denoted by deg(h), is the total number of hubs

(except h) that reside within the 2-hop range of the hub h.

To facilitate frequency reuse, the neighboring clusters must be assigned with dif-

ferent channels and the cameras must be able to operate on the channels of their

associated clusters. Since the maximum distance between two neighboring clusters

is 2-hop distance, by graph coloring theorems [27], this implies that the maximum

degree of hubs should be less than the available orthogonal channels to ensure the

effectiveness of frequency reuse. For this purpose, we define the MinMax Degree Hub

Location Problem as follows

Definition 8. MinMax Degree Hub Location Problem (MDHL): given a graph G =

(V, E) and a set of potential hub locations F = V , find a subset F ′ ⊆ F such that the

maximum degree of hubs, maxh∈F ′(deg(h)), is minimum, and for all vi ∈ V , there is

at least one hub h ∈ F ′ for which (h, vi) ∈ E.

4.2.3 Minimum Sum-entropy Camera Assignment Problem

After the optimal locations of hubs are determined, our next task is to associate

cameras with proper hubs. Since joint coding rate is lower bounded by joint entropy,

we formulate the camera assignment task by introducing an optimization problem,

namely, Minimum Sum-entropy Camera Assignment Problem (MSCA). Towards this,

we model the camera assignment choices for a hub as a collection of subsets of cameras

within the hub’s 1-hop neighborhood, with each subset associated with a weight,

which is the joint entropy of the cameras in this subset. We adopt the following

notations.

• Se
h: set of cameras exclusively covered by h.

• Sc
h: set of cameras commonly covered by h and other hubs.
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• P (Sc
h): power set of Sc

h, which is a set of all subsets of Sc
h, including empty set

and Sc
h itself.

• Ah: assignment choice set of h, Ah = {Se
h

⋃
W}W∈P (Sc

h
).

Apparently, each hub h may have exponentially many choices (i.e., |Ah| = |P (Sc
h)| ≤

2|V |), and we aim to choose one choice (subset) for each hub so that the total costs

of the choices (the total entropy of the subsets) is minimum. Now, the Minimum

Sum-entropy Camera Assignment problem (MSCA) is formally defined as follows.

Definition 9. Minimum Sum-entropy Camera Assignment problem (MSCA): given

a set V of cameras, k hubs, a collection of assignment choice sets of centers, S =

{Ahi
}ki=1, with each assignment choice set associated with a nonnegative weight , find

a minimum weight S ′ ⊆ S of cardinality k, which covers all elements in V .

4.2.4 Maximum Lifetime Scheduling Problem

Given a hub and its member cameras, each hub will generate an order to schedule

images collections from its members. Our task is to find the optimal schedule such

that the lifetime of the member cameras is maximized.

Definition 10. The lifetime of the member cameras is the time duration when all

the members of a hub keep alive.

Assume that cameras have equal initial energy. The maximization of the lifetime

of the cameras in a cluster is equivalent to minimization of the maximum energy

consumption of the cameras in this cluster. Let Etx(h, vi) denote the energy consumed

by vi to convey its image to h. Etx(h, vi) is a function of {d(h,vi), Rvi
}, in which d(h,vi)

is the Euclidean distance between h and vi and Rvi
is the predicted differential coding

rate of vi. Consequently, we formulate the Maximum Lifetime Scheduling Problem

(MLS) as follows.
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Definition 11. Maximum Lifetime Scheduling Problem (MLS): given a hub h and a

set Ah of cameras assigned to h, find a schedule σ assigning a pair of slots for each

cameras to transmit and overhear in such a way that the maximum energy consump-

tion, maxvi∈Ah
Etx(h, vi), is minimum.

In the following sections, we analyze the complexity of these problems, and then

propose approximation and heuristic algorithms to solve them.

4.3 MinMax Degree Hub Location Problem

In this section, we first prove that MDHL is NP-complete. Next, we formulate MDHL

problem as an integer program (IP). Then, we present an approximation algorithm by

applying the linear relaxation and random rounding technique, which was originally

studied in MAX-2SAT [24] and Covering & Packing problems [52].

4.3.1 NP-completeness

First, the decision version of the MDHL is as follows.

Definition 12. Decision Version of MDHL: given a graph G = (V, E), a set of

potential hub locations F = V , and a positive integer k, determine if there exists a

subset F ′ ⊆ F with the maximum degree of hubs, maxh∈F ′(deg(h)) ≤ k such that for

all v ∈ V , there is at least one hub h ∈ F ′ for which (h, v) ∈ E.

Theorem 7. The MDHL is NP-complete.

Proof. First, we argue that the decision version of MDHL ∈ NP since given a instance

of MDHL, a verification algorithm can efficiently check if each camera has at least

one hub in its neighborhood, and if the maximum degree of hubs is k. Thus, the

MDHL belongs to NP.

We will now show that the Minimum Dominating Set problem (MDS) is polyno-

mial time reducible to MDHL, i.e., MDS ≤P MDHL. An instance of MDS is given
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by a graph G = (V , E), and a positive integer k− 1. The objective is to determine if

there exists a dominating set V ′ ⊆ V such that
∣∣V ′
∣∣ ≤ k− 1 and each element v ∈ V

is a neighbor of at least one element of V ′.

Next, we will construct an instance of MDHL problem from an instance of MDS.

We define sets V , F , E as follows: let V = V
⋃
{u, f ′}, where u and f ′ are new ele-

ments; Let F = V
⋃
{f ′}; Establish a link between u and each element in V as well as

a link between u and f ′, and add these links to E, i.e., E = E
⋃
{(u, f ′)}

⋃
{(u, v)}v∈V .

Then, the instance of MDHL is given by a graph G = (V, E), a set F , and a positive

integer k.

We will now prove that the original instance of MDS is a yes instance if and only

if the MDHL instance we created is also a yes instance. First, suppose the instance

of MDHL has a solution F ′ ⊆ F with maxh∈F ′(deg(h)) ≤ k. By our construction, f ′

is the only 1-hop neighbor of u, and u is the 1-hop neighbor of every element in V . It

indicates that f ′ is the 2-hop neighbor of every element in V . Moreover, since u /∈ F ′,

f ′ will be added in F ′ to cover itself. This implies that f ′ is the element in F ′ that

has the maximum degree k. Meanwhile, since V = V − {f ′}, this indicates that the

instance of MDS has a dominating set V ′ ⊆ V of cardinality less than k − 1. Next,

suppose that there is a dominating set V ′ ⊆ V with
∣∣V ′
∣∣ ≤ k− 1 in the original MDS

instance. By the similar arguments, the degree of the elements in F ′ is at most k in

the constructed MDHL instance.

We now have shown that MDS problem can be solved by the proposed construction

and an algorithm that solves MDHL. Since our construction takes polynomial time,

and MDHL is NP, we can conclude that MDHL is NP-complete.

4.3.2 IP Formulation of MDHL

We first model the MDHL as an integer nonlinear program (INP). Consider a camera

network described by a graph G = (V, E) and a set of potential hub locations F = V .
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First, we define 1-hop neighborhood and 2-hop neighborhood of a camera vi ∈ V ,

respectively.

Definition 13. The 1-hop neighborhood of vi, denoted by S1
i , is a set consisting of

vi and cameras within 1-hop range of vi.

Definition 14. The 2-hop neighborhood of vi, denoted by S2
i , is a set of cameras

within 2-hop range of vi.

We assign a variable xi for each camera v ∈ V , which is allowed 0/1 values. This

variable will be set to 1 iff a hub is placed at the location of vi. Consequently, the

MDHL problem can be formulated as a Integer Nonlinear Program INPMDHL

MIN y (37)

s.t
∑

j:vi∈S1

j

xj ≥ 1, ∀vi ∈ V (38)

∑

j:vi∈S2

j

xixj ≤ y, ∀vi ∈ V (39)

xj ∈ {0, 1}, ∀vj ∈ V (40)

The objective function y is the maximum degree of all hubs ({vi|xi = 1}). The first

constraint states that each camera vi ∈ V must reside within the 1-hop neighborhood

of at least one hub, whereas the second constraint indicates that the degree of each

hub (described in Definition 1) must be less than the maximum value. As the second

constraint (39) is quadratic, the formulated integer program INPMDHL is not linear.

To linearize INPMDHL, the quadratic constraint (39) is eliminated by applying the

techniques proposed in [22]. More specifically, the product xixj is replaced by a

new binary variable wij, on which several additional constraints are imposed. As

a consequence, we can reformulate INPMDHL exactly to a integer linear Program
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IPMDHL by introducing the following linearlization constraints:

∑

j:vi∈S2

j

wij ≤ y, ∀vi ∈ V (41)

wij ≤ xi, wij ≤ xj, ∀vi, vj ∈ V (42)

wij ≥ xi + xj − 1, ∀vi, vj ∈ V (43)

wij ≥ 0, ∀vi, vj ∈ V (44)

and removing the quadratic constraint (39). By relaxing variables xi ∈ {0, 1} to

xi ≥ 0, we get the relaxed linear program LPMDHL consisting of the objective function

(37) along with constraints (38), (41), (42), (43), (44), and xi ≥ 0, ∀vj ∈ V .

4.3.3 Randomized Approximation Algorithm

Given an instance of MDHL modeled by the integer program IPMDHL, the proposed

algorithm (see Algorithm 7) is the following: first solves the relaxed linear program

LPMDHL to get an optimal fractional solution, denoted by (x′, y′), where x′ =<

x′
1,x

′
2, ...x|V |′ >, and round x′

i to integers xi by a random rounding procedure. This

procedure consists of three steps: (i) first set all xi to be 0; (ii) then let xi = 1 with

probability x′
i and execute this step for log(n)+2 times.

Algorithm 7 Approximation Algorithm for MDHL

1: Solve LPMDHL. Let (x′, y′) be the optimum solution.
2: x← 0, j ← 0.
3: while t ≤ log(n) + 2 do

4: xi ← 1 with probability pi ← x′
i, t← t + 1

5: end while

6: Return (x, y)

Theorem 8. Let OPT denote the optimal solution of the MDHL problem. The

proposed algorithm yields a solution of O(log2(n))OPT in expectation

Proof. Let y∗ denote optimal solution to the MDHL problem. Consider any element
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vi ∈ V . Its expected degree follows

E(
∑

j:vi∈S2

j

xixj) = E(xi)E(
∑

j:vi∈S2

j

xj) = E(xi)
∑

j:vi∈S2

j

E(xj) (45)

The first equality holds because vi is not in its own 2-hop neighborhood S2
i by Def-

inition 9 and thus xi and xj are independent. The second equality holds because

of linearity of expectation. Applying union bound, we have the probability that an

element becomes a hub (i.e., xi = 1) when the random rounding is done

Pr[xi = 1] = Pr[
⋃

t≤α+1
xi = 1 at round t] ≤ αx′

i

where α = log(n) + 2. This implies E(xi) ≤ αx′
i. Letting δ = (1 + 1/∆)2, we obtain

the expected degree of vi

E(
∑

j:vi∈S2

j

xixj) ≤ α2
∑

j:vi∈S2

j

x′
ix

′
j ≤ α2y′,

which implies E(
∑

j:vi∈S2

j

xj) ≤ ∆α2(y′ + δ).

Next we consider the probability that an element vi ∈ V has no hub in its 1-hop

neighborhood at round j, that is,

∏

j:vi∈S1

j

Pr[xj = 0 at round j] =
∏

j:vi∈S1

j

(1− x′
j)

≤
∏

j:vi∈S1

j

e−x′

j = e
−

P

j:vi∈S1

j
x′

j
≤

1

e
.

The first inequality results from the inequality (1 − x) ≤ e−x, ∀x ∈ [0, 1]. The

second inequality follows the fact that
∑

j:vi∈S1

j
x′

j ≥ 1. Now, the probability that

an element vi has no hub in its 1-hop neighborhood after the random rounding is

e−(log(n)+2) < 1/4n Then, by union bound, we get

Pr[Some element has no neighboring hub] ≤ 1/4. (46)

This implies that with probability at least 3/4 the Algorithm 7 yields a solution which

is (log(n) + 2)2 times the solution of the linear program LPMDHL. This completes

the proof.
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4.4 Minimum Sum-entropy Camera Assignment

With the knowledge of the hub locations, the MSCA problem aims to associate each

hub with a group of cameras of high correlation such that the total joint coding rate

of the hubs is minimized. We propose a polynomial time heuristic algorithm to solve

the MSCA problem.

4.4.1 Binary Nonlinear Problem Formulation for MSCA

Given a set of hubs F = {hi}
k
i=1, let aij be an indicator variable denoting whether

camera vj is assigned to hi. This value is set to 1 iff vj is assigned to hi. Let Si denote

the set of cameras residing within the one-hop range of hub hi. Consequently, MSCA

problem can be formulated as follows.

MIN
∑

hi∈F

H(
⋃

vj∈V

aijXvj
) (47)

s.t
∑

j:vi∈Sj

aij = 1, ∀vj ∈ V ∀hi ∈ F (48)

aij ∈ {0, 1}, ∀vj ∈ V ∀hi ∈ F (49)

The objective function is the total entropy of the whole network. The first constraint

states that each camera vi ∈ V has to be assigned to exactly one hub.

4.4.2 Polynomial Time Heuristic Algorithm

To solve the MSCA problem, we propose a heuristic algorithm based on greedy ap-

proach (see Algorithm 8). Given a set of cameras V and a set of hubs, F = {hi}
k
i=1.

At each iteration, we calculate the average entropy of the one-hop neighbor set Si

of each hub hi and find the set with the minimum average cost among all hubs. If

the set Si is selected, i.e., the cameras in Si is assigned to hi, we remove hi from the

collection F and update the one-hop neighbor set for the remaining hubs by removing

the cameras covered by hi. By analyzing Algorithm 8, we have the following lemma.
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Lemma 1. Given k hubs, the proposed algorithm takes k iterations to select k disjoint

sets (assignment choices) such that each camera is assigned to exactly one hub.

In each iteration, we need a subroutine that finds a set S minimizing the ratio

of H(S)/ |S|. Since the joint entropy H(S) of a set of cameras can be estimated in

O(n2) iterations by applying the Entropy-based Divergence Measure (EDM) scheme

in Chapter 3, it is easy to prove that the proposed algorithm runs in polynomial time.

Algorithm 8 Heuristic Algorithm for MSCA

1: C ← ∅, F = {hi}
k
i=1

2: while F 6= ∅ do

3: {h∗, S∗
h} ← arg minh∈F{H(Sh)/ |Sh|}.

4: C ← C ∪ S∗
h, F ← F \ h∗, V = V \ S∗

h, updates Si,∀hi ∈ F
5: end while

4.5 Maximum Lifetime Scheduling Problem

In this section, we first prove that the MLS problem is NP-hard by formulating it as

an equivalent binary program. Consequently, we present a randomized approximation

algorithm, which produces a solution ≤ OPT + cmax/e in expectation, where cmax is

the maximum energy consumed by a camera to send its image to the hub without

performing differential coding.

4.5.1 IP Formulation for MLS

Given a hub h and a set A of cameras assigned to it. To save energy, we let the

transmission range of each camera vi ∈ A be the distance between vi and hub h,

denoted by dih. For each camera vi ∈ A, let Ni denote a set of cameras within

vi’s transmission range, and let Xi denote the image gathered by vi. We assign two

variables xi and yji for each camera vi ∈ A, which are allowed 0/1 values. xi is set to

1 iff vi sends its image without overhearing and performing differential coding. yji is

set to 1 iff vi overhears vj’s transmission and encodes its image Xi conditional on vj’s

image Xj. In particular, yii is set to 1 iff vi does not overhear anyone’s transmission.
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Consequently, we formulate the maximum lifetime scheduling problem as an integer

program IPMLS.

MIN z (50)

s.t
∑

j:vi∈Nj

xj ≥ 1, ∀vi ∈ A (51)

∑

j:vi∈Nj

yji = 1, ∀vi ∈ A (52)

yjj = xj ≥ yji ∀vi, vj ∈ A (53)

∑

j:vi∈Nj

yjiH(Xi|Xj)d
2
ih ≤ z, ∀vi ∈ A (54)

xj , yji ∈ {0, 1}, ∀vj , vi ∈ V (55)

The objective function z is the maximum energy consumption of all cameras in

A. The constraint (51) ensures that each camera has at least one camera to overhear.

The constraint (52) states that each camera only overhears once. The equality of the

constraint (53) indicates if vi decides to send its image without performing differential

coding, it will not overhear at all, whereas the inequality xj ≥ yji states that vj

must send its image before vi can overhear vj’s transmission. The constraint (54)

ensures that the energy consumed by each camera vi to send its compressed image of

H(Xi|Xj) bits over the distance dih is less the maximum value z. Slightly different

from the notation of the classic information theory, we let H(Xi|Xi) = H(Xi), which

means that a camera only sends its original image if it does not overhear anyone’s

transmission, i.e., yii = 1. By relaxing the binary variables xj , yji ∈ {0, 1} to xj , yji ∈

[0, 1], we get the relaxed linear problem LPMLS.

4.5.2 Approximation Algorithm for MLS

In this subsection, we propose an approximation algorithm based on the random

rounding techniques. More specifically, we call a camera vi as a broadcaster if its

variable xi = 1, and as a listener if xi = 0. The proposed algorithm works as follows
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Algorithm 9 Approximation Algorithm for MLS

1: Solve LPMLS . Let (x′,y′, z′) be the optimum solution.
2: x← 0, j ← 0.
3: xi ← 1 with probability x′

i, yii ← 1 if xi = 1
4: For each vi ∈ A with xi = 0, find Oj = {vi|y

′
ji 6= 0, xj = 1}

5: if Si 6= ∅ then

6: vj∗ = arg minvj∈Oi
H(Xi|Xj)d

2
ih and yj∗i ← 1

7: else

8: xi ← 1 and yii ← 1
9: end if

10: Return (x,y, z)

(see Algorithm 9): initially, let all cameras vi ∈ A stay as listeners, after solving the

linear problem LPMLS, which yields an optimal fractional solution (x′,y′, z′), let each

camera vi ∈ A become a broadcaster with probability x′
i. Otherwise, the cameras

stay as listeners. For each listener vi, find all broadcasters vj ∈ A that have nonzero

y′
ji, and if such broadcasters exist, assign the listener vi to the broadcaster having the

smallest cost H(Xi|Sj)d
2
ih, otherwise let vi become a broadcaster itself.

Theorem 9. Let OPT denote the optimal solution of the MLS problem. The solution

of the proposed algorithm is at most OPT + H(X)d2
max/e in expectation, where dmax

is the maximum distance between a camera and its assigned hub.

Proof. First, by the pseudo code in Algorithm 8, we can verify that the proposed

algorithm produces a feasible solution, that is, when the algorithm is done, every

camera is either a broadcaster or a listener. To get the expected energy of a camera vi,

we establishes an overhearing list Li for vi, which consists of i’s potential broadcasters

(vj |y
′
ji 6= 0). These potential broadcasters are arranged in an increasing order of the

cost cji = H(Xi|Xj)d
2
ih, j = 1, 2, ..., n, where n is the list length. By this way, we have

y′
1i = x′

1, y
′
2i = x′

2, ..., y
′
ni = x′

n. (56)

The above equalities hold because to reduce the cost of a listener, it has to listen to

the broadcaster that leads to the smallest cost as possible as it can. Now, we get the
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probability that a camera vi has no broadcaster in its overhearing list.

pi =
∏

j:vj∈Li

(1− x′
j) ≤

∏

j:vj∈Li

e−x′

j = e
−

P

j:vj∈Li
x′

j

= e
−

P

j:vi∈Nj
y′

ji =
1

e

The first inequality results from the inequality (1 − x) ≤ e−x, ∀x ∈ [0, 1]. The first

equality in the second line holds because of (56). The last equality follows the fact

that
∑

j:vi∈Nj
y′

ji = 1.

According to the algorithm, if vi is a broadcaster, an event that occurs with

probability x′
i, then vi has a cost cii. Otherwise, vi overhears the first camera in

the list. If this camera is a broadcaster, an event that occurs with probability y′
iiy

′
1i,

then vi has a cost c1i. If the first camera is not a broadcaster and the second is,

an event that occurs with probability y′
ii(1− y1i

′)y′
2i, vi has a cost c2i, and so on. If

there exists no broadcasters in the list, an event that occurs with probability pi, then

vi becomes a broadcaster and has a cost less than cmax = H(x)d2
max. By the fact

∑
j:vi∈Nj

y′
jicji ≤ z′ ≤ OPT , the expected cost of a camera has an upper bound

y′
iicii + y′

iiy
′
1ic1i + y′

iiy
′
2ic2i + ... + y′

iiy
′
nicni + picmax

≤
∑

j:vi∈Nj

y′
jicji + cmax/e ≤ OPT + H(x)d2

max/e.

Note that the solution of the MLS problem only defines the precedence constraints

in the schedule. For example, if yji = 1, this only implies that vj ’s transmitting slot

must be ahead of vi’s, without specifying vj’s or vi’s slot location in the schedule.

Thus, as long as the precedence constraints are satisfied, the cameras’ transmitting

slots can be arranged in any order.
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Figure 23: Differential coding efficiency.

4.6 Performance Evaluation

In this section, we evaluate the performance of the proposed schemes. First, we evalu-

ate the effectiveness of the estimator that predicts the efficiency of differential coding

between correlated cameras. Then, we study the efficiency of the proposed network

deployment approach that consists of the proposed hub placement and camera as-

signment algorithms. Finally, we evaluate the differential coding-based scheduling

algorithm in terms of energy saving.

4.6.1 Validation of the Coding Efficiency Prediction

Since the entropy-based estimator provides predicted coding efficiency for the pro-

posed correlation-based schemes, we need to validate its effectiveness by comparing

the estimated coding efficiency with the actual coding efficiency from practical cod-

ing experiments. Since the performance of the estimator for predicting joint coding

efficiency was tested in the last chapter, we only need to validate its capability to

predict the differential coding efficiency. Suppose image Xi is coded based on the

prediction of image Xj , and we can define an estimated differential coding efficiency

as

ηD
H = 1−

H(Xi|Xj)

H(Xi)
(57)
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Table 5: Parameters for differential coding efficiency prediction

H.264 MVC

RD optimization on Entropy coding CABAC
Search range 128 Reference frames 1

where H(Xi|Xj) is the theoretical coding rate of differential coding. This metric

predicts the percentage of rate savings of differential coding compared to individual

coding. The actual differential coding efficiency is calculated by replacing the entropy

terms in (57) with the corresponding coding rates from our coding experiment.

In our experiment, we deploy a number of camera nodes in a field and record each

camera’s FoV parameters. We deploy the cameras in two scenes, an indoor scene and

an outdoor one. For each scene, we let each camera capture an image at the same

time, and perform coding experiments on the observed images. For any 2 images in

the same scene, we take one image as the reference frame and perform multi-view

coding on the other image. The H.264 Multi-View Coding (MVC) coding standard

with reference software version JMVC 2.5 [3] is used here. To test the performance

of differential coding under different parameters, we set three different quantization

steps (QP=28, 32, and 37). Other key parameters for the encoder are listed in Table

5. The resulting estimated coding efficiency and actual coding efficiency for the two

scenes are plotted in Fig. 23. When the quantization step increases, the actual

coding efficiency is slightly higher. This is because a larger quantization step allows

for more distortion, in which case more bits could be potentially saved from differential

coding. Comparing the results of the two scenes, there is more deviation in coding

efficiency for the outdoor scene when the quantization step varies. We find that this

is because the outdoor scene contains more texture information, so that the coding

performance of the outdoor scene is more sensitive to the extent of quantization.

In both cases, the actual differential coding efficiency is approximately proportional
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Figure 24: Network deployment efficiency.

to the estimated differential coding efficiency. Therefore, the proposed entropy-based

estimation method can be used to predict the performance of inter-camera differential

coding.

4.6.2 Efficiency of the Combined Network Deployment Scheme

In this section, we evaluate the joint performance of the proposed hub placement

and camera assignment algorithms in terms of spectrum utilization enhancement and

image compression efficiency. Specifically, we compare this combined scheme with the

DMCP protocol in our previous work in Chapter 3, in terms of the maximum hub

degree and the overall coding rate. The DMCP selects a set of clusters that minimizes

the total coding rate of all clusters under the assumption that the number of non-

overlapped channels is sufficiently large to support parallel transmissions. Here, we

consider a WMSN network of 50 camera sensors uniformly distributed in a 100m ×

100m region. In Fig. 24, we measure the maximum hub degree and the total coding

rate produced by each scheme under 7 randomly generated network topologies, and

calculate the ratios of the measurements of the combined scheme to those produced

by the DMCP. We observe that the hub degree ratio is less than 0.6, which indicates

the combined solution requires much less orthogonal channels than the DMCP, and
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thus has capabilities to tolerate the significant reduction of the available channels

because of interferences caused by other wireless networks. Moreover, we observe

that the total coding rate ratio is almost 1, which implies that both schemes achieve

comparable compression efficiency. It is also seen in Fig. 24 that the robustness ratio

is less than 1, which means that compared with the DMCP, the combined scheme

results in fewer cameras that are covered by more than one hub.

4.6.3 Energy Saving of Differential Coding-based Scheduling

We now investigate the performance of the proposed differential coding-based schedul-

ing scheme. We test the energy efficiency of a cluster by varying the cluster size,

deployment range, as well as the FoV parameters of camera sensors.

We consider a cluster with camera nodes uniformly deployed in a 10 ×10 meters

region. A hub is placed in the center of the region, and each camera node can

communicate directly with the hub. To test the performance under different cluster

sizes, we deploy 4 to 20 camera nodes within the region. The sensing directions of

the cameras are uniformly chosen between 0°- 360°, while the FoV parameters of all

the cameras are fixed, with the sensing radius R = 30 meters and the offset angle

α = 60°. For each number of camera nodes, we randomly generate 50 instances

and measure the maximum energy consumption per image yielded by our proposed

approximated algorithm. As benchmarks, the optimal schedules are also found by the

Branch and Bound algorithm, an enumeration based technique. These two algorithms

are compared to a conventional TDMA-based scheduling scheme without differential

coding between correlated cameras.

The average maximum energy consumption per image for the above schemes are

shown in Fig. 25. We observe that the maximum energy of the approximated algo-

rithm is comparable with the optimal solution regardless of cluster sizes. Based on

the data in Fig. 25, the average maximum energy of the approximated algorithm is
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Figure 25: Energy consumption for different cluster sizes.

merely 2.75% more than that of the optimal solution. The approximated scheduling

algorithm also leads to 13.68% reduction in terms of average maximum energy con-

sumption compared with the conventional TDMA-based scheduling. This is due to

the fact that the differential coding-based scheduling allows cameras to remove the

redundancy between each other, thus reducing the bits sent to the hub. Moreover,

for the conventional TDMA-based scheduling scheme, the average maximum energy

consumption increases as the cluster size increases. In the case that no correlation is

exploited, the maximum energy consumption is brought by the node that is farthest

away from the hub. Therefore, when the cluster size is large, there is higher probability

for a node to be placed far away from the node, so that the average maximum energy

consumption is higher. However, as the proposed scheme introduces correlation-based

differential coding to reduce the maximum energy consumption, there is no obvious

increase in average maximum energy consumption in the proposed algorithm when

the cluster size increases.

We now study the impact of deployment range and sensing radius on the per-

formance of the proposed scheduling algorithm. We deploy 10 camera sensors in

a cluster, where the deployment range varies from 5 ×5 meters to 40 ×40 meters.
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Figure 26: Energy efficiency vs. deployment range and sensing radius R.

We also vary the sensing radius R to 5, 10, 20, and 30 meters, respectively. Other

parameters are the same as given above. Fig. 26 shows the impact of different de-

ployment range and sensing radius on the energy efficiency, which is given by the

percentage of reduction of the maximum energy of the approximated algorithm over

the conventional TDMA-based scheduling scheme. The energy efficiency increases as

the sensing radius increases, while the energy efficiency decreases as the deployment

range increases. This can be attributed to the following: larger sensing radius and

smaller deployment range can lead to more overlapped FoVs of the cameras and more

redundancy of the observed images, so that higher energy efficiency could be achieved

by differential-coding based scheduling.

The distribution of sensing directions and the offset angle of FoVs for the cameras

can also affect the performance of the proposed scheduling algorithm. To evaluate

these factors, we fix the other parameters in the experiment. (The cluster size is

set to 10 camera sensors, the deployment range is set to 10 ×10 meters, and the

sensing radius is R = 30.) We then measure the average energy efficiency under

changing sensing direction distributions and offset angles. The sensing directions of

each camera sensor is randomly selected within a region of degrees. The deviation
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Figure 27: Energy efficiency vs. sensing direction ~V and offset angle α.

in the sensing directions of multiple cameras can affect the degree of correlation of

the observed images. According to our previous results on correlation in Chapter 2,

sensors with similar sensing directions are likely to have higher degree of correlation,

resulting in more potential bit saving by differential coding. This explains the results

in Fig. 27, where the lowest energy efficiency is obtained when the sensing directions

are selected within 0°- 360°, while the best energy efficiency is achieved when all the

cameras have identical sensing directions. As shown in Fig. 27, the energy efficiency

is also related to the degree of the offset angle in the camera’s FoV. The energy

efficiency increases when the offset angle increases. Since a large offset angle leads to

a wide FoV, there is greater probability that the cameras share large common area

and have high correlation. The energy efficiency reaches the maximum value when

the offset angle reaches 80°- 90°.
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CHAPTER V

CORRELATION-AWARE QOS ROUTING

5.1 Introduction

WMSNs are required to provide QoS support for various applications. Many recent

works have been proposed for providing QoS support at different layers of the com-

munication stack, including QoS routing algorithms [20], QoS MAC protocols [38],

and cross-layer QoS solutions [44]. In this chapter, we emphasize on the design of QoS

routing protocols. Most QoS routing protocols for sensor networks are designed to

support two performance metrics: timeliness and reliability. The SPEED [29] protocol

achieves end-to-end soft real-time communication by maintaining a desired delivery

speed across the sensor network through non-deterministic geographic forwarding.

While SPEED does not consider any energy issues, a real-time power-aware routing

protocol (RPAR) [11] is designed that dynamically adjusts transmission power and

routing decisions to meet the packet deadlines while achieving energy efficiency. An

extension of the SPEED protocol, the MMSPEED [20] provides probabilistic guaran-

tee in the reliability domain through multipath forwarding. A node locally estimate

the end-to-end reachability of a packet, and forwards multiple copies of the packet

to different neighbors to reach the reliability requirements. To support the high data

rate traffic of video sensors, the directional geographical routing algorithm (DGR) [10]

constructs multiple disjoint paths for a video sensor by adjusting the deviation angle

at each hop. High bandwidth data from a video sensor is split and forwarded through

these disjoint paths. However, this algorithm is designed under the assumption that

only one video sensor transmits to the sink at any time.

These existing routing solutions, however, only try to provide QoS guarantee by
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properly distributing the network traffic, while the total amount of data generated by

camera sensors stays the same. As a result, the existing QoS oriented approaches are

still resource-demanding for WMSNs, in which large amounts of images are generated

and forwarded by energy-constrained camera sensors.

To encouter this problem, collaborative multimedia in-network processing [5] is

suggested to reduce the traffic volume by allowing sensor nodes to filter out uninter-

esting events locally or coordinate with each other to aggregate correlated data. More

specifically, in wireless multimedia sensor networks, a certain degree of correlation ex-

ists among the observations at video sensors with overlapped field of views (FoVs)

[15], which leads to considerable data redundancy in network traffic. It is highly

desirable to remove such redundancy through effective data compression techniques.

The joint compression/aggregation and routing is an effective approach to enhance

energy efficiency in sensor networks that deal with scalar data. This approach can be

classified into three categories [49]: distributed source coding (DSC), routing driven

compression (RDC), and compression driven routing (CDR). DSC aims to allocate

the optimal coding rates to minimize the total communication cost of transporting the

information collected by correlated nodes over shortest paths. In RDC, sensors send

data along the preferred paths to the sink while allowing for opportunistic aggregation

wherever the paths overlap. In contrast, CDR let nodes select the paths that allow

for the maximum possible aggregation at each hop. In [49], the performance of

routing with compression is analyzed, and a clustering scheme is designed which

can provide near-optimal performance for a wide range of spatial correlations. The

problem of combining tree routing and data compression with explicit side information

is studied in [41]. In both [13] and [37], the problem of correlated data gathering is

studied, where the goal is to minimize the total communication cost of transporting

the information collected by correlated nodes. The Minimum Fusion Steiner Tree

(MFST) routing algorithm [40] is proposed for energy efficient data gathering with
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aggregation (fusion), in which both the data transmission cost and the cost for data

fusion are optimized for applications of sensor networks. While these results work

well for scalar data in sensor networks, new solutions are needed for the delivery of

visual information in sensor networks. In particular, it is necessary to investigate

methods to reduce the high bandwidth demand of visual information and to provide

QoS support in wireless multimedia sensor networks.

We propose a correlation-aware QoS routing algorithm (CAQR) for the efficient

delivery of visual information in sensor networks [16]. First, a correlation-aware inter-

node differential coding scheme is developed to reduce the amount of traffic injected

into the network, based on the spatial correlation of visual information studied in our

previous work [15]. Then, a correlation-aware load balancing scheme is proposed to

prevent network congestion by splitting the correlated flows that cannot be reduced

to different paths. By integrating these correlation-aware schemes, an optimization

QoS routing framework is proposed with an objective to minimize sensors’ energy

consumption under delay and reliability constraints. In particular, to maximize the

gain of correlation-aware inter-node differential coding in the QoS routing framework,

a packet delivery ratio update scheme is integrated into the routing algorithm.

To the best of our knowledge, our proposed correlation-aware QoS routing scheme

is the first work that explicitly exploits the visual correlation among camera sensors to

achieve energy efficient and OoS guaranteed communications in wireless multimedia

sensor networks.

The remainder of this chapter is organized as follows. In Section 5.2, we review

the spatial correlation characteristics of visual information for camera sensors, and

discuss about video in-network compression methods. In Section 5.3, we introduce

the correlation-aware QoS routing algorithm. Performance analysis and simulation

results are presented in Section 5.4.
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Figure 28: Camera sensors. (a) FoV (b) Overlapped FoVs.

5.2 Preliminaries

In a densely deployed WMSN, there exists correlation among the observations from

video sensors with overlapped field of views (FoV). We summarize the correlation

characteristics of visual information in WMSNs in this section. We introduce sev-

eral metrics to quantify the degree of correlation for visual information in WMSNs.

Followed by the introduction on correlation, we discuss video in-network compression

mechanisms, which aim to reduce the redundancy of video streams in sensor networks.

5.2.1 Metrics for Correlation of Visual Information

A video sensor can only observe the objects within its field of view (FoV). As shown in

Fig. 28(a), the FoV of a video sensor is determined by four parameters: the location

of the video sensor (P ), the sensing radius (R), the sensing direction (~V ), and the

offset angle (α). The sensing process of a video sensor is characterized by projection

from a 3-D scene to a 2-D image, for which the key parameter is the sensor’s focal

length (f).

To simplify the problem, we consider the case that all the video sensors in a

network are homogeneous, i.e., they have the same focal lengths (f), sensing radiuses

(R), and offset angles (α). For two arbitrary video sensors VA and VB with FoVs FA

and FB, suppose at a same time, their observed images are XA and XB, respectively.
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The images XA and XB are correlated if FA and FB are overlapped with each other.

In the following, we introduce two metrics for evaluating the correlation between two

video sensors.

5.2.1.1 Overlapped Ratio of FoVs

The overlapped ratio of FoVs for sensors VA and VB, denoted by rAB, is defined as

the ratio of the overlapped area of the two FoVs to the area of the entire FoV of a

sensor, given by

rAB =
S(FAB)

S(FA)
(58)

where S(FAB) (FAB = FA

⋂
FB) is the overlapped area of FA and FB (as shown in

Fig. 28(b)), and S(FA) is the area of FA. If two video sensors have large overlapped

ratio of FoVs, large portions of the two observed images are correlated. A large

overlapped ratio also indicates that the two sensors are likely to observe an same

event concurrently.

5.2.1.2 Spatial Correlation Coefficient

The overlapped ratio of FoVs provides a simple method to measure the correlation

among multiple video sensors. To further quantitatively evaluate the correlation,

we adopt the spatial correlation coefficient in Chapter 2 [15, 65]. Specifically, if two

video sensors VA and VB can both observe an area of interest FAB, a spatial correlation

coefficient ρA,B between VA and VB was derived as a function of the positions (PA, PB)

and sensing directions ( ~VA, ~VB) of the two video sensors as well as the overlapped FoV

(FAB), i.e.,

ρA,B = f(PA, ~VA, PB, ~VB, FAB) (59)

which is a normalized metric ranging from 0 to 1. In particular, a large ρA,B value

indicates that there is high correlation between the observations at VA and VB.

One promising property of this spatial correlation coefficient is its capability of
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measuring the efficiency of differential coding among spatially correlated video sen-

sors. The observations at video sensors, whether snapshot images or sequences of

video frames, are large in size and have to be coded/compressed as much as possi-

ble prior to transmission. Consider two correlated images (XA and XB) from video

sensors VA and VB. If each sensor compresses its observed image independently, the

resulting coding rates of XA and XB are R(XA) and R(XB), respectively. Since XA

and XB are correlated, XA can be compressed using XB as its prediction. Suppose

the rate of XA becomes R(XA|XB) after differential coding. We define a differential

coding efficiency as the percentage of rate saved by differential coding compared to

individual coding, which is given by

η =
R(XA)−R(XA|XB)

R(XA)
. (60)

As entropy is the lower bound for coding rate, an estimation of the differential

coding efficiency can be obtained from the entropies of the image sources. Similarly,

an estimated differential coding efficiency is defined as

ηH =
H(XA)−H(XA|XB)

H(XA)
=

I(XA; XB)

H(XA)
(61)

where I(A; B) is the mutual information between XA and XB.

It is shown in Chapter 2 and Chapter 3 ([15, 65]) that the mutual information

I(A; B) is proportional to both the overlapped ratio of FoVs (rAB) and the spatial

correlation coefficient (ρAB). We consider the case that the individual entropies are

the same for all sensor nodes (H(XA) = H(XB)), consequently, ηH is proportional

to both the overlapped FoV ratio (rAB) and the correlation coefficient (ρAB). The

differential coding efficiency ηH will be high when both rAB and ρAB are large.

5.2.1.3 Costs for estimating correlation

Both the FoV parameters and the focal lengths for video sensors could be estimated

through calibration methods for distributed camera networks [18]. And this could
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be done at the network deployment stage. As a result, the overlapped ratio of FoVs

in (58) could be estimated without any significant costs. The spatial correlation

coefficient of video sensors, which could be obtained through low computation and

communications costs as shown in [15]. Therefore, the differential coding efficiency

in (61) can be easily obtained.

5.2.2 Video In-network Compression

Due to the huge size of raw visual information, images and video sequences are

compressed prior to transmission. A lot of standardized techniques can be applied

for image and video coding, such as JPEG/JPEG 2000 for coding still images, and

H.26x/MPEG standards for coding video sequences. All these standards are based on

predictive coding concept. In contrast, the distributed video coding technique [23],

which is based on Slepian-Wolf and Wyner-Ziv theories, allows for separate encoding

of correlated sources and joint decoding at the end user. Distributed video coding

(DVC) is introduced to reduce the computational complexity at the encoders, how-

ever, there is a lack of practical implementations of DVC in WMSNs. On the other

hand, there are many studies on reducing the computational complexity on low-power

DSPs for standardized coding techniques such as H.26x/MPEG. For these reasons,

we only consider the standardized coding techniques in our work.

Standardized coding techniques can be classified into intra coding and inter cod-

ing. Intra coding refers to coding techniques that reduce the redundancy within an

image, while inter coding (also called differential or predictive coding) reduces the re-

dundancy among multiple images. Accordingly, a compressed video sequence usually

consists of periodical intra coded reference frames (I frames) and inter coded frames

between reference frames, including forward predicted (P) frames and bi-directional

predicted (B) frames. Inter coding has much higher coding efficiency than intra cod-

ing, consequently, intra coded frames usually result in much larger sizes than inter
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coded frames.

In a network of correlated video sensors, nodes can cooperate with each other

and remove the redundancy among their observations. Specifically, we can perform

differential coding on the intra coded (I) frames between correlated sensors. Since

video sensors that are out of the communication ranges of each other can still observe

a common scene [58], (i.e., they are correlated as shown in Fig. 28(b)), the differential

coding of correlated sensors could be integrated in network layer operations.

Based on the discussions above, flows generated by video sensors could be classified

into two categories:

1. Intra flows: Flows of intra coded video frames. The amount of traffic for an

intra flow might be further reduced by differential coding with correlated video

sensors.

2. Inter flows: Flows of inter coded video frames, for which the amount of traffic

can hardly be further reduced.

Both types of flows need to be forwarded to the sink efficiently under QoS con-

straints.

5.2.3 Energy Consumption Models

The energy consumption for both video communication and processing are not neg-

ligible. Before introducing our proposed routing algorithm, we introduce the energy

consumption models for video communication and compression here.

The energy consumption for transmitting and receiving l bits of data over a dis-

tance d is given as

E(l, d) = 2 · Eelec · l + εamp · d
α
hop · l (62)

where Eelec is the energy needed by the transceiver circuitry to transmit or receive

one bit, εamp is a constant for communication energy, and α is the path loss exponent.
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The energy consumption for processing can be modeled as a function of supply

voltage. Suppose the execution of a task consisting of Ncyc clock cycles, the energy

consumption for processing is estimated as

Eproc(N) = NcycCtotalV
2
dd + Vdd(I0e

Vdd
nVT )(

Ncyc

f
). (63)

The first term in (63) is the switching energy, where Ctotal is the total capacitance

switched by the computation per cycle, and Vdd is the supply voltage. While the

second term in (63) stands for the leakage energy, where f is the clock speed, and I0,

n, K, and c are processor-dependent parameters [64].

The processing burden for video in WMSNs mainly comes from the video encod-

ing and decoding process. Fortunately, the computational complexity of standardized

video codecs has been studied a lot in the literature. From the experimental results

in [26] and [32], the number of clock cycles needed for encoding or decoding a video

frame could be estimated. From these results together with the processor-dependent

parameters in (63), we can estimate the energy consumption for encoding and decod-

ing video frames.

5.3 Correlation-Aware QoS Routing

We propose a correlation-aware QoS routing algorithm (CAQR) for the delivery of

visual information in sensor networks. By utilizing the correlation characteristics of

video sensors, the algorithm achieves energy-efficient delivery of visual information

in sensor networks while satisfying QoS constraints. The CAQR algorithm consists

of three components: correlation groups construction, candidate node selection for

correlation-aware differential coding, and QoS guaranteed next-hop selection with

correlation-aware load balancing.

• Correlation groups construction. When the network is initially deployed, cor-

related video sensors are identified by grouping together the sensors that share

large overlapped FoVs.
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• Intermediate node selection for correlation-aware differential coding. For a video

sensor VA that generates an intra frame XA, an intermediate node VB∗ is se-

lected so that the redundancy in XA is removed by performing correlation-aware

differential coding on XA based on the observation of VB∗ .

• QoS guaranteed next-hop selection with correlation-aware load balancing. To

forward XA to the intermediate node VB∗ for compression and then deliver the

compressed XA to the sink, the best next-hop node is selected, which satisfies the

hop-to-hop QoS requirements while achieving minimum energy consumption.

In particular, a correlation-aware load balancing scheme is applied to prevent

network congestion by splitting the correlated flows that cannot be reduced to

different paths.

5.3.1 Correlation Groups Construction

According to the analysis in Section 5.2, video sensors with large overlapped FoVs

are likely to report the same event concurrently, and they are likely to have high

differential coding gains. We introduce a centralized preprocessing step to cluster

video sensors with large overlapped FoVs into correlation groups. In the following

steps of the routing algorithm, correlation-aware operations are performed among

video sensors that belong to the same correlation groups.

Let each video sensor report its focal length and FoV parameters to the sink. After

receiving these parameters, the sink calculates the overlapped ratio of FoVs (r) (58)

between any two video sensors, so that a matrix of the overlapped ratios (rij)N∗N

could be obtained for a total number of N sensors in the network. We apply the

hierarchical clustering algorithm [33] in the literature. By using the overlapped ratio

of FoVs (rij) as a similarity metric, the hierarchical clustering algorithm iteratively

groups two most similar clusters into a new cluster, and it creates a hierarchy of

clusters which may be represented in a tree structure as shown in Fig. 29. Cutting
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Figure 29: Correlation group construction using hierarchical clustering.

Figure 30: Correlation-aware differential coding.

the hierarchical tree at a given similarity level results in a group of clusters, e.g.,

clusters {V1,V3}, {V2}, and {V4, V5, V6} in Fig. 29. The readers are referred to [33]

for more details of the hierarchical clustering algorithm.

After running the clustering algorithm, the sink broadcasts the results of clustering

and assigns a group ID for each group. Each video sensor will be notified which

correlation group it belongs to and other video sensors’ sensing parameters in the

same correlation group. The correlation groups only need to be constructed once

during the deployment of a WMSN, and the whole algorithm is run at the powerful

sink. Therefore, this procedure is applicable in wireless multimedia sensor networks.

5.3.2 Intermediate Node Selection

The traffic of intra flows from a video sensor could be further reduced through differen-

tial coding with other correlated sensors. We introduce a correlation-aware inter-node

differential coding scheme for the routing of intra flows.
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As shown in the example in Fig. 30, a video sensor VA needs to find a route for its

intra frame XA to the sink. It could find another candidate sensor in the same group

that is closer to the sink to perform differential coding. Suppose sensor VB is in the

same group as VA and its distance to the sink is closer than VA (dBS < dAS). From

our correlation model, we can estimate the differential coding efficiency between VA

and VB, ηAB from (61). If the size of the intra frame XA is IA, we can estimate the

saved bits from differential coding as IA · η. We introduce an energy gain to evaluate

the potential energy efficiency of differential coding between nodes VA and VB:

GE(VA, VB) =
Ecom{IA · ηAB}

Eproc{IA}
. (64)

The numerator in the gain function is the communication energy for the bits that

are saved from differential coding. It stands for the benefits brought by differential

coding. This communication energy is not only related to the number of saved bits,

but also related to the distance and number of hops from sensor VB to the sink. We

can estimate Ecom using the estimated number of hops from node VB to the sink

(N̂hops
B ) and the average one-hop distance (dhop), given by

Ecom{IA · ηAB} = N̂hops
B · E(IA · ηAB, dhop) (65)

where E(IA · ηAB, dhop) is obtained from (62) and N̂hops
B can be estimated by

N̂hops
B = max

(
⌈
dBS

dhop
⌉, 1

)
. (66)

The denominator in (64) is the energy costs for performing differential coding, i.e.,

the processing energy of differential coding at sensor VB, including the decoding of

the intra frame and the differential coding of the intra frame XA with respect to the

frame XB at node VB. The energy for processing is related to video frame size and

video processing hardware. This term could be estimated from equation (63) using

the parameters in [26] and [32].
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For the routing of an intra frame generated at node VA in correlation group G(VA),

we aim to find the best intermediate node in the same group with an objective to

maximize the energy gain of differential coding. This problem can be formulated as

follows.

Differential coding-based intermediate node selection (DCIS) problem

Find : VB∗ = arg max
VB∈G(VA)

GE(VA, VB) (67)

Subject to : dBS < dAS, GE(VA, VB) > 1. (68)

A node VB for differential coding should satisfy two conditions: i) VB is closer

to the sink than VA, which is given as dBS < dAS above; ii) the energy gain for the

differential coding is larger than 1. Among all the nodes in group G(VA) that satisfy

these two conditions, the node that generates the maximum energy gain (VB∗) is

selected as the candidate node for differential coding.

After node VA determines node VB∗ for differential coding, it sends a request

message to VB∗ , and VB∗ will send back a reply message. In this way, VB∗ becomes

an intermediate destination for the intra frames generated by VA. The routing of

intra frames from VA to the sink can then be split into two steps: the intra frames

from VA will be forwarded to VB∗ first; VB∗ will further compress the frame and

then forward it to the sink. In both steps the routes will be chosen to minimize

energy consumption subject to given QoS and load balancing constraints, which will

be explained in Section 5.3.3.

5.3.3 Correlation-aware QoS Routing

We now introduce an integrated QoS routing algorithm for the delivery of visual

information. It allows each node to distributively select the optimal next hop with the

objective of minimizing the energy consumption and satisfying the QoS requirements

in the delay and reliability domain.
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Figure 31: Correlation-aware load balancing.

Suppose a node i needs to forward a video flow to the destination N . (If the flow

needs correlation-aware differential coding, the destination N will be an intermediate

node for differential coding or the sink. In other cases the destination N corresponds

to the sink.) We define the forwarding neighbor set of node i as a set of its neighbors

that are closer to the sink than itself, denoted by Fi. The next hop node is selected

from Fi according to the following rules.

Distributed correlation-aware QoS routing (DCR) problem

Given : i, N, j ∈ Fi, Vid,G(Vid), {R
C
0 , . . . , RC

N}

Find : j∗, RC
ij∗ (69)

Minimize : E(L/RC
ij, dij) (70)

Subject to : L
R·RC

ij

+ tqij < Tij (71)

γ
1−γ

(∆tqij)
2 ≤ (Tij −

L
R·RC

ij

− tqij)
2 (72)

prij ≥ PRij (73)

∑
vj∈L{vj}

xvj ≤ w (74)

The locally optimal next hop j∗ is the node that results in the minimum energy

consumption under local delay, local reliability, and correlation-aware load balancing

requirements. Apart from the optimal next hop, the algorithm also determines a

proper channel coding rate for the link from i to j∗, RC
ij∗, from a set of predefined

channel coding rates {RC
0 , . . . , RC

N}.
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The objective in (70) is to minimize energy consumption. From the energy estima-

tion equation in (62), we can easily obtain the energy consumption for transmitting a

packet of L bits data and header with channel coding rate RC
ij as E(L/RC

ij , dij), where

dij is the hop distance.

In the above problem, equations (71) and (72) are the local delay requirements,

(73) is the local reliability requirement, and (74) is the constraint for correlation-aware

load balancing. We explain each constraint in the following sections.

5.3.3.1 Local delay requirements

We use a geographic based mechanism to map end-to-end delay requirements to local

delay requirements. Suppose a video flow v at node i needs to be delivered to the

destination N within time TiN . The local delay constraint, Tij , is given as

Tij =

(
diN − djN

diN

)
· TiN (75)

where diN is the distance from node i to the destination, and djN is the distance from

node j to the destination.

The delay of a hop is related to the underlying MAC mechanisms. We consider

a contention-free MAC in our context. Under this assumption, the delay of a hop

mainly consists of the transmission delay and the queueing delay. The transmission

delay for a packet from node i to node j can be calculated as L
R·RC

ij

, where L is the

length of the packet, R is the transmission rate, and RC
ij the channel coding rate. We

denote the queueing delay from node i to j by tqij . Then the total delay from node i

to j is given by L
R·RC

ij

+ tqij .

We provide probabilistic guarantee for one-hop delay, in which the probability

that a packet is delivered within deadline should not be below γ. This constraint is

given by

P

(
L

R·RC
ij

+ tqij ≤ Tij

)
≥ γ. (76)
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It can be expressed in an alternative way as

P

(
L

R·RC
ij

+ tqij ≥ Tij

)
≤ 1− γ. (77)

We let node j maintain the delays of packets in a recent period, and from the

delay statistics, we can estimate the average queueing delay tqij , and the variance of

queueing delay (∆tqij)
2. As a result, the average single hop delay is L

R·RC
ij

+ tqij , while

the variance of single hop delay is (∆tqij)
2.

According to one-sided Chebyshev’s inequality, for a random variable X with

mean µ and variance σ2, it satisfies

P (X − µ ≥ k) ≤
σ2

σ2 + k2
, k > 0. (78)

By applying the Chebyshev’s inequality on the left part of (77), we find

P

(
L

R·RC
ij

+ tqij ≥ Tij

)
≤

(∆tqij)
2

(∆tqij)
2 + (Tij −

L
R·Rij

− tqij)
2

(79)

and

Tij −

(
L

R·RC
ij

+ tqij

)
> 0. (80)

Based on (79) and (80), we have derived two constraints to satisfy the probabilis-

tic delay guarantee in (77), which are given in (71) and (72). The condition (80)

corrresponds to the constraint (71). Furthermore, comparing (79) and (77), if the

condition
(∆tqij)

2

(∆tqij)
2 + (Tij −

L
R·Rij

− tqij)
2
≤ 1− γ (81)

is met, the probabilistic delay guarantee inequation (77) could be satisfied. From this

condition we can obtain the constraint (72) in the routing problem.

5.3.3.2 Local reliability requirements

Packet loss at a wireless link is mainly caused by channel errors and packet drops for

congestion control. To combat packet loss caused by channel errors, we incorporate a

114



dynamic channel coding scheme in the routing algorithm to adapt to varying channel

conditions. Apart from selecting the next hop for transmission, the routing algorithm

also selects a proper channel coding rate. The channel coding rate for link i to j,

RC
ij , is chosen from a set of predefined channel coding rates {RC

0 , . . . , RC
N}, where

RC
0 > . . . > RC

N . A smaller channel coding rate indicates more redundancy being

added to a packet and better error resilience performance. Based on the detected link

SINR, the channel coding rate with the minimum redundancy is selected from the

candidate rates that meet the QoS constraints.

For evaluating reliability, we introduce a measure called packet delivery ratio, the

percentage of packets successfully delivered to the destination. If we require that each

hop on a route should provide the same level reliability, the required packet delivery

ratio from node i to node j, PRij , can be estimated as

PRij = PR1/N̂ij (82)

where PR is the required packet delivery ratio given by the applications, and N̂ij is

the estimated number hops from i to the destination if j is selected as its next hop,

i.e.,

N̂ij = max

(
⌈
diN

d̂ij

⌉, 1

)
(83)

where d̂ij is the projection of dij onto the line connecting node i with the sink. Next

we explain how to obtain the value of PR and how to set PR for correlation-aware

differential coding.

An end-to-end video application usually cares if a video frame can be successfully

decoded or not. Therefore, we use the probability that a video frame is successfully

decoded [77] as a metric to evaluate the reliability of frame delivery. We denote this

probability by PD. Suppose a video frame X is packed into n packets for transmission.

It will be decodable only when enough of the n packets are received correctly. We

introduce the parameter frame decodable threshold [77], denoted by DT , to represent
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the percentage of packets needed to decode a frame. This threshold is dependent on

specific video coders and their error recovering capabilities. Let PR be the packet

delivery ratio of each packet. The probability that at least DT percent of the packets

of the frame are successfully delivered, denoted by ϕ(X), is estimated from a function

of n, DT , and PR, given by

ϕ(X) = ϕ(n, DT, PR) =

n∑

i=⌈n·DT ⌉

(
n

i

)
·PRi· (1− PR)n−i. (84)

An intra coded frame is decodable if at least DT percent of the packets are deliv-

ered to the sink. For example, if a video sensor VA has generated an intra frame XA.

The probability that XA is successfully decoded is given as

PD(XA) = ϕ(XA) = ϕ(nA, DT, PRA) (85)

where nA is the number of packets for XA and PRA is the packet delivery ratio for

each packet.

In our problem, given a required PD(XA) from an application, the number of

packets for XA (nA), and the frame decodable threshold (DT ), the required packet

delivery ratio (PRA) is estimated and assigned to each packet for the QoS routing

algorithm.

After correlation-aware differential coding is performed for an intra video frame,

it becomes an inter frame, resulting in reduced packets but more dependency among

frames. Consider the differential coding of frame XA using the prediction of frame

XB. The intra frame XA becomes inter frame X ′
A after differential coding. Suppose

the number of packets in X ′
A is reduced from nA to n′

A in this process. To decode

frame X ′
A at the end user, DT percent of the n′

A packets needs to be successfully

decoded. More importantly, its reference frame XB is also required to be successfully

decoded. Therefore, the probability that frame X ′
A is decodable is given as

PD(X ′
A) = PD(XB)·ϕ(X ′

A) = ϕ(XB)·ϕ(X ′
A)

= ϕ(nB, DT, PRB)·ϕ(n′
A, DT, PR′

A)

(86)
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where nB and n′
A are the number of packets for XB and X ′

A, respectively, and PRB

and PR′
A are their corresponding packet delivery ratios.

To maintain the quality of video frames, the decodable probability of a frame after

correlation-aware differential coding has to be consistent with that before correlation-

aware differential coding. As the decodable probability of a frame is related to the

packet delivery ratio (PR) in (84), we need to update the required packet delivery

ratio (PR) when correlation-aware differential coding is performed. We formulate

a problem to update the required packet delivery ratio (PR) for correlation-aware

coding as follows.

Packet delivery ratio update (PDRU) problem

Given : nA, nB, n′
A, DT, P req

D (XA), P req
D (XB), pb

Find : PRnew
A , PRnew

B (87)

Maximize : E{ηc} (88)

Subject to :

ϕ(nB, DT, PRnew
B ) · ϕ(n′

A, DT, PRnew
A ) ≥ P req

D (XA) (89)

ϕ(nB, DT, PRnew
B ) ≥ P req

D (XB) (90)

We consider the case without correlation-aware coding first. For the two intra

frames XA and XB, suppose their required frame decodable probabilities are P req
D (XA)

and P req
D (XB), which are assigned by applications. Given the number of packets in

these two frames, nA and nB, and the frame decodable threshold (DT ), based on (85),

we can determine the required packet delivery ratios for these two frames, denoted

by PRold
A and PRold

B , to satisfy the required P req
D (XA) and P req

D (XB).

After correlation-aware coding, the two frames become the inter frame X ′
A and the

intra frame XB. Suppose the required packet delivery ratios for X ′
A and XB are PRnew

A

and PRnew
B , respectively. Based on (85) and (86), the frame decodable probability

of XB is ϕ(nB, DT, PRnew
B ), and the frame decodable probability of X ′

A is given by
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ϕ(nB, DT, PRnew
B ) · ϕ(n′

A, DT, PRnew
A ). The resulting frame decodable probabilities

of these two frames should also meet the application requirements, which are given

as constraints in (89) and (90).

As introduced above, the proposed routing algorithm incorporates a dynamic

channel coding scheme, where the channel coding rate is selected based on relia-

bility requirements and channel condition. Therefore, if the value of required packet

delivery ratio is changed, the channel coding rate might need to be updated, which

may further influence the amount of traffic in the network. Taking into account the

effect of channel coding, we introduce a metric called differential coding efficiency

after channel coding as

ηc =
( nB·L

RC
B old

+ nA·L
RC

A old

)− ( nB·L
RC

B new

+
n′

A·L

RC
A new

)

nA·L
RC

A old

(91)

where RC
A old and RC

B old are the channel coding rates of XA and XB without correlation-

aware coding, RC
A new and RC

B new are the channel coding rates of X ′
A and XB after

correlation-aware coding, and L is the packet length. With a similar form as the defi-

nition in (60), this metric describes the percentage of saved bits for correlation-aware

coding considering dynamic channel coding.

To meet the required packet delivery ratio, the channel coding rate (RC) is chosen

based on specific channel conditions (the received SNR and the corresponding bit

error rate). From the many possible solutions of PRnew
A and PRnew

B that meet the

constraints in (89) and (90), we would like to find the ones that maximize the gain of

correlation-aware coding under varying channel conditions. This objective is given in

(88) as the maximization term E{ηc}, the average value of ηc for a range of possible

SNRs.

The packet delivery ratio update problem can be solved by enumerating possible

combinations of PRnew
A and PRnew

B values and finding the best combination that

maximizes the average gain, E{ηc}. First, based on the constraints in (89) and (90),
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we find out the possible combinations of PRnew
A and PRnew

B values that satisfy the

constraints. For each possible combination of PRnew
A and PRnew

B , we estimate the

corresponding channel coding rates, RC
A new and RC

B new. We take the estimation of

RC
A new as an example. If given a certain bit error rate, from a set of predefined channel

coding rates {RC
0 , . . . , RC

N}, we select the largest channel coding rate that satisfies the

required packet delivery ratio (PRnew
A ). After the channel coding rates RC

A new and

RC
B new are estimated, the differential coding efficiency after channel coding in (91)

could be determined for this specific bit error rate. We assume that the distribution of

possible received SNRs and the corresponding bit error rates are known in advance, so

that the average gain E{ηc} can be calculated based on the distribution. The solution

to this problem will be the required packet delivery ratios PRnew
A and PRnew

B that

result in the largest average gain E{ηc}. These solutions are then used in constraint

(73) in the correlation-aware QoS algorithm.

5.3.3.3 Correlation-aware load balancing

The differential coding scheme introduced above can reduce the amount of traffic in

the network if video sensors in a correlation group have high differential coding gains.

For flows from the same correlation group that cannot be further compressed, the

presence of traffic congestion becomes evident in that video sensors from the same

correlation group tend to report the same event and generate traffic concurrently. To

solve this problem, we introduce a correlation-aware load balancing operation. The

basic idea is to split these flows to different paths so that the probability of network

congestion could be reduced. As shown in Fig. 31, two video sensors in a correlation

group, VA and VB share large overlapped FoVs, however, the differential coding gain is

low according to our correlation model. As they are likely to generate large amounts

of traffic concurrently, we can try to split the video flows from the two sensors to

different paths.
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To achieve correlation-aware load balancing, each node keeps a list of source nodes

and their corresponding group IDs that it has generated or routed in a recent period.

Supppose node i wants to find a next hop for a flow generated by node Vid at cor-

relation group G(Vid). Its candidate neighbor, node j, has a list of source nodes of

the flows that it has routed in a recent time period, denoted by (L{vj}). In addition,

each source node vj in the list is associated with its correlation group ID G(vj). Node

j periodically exchanges this list with its neighbors, so that node i is aware of it. For

the current flow which is generated by Vid, node i can check if the candidate j has

routed flows for other nodes in the same correlation group.

We define a variable xvj to indicate if a source node vj is in the same group as

Vid, which is given by,

xvj =





1, if G(vj) = G(Vid) and vj 6= Vid

0, otherwise
(92)

The number of nodes in list L{vj} that are in the same group as Vid can be

expressed as
∑

vj∈L{vj} xvj . For the load balancing purpose, the algorithm should

prefer to choose a next hop node with a smaller
∑

vj∈L{vj} xvj , which, as indicated in

constraint (74), cannot exceed a threshold value w. In this way, for flows from the

same correlation groups that cannot be further compressed, we can penalize the case

that they share the same forwarding node concurrently (e.g., node j2 in Fig. 31),

thereby reducing the possibility of congestion.

5.3.4 Protocol Operation

The proposed CAQR routing algorithm is summarized in Algorithm 10. When a wire-

less multimedia sensor network is deployed, correlation groups are first constructed.

After that, if a sensor VA has a video frame XA to transmit, it encounters two scenar-

ios: i) If XA is an inter frame, VA directly send XA to the sink node through multihop

communications, where the next hops are selected by performing Algorithm 11 that
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solves the DCR problem in Section 5.3.3. ii) If XA is an intra frame, VA selects the

optimal intermediate node VB∗ by solving the DCIS problem in Section 5.3.2. The

QoS constraints for frames XA and XB∗ , which are generated by VA and VB∗ , respec-

tively, are set by solving the PDRU problem in Section 5.3.3.2. Otherwise, if no such

intermediate node can be found, the sensor VA directly send XA to the sink node. In

both cases, Algorithm 11 is executed to find the optimal next hop nodes.

Algorithm 11 is performed as follows. First, each sensor can find out all the next

hop candidate nodes that satisfy the load balancing constraint in (74). For each candi-

date node, the sensor finds out the largest channel coding rate RC
ij from {RC

0 , . . . , RC
N}

such that the reliability constraint (73) can be satisfied. Using this largest channel

coding rate, the sensor checks if the local delay constraints (71) and (72) are met.

If so, this candidate node satisfies all the constraints, and the corresponding energy

consumption in (70), E(L/RC
ij , dij) can be obtained. Then, the candidate node that

results in the smallest energy consumption E(L/RC
ij , dij) is selected as the next hop

node. In cases that no candidate nodes can satisfy all the four constraints, the load

balancing constraint (74) could be relaxed by increasing the threshold w by a small

amount, so that more nodes in the neighbor set could be considered as next hop

candidates.

5.4 Performance Evaluation

As the proposed routing algorithm relies on the accurate prediction of the differen-

tial coding efficiency of practical codecs, we first evaluate the validity of the pro-

posed differential coding efficiency estimation method. Then, we study the gain of

correlation-aware differential coding in the QoS routing algorithm. After these pre-

liminary evaluations, we test the networking performance of the proposed routing

algorithm in terms of delay, frame delivery ratio, and energy consumption.
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Algorithm 10 Correlation-Aware QoS Routing Overview

1: Construct correlation groups as shown in Section 5.3.1.
2: while Sensor VA has frames to transmit do
3: Get an image frame XA at VA.
4: if Type(XA) = intra then
5: if A node VB∗ for differential coding is found by solving the DCIS problem

then
6: Set the QoS constraints for XA and XB∗ by solving the PDRU problem.
7: Send XA from VA to VB∗ by Algorithm 11.
8: Perform differential coding on XA from the prediction of XB∗ .
9: Send XA from VB∗ to the sink by Algorithm 11.

10: else
11: Send XA to the sink by Algorithm 11.
12: end if
13: else
14: Send XA to the sink by Algorithm 11.
15: end if
16: end while

Algorithm 11 Energy Efficient and QoS Guaranteed Next-hop Selection

1: Ci = {j|
∑

vj∈L{vj} xvj ≤ w, j ∈ Fi}
2: for j ∈ Ci do
3: R = {RC

ij|prij ≥ PRij, R
C
ij ∈ {R

C
0 , . . . , RC

N}}
4: if R 6= ∅ then
5: Find {RC∗

ij } = max{RC
ij ∈ R}

s.t. L
R·RC

ij

+ tqij < Tij

γ
1−γ

(∆tqij)
2 ≤ (Tij −

L
R·RC

ij

− tqij)
2

6: end if
7: end for
8: j∗ = arg minj∈Ci

E(L/RC
ij , dij)
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Figure 32: Estimation of differential coding efficiency.

5.4.1 Coding Efficiency Prediction

The correlation and entropy-based framework in Section 5.2 provides a simple way

to estimate the differential coding efficiency between video sensors. To verify the

performance of the proposed method, we compare the estimated coding efficiency to

the actual coding efficiency from practical coding experiments.

We deploy two cameras in a field and record their FoV parameters. The cam-

eras’ sensing radius is 30 meters and the offset angle is 60 degrees. By varying the

locations and sensing directions of the two cameras, different degrees of correlation

can be obtained, resulting in different values of the estimated coding efficiency (ηH)

in (61). At each deployment, we let each camera capture one image, and the actual

differential coding efficiency (η) in (60) is calculated from the coding rates by per-

forming differential coding using the H.264 standard coding algorithm with reference

software JMVC 2.5 [3].

Comparisons of the measured ηH and η values are shown in Fig. 32. In the

experiment, 5 values of estimated differential coding efficiency ηH are obtained, and

for each ηH , 3 different groups of images are used for differential coding. The coding
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rates of differential coding is obtained under two quantization steps (QP= 28 and

40), where a small quantization step corresponds to better image quality and larger

coding rate.

According to the data points in Fig. 32, if given the same prediction of ηH , we

find that a larger quantization step results in larger values of actual coding efficiency.

Since larger quantization steps allow for more distortion, they may have more bit

savings for differential coding. When the quantization step is fixed, the actual coding

efficiency (η) is approximately proportional to the predicted coding efficiency (ηH).

Therefore, the actual differential coding efficiency η can be predicted by a linear

function of ηH , given by

η = k · ηH (93)

where k is a ratio that depends on the performance of specific video encoders as well as

the encoder parameters (e.g., quantization step). By performing linear regression on

the data points in Fig. 32, we find that k = 0.31 for QP = 28 and k = 0.43 for QP =

40. Based on the value of k, we find that the average absolute error for this prediction

method is 0.01 and the worst case error is 0.03. This linear relationship between

the predicted results and experimental performance validates the applicability of the

proposed coding efficiency prediction method.

5.4.2 Coding Efficiency in QoS Routing

In this section, we evaluate the gain of correlation-aware coding when it is imple-

mented in the QoS routing algorithm. We find solutions to the packet delivery ratio

update problem in Section 5.3.3, and based on the updated required packet delivery

ratio, we test the best average differential coding efficiency after channel coding in

(91).

The parameters in the packet delivery ratio update problem (88) are determined

as follows. The average size of an intra frame is determined from the statistics of
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Figure 33: Differential coding efficiency after channel coding (DT=0.75).

the video traces in [55]. The payload length of a packet is set to 50 Bytes. The

number of packets of intra frames XA and XB, nA and nB, can be estimated from

the average size of the frame and the packet length. As for the number of packets

of the coded inter frame X ′
A, n′

A, it is calculated from nA and the differential coding

efficiency η, which is given by n′
A = nA · (1− η). We use a series of block codes with

structures (n, k, t) [36] for dynamic channel coding. The block length is set to 127,

and the number of correctable bits t varies from 1 to 31. A single hop scenario with

BPSK modulation is considered, where the received SNR is assumed to be uniformly

distributed between -5 dB and 15 dB.

The required frame decodable probability (PD) is assigned by specific applications.

We assume that the required PD for XA and XB are the same, and use three different

PD values for the test: 0.7, 0.8, and 0.9. The frame decodable threshold DT is

related to the error recovering capability of video decoders. Here DT is set to two

values: 0.75 and 0.9. Let the differential coding efficiency η (without channel coding)

vary from 0 to 0.5. For each combination of PD, DT , and η, we solve for the best

required packet delivery ratio (PR) for correlation-aware coding, so that the average

differential coding efficiency after channel coding (E{ηc}) can be obtained.
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Figure 34: Differential coding efficiency after channel coding (DT=0.9).

Fig. 33 and Fig. 34 show the results of E{ηc} as a function of η. In both figures,

a dotted line is plotted as a benchmark line that corresponds to E{ηc} = η. This

line can represent the case of error-free channels: if no channel coding is needed,

ηc is always equal to η. The other lines in Fig. 33 and Fig. 34 show the average

differential coding efficiency in lossy channel conditions. For different combinations

of PD and DT values, the average differential coding efficiency after channel coding

is close to the benchmark line. It indicates that by properly updating the required

packet delivery ratio, correlation-aware coding can still reduce the traffic load in the

network. Since there is only a little fluctuation of the lossy-channel case compared

to the benchmark line, the efficiency of differential coding after channel coding (ηc)

could still be approximated by the original differential coding efficiency (η).

5.4.3 Correlation-Aware QoS Routing Algorithm

The performance of the proposed CAQR algorithm is then evaluated using a dis-

tributed network simulator in Java. In a field of 100m ×100m, 49 video sensors are

deployed in a grid structure, and a sink node is placed in a corner of the field. The
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sensing directions of the video sensors are uniformly chosen so as to ensure full cov-

erage of the field. From the sensing parameters of the video sensors in Table I, we

can obtain the correlation parameters, i.e., the ratio of overlapped FoVs (58) and the

estimated differential coding efficiency (93). After these parameters are calculated,

video sensors are clustered into correlation groups as discussed in Section 5.3.1.

The traffic for the video sensors is generated based on the features of video surveil-

lance and environmental monitoring applications. Specifically, we place a target

within the field and let it move around according to the Random Waypoint Mo-

bility model where the pause time is set to 0. In this way a sequence of events

can be generated, where each event is tagged by the location of the target and the

corresponding timestamp. A video sensor is triggered to capture an image when it

detects the event in its FoV. By launching the target from 10 different locations, we

can generate 10 sequences of events representing different network traffic scenarios.

In addition, the size of a captured video frame is in QCIF format with resolution

176×144, while the size of an encoded video frame is simulated based on the video

traces provided in [55]. If correlation-aware differential coding is performed, the size

of a frame is updated based on the actual coding efficiency, which is obtained from

(93).

Other key parameters for the simulation of the proposed algorithm are given as

follows. The bandwidth of the channel is set to 1 Mb/s, and the transmission range

is set to 15 meters. For the MAC layer, we use the TDMA scheduling algorithm for

sensor networks in [19], and the length of a time slot is set to 20 ms. The parameters

for the communication energy consumption model in (62) are Eelec = 50 nJ/b, ε = 10

pJ/b/m2, and α = 2. As for the energy consumption for processing in (63), the

parameters in [64] and [56] are used, which are given as follows: Ctotal = 0.67 nF,

I0 = 1.196 mA, VT = 26 mV, K = 239.28 MHz/V, and c = 0.5 V. To evaluate the

costs for performing differential coding between correlated sensors in (64), we need
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Table 6: Parameters for correlation-aware QoS routing

Offset angle 60 Image size 176×144
Sensing radius 30 Intra period 2

Transmission rate 1 Mbps DT 0.8
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Figure 35: Average delay for correlation-aware QoS routing.

to know the number of clock cycles (Ncyc) for processing a video frame. From the

experimental results in [26] and [32], we have estimated that for QCIF sequences, the

number of clock cycles needed for encoding a frame is 2.3 Mcycles, while the number

of clock cycles needed for decoding a frame is 0.14 Mcycles.

We evaluate the performance of the CAQR algorithm under varying traffic load

and different QoS requirements. For comparison, we design two other relevant routing

algorithms: QoSR and QoSR-O. The QoSR algorithm is the QoS routing algorithm in

Section 5.3.3 without any correlation-aware operations. The QoSR-O algorithm is the

QoSR algorithm added with opportunistic compression: video sensors send their data

along paths chosen by the QoSR algorithm, and in the routing process, if a relay node

finds that a frame is eligible for differential coding based on (64), correlation-aware

differential coding is performed.

In the simulation we change the amount of traffic injected in the network by

adjusting the source coding rates of the video frames. More specifically, the source
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coding rates are adjusted by varying the quantization steps (QP) of video coding. A

larger quantization step corresponds to more distortion in an image, resulting in a

smaller coding rate. Based on the video traces for QCIF frames in [55], when QP

changes from 28 to 40, we have estimated that the size of an encoded I frame ranges

from around 2 ×104 bits to 0.5 ×104 bits. We also found from the traces [55] that

in average the size of an encoded P frame is around 0.2 times that of an encoded I

frame. These statistics are used to set the coding rates in the simulation. For each

rate setting, experiments on the aforementioned 10 different sequences of events are

launched, and we measure the average performance of the 10 sequences of events.

Fig. 35 shows the average delay under different source coding rates, where in Fig.

35 (a) the deadline is set to 1 second and in Fig. 35 (b) the deadline is set to 0.5

second. In both cases we only consider the delay of packets that are received within

the deadline. It can be found that the average delay increases as the source coding rate

increases. Although the QoSR-O algorithm performs opportunistic differential coding

along routing paths, it does not bring much performance enhancement compared to

the QoSR algorithm. The proposed CAQR algorithm fully exploits the correlation

in wireless multimedia sensor networks, and reduces the transmission of redundant

information as much as possible. Therefore, it is seen in Fig. 35 that the proposed

algorithm results in less average delay compared with the QoSR and the QoSR-O.

Next we evaluate the energy consumption of the proposed routing algorithm.

The total energy consumption consists of the communication energy for sending and

receiving packets and the energy for processing the video frames. If given the same

event, the processing energy for sensing video frames and the energy for encoding local

video frames will be the same for CAQR, QoSR, and QoSR-O, whereas differential

coding along routing paths will introduce extra processing energy for CAQR and

QoSR-O. Therefore, when calculating the total energy consumption, we just consider

the communication energy and the processing energy for differential coding along
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Figure 36: Average energy consumption for correlation-aware QoS routing.
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Figure 37: Frame delivery ratio for correlation-aware QoS routing.

routing paths. Fig. 36 shows the average energy consumption for each received image

frame. Although differential coding along routing paths introduces extra processing

energy, it is performed only when there is considerable energy gain, as indicated in the

gain function (64). From the results in Fig. 36, we find that the CAQR and QoSR-O

algorithms result in less average energy consumption. The proposed CAQR algorithm

is the most energy efficient one since it reduces the transmission of redundant bits

as much as possible. We also find that the energy saving for the CAQR algorithm is

more obvious when the traffic load is heavy in the network.

We now evaluate the quality of received visual information at the sink under differ-

ent reliability requirements. We set the deadline to 1 second, and vary the probability

130



0 10 20 30 40
0

0.2

0.4

0.6

0.8

1

(a)

Index

P
er

ce
nt

ag
e 

of
 d

ec
od

ab
le

 fr
am

es

0 10 20 30 40
0

0.2

0.4

0.6

0.8

1

(b)

Index

P
er

ce
nt

ag
e 

of
 d

ec
od

ab
le

 fr
am

es

No load balancing
CAQR

No load balancing
CAQR

Figure 38: Percentage of decodable frames for different events.

that a video frame is successfully decoded, PD in Section 5.3.3, to 0.7 and 0.85, re-

spectively. For each reported image frame, we count the number of received packets

within the deadline. If the percentage of received packets is above the frame decod-

able threshold (DT), we deem that this frame is successfully received and decoded at

the sink. Based on the number of decoded frames, we can obtain the percentage of

successfully decoded video frames (denoted by frame delivery ratio) for each experi-

mental setting. Fig. 37 shows the average frame delivery ratio of the 10 sequences of

events under different source coding rates. As the amount of traffic injected into the

network increases, the frame delivery ratio decreases. Comparing the results in Fig.

37(a) and Fig. 37(b), the proposed CAQR algorithm shows more advantage when

the reliability requirement is high. When the reliability requirement is high, more

bits should be transmitted to combat the wireless channel errors, and thus, more

benefits can be yielded by reducing the traffic through correlation-aware differential

coding. On average, the proposed CAQR algorithm improves the frame decodable ra-

tio by 11.4% compared to QoSR, and by 8.5% compared to the opportunistic QoSR-O

algorithm.

In particular, we study the effect of the correlation-aware load balancing opera-

tion in Section 5.3.3. We introduce a metric called event reliability to facilitate this

131



evaluation. Suppose at a certain timestamp, multiple correlated video sensors are

triggered to report the same event, and each video sensor reports one frame. We

denote the total number of frames for this event by NE. We denote the number

of frames that are successfully decoded at the sink by nE . The event reliability is

defined as the percentage of decodable frames for an event, denoted by nE/NE. We

evaluate the event reliability of the whole CAQR algorithm and the CAQR algorithm

without correlation-aware load balancing. From the 10 sequences of events mentioned

above, we test the performance for two of the sequences that generate relatively larger

amounts of traffic. The resulting event reliability for these two sequences of events

are plotted in Fig. 38(a) and (b). It can be seen that for several events, the event

reliability for CAQR without load balancing has more degradation than the whole

CAQR algorithm. This result could be explained from the design of the correlation-

aware load balancing scheme. In case of large amount of traffic, a routing path could

possibly fail because of congestion. As the correlation-aware load balancing splits

correlated images that cannot be further compressed to different paths, multiple im-

ages describing the same event could have more chance to be delivered to the sink

simultaneously, and in this way the event reliability could be improved.

From the above evaluation on delay, energy, packet delivery ratio, and event reli-

ability, we conclude that exploiting correlation of visual information in a WMSN can

enhance network performance, especially when the traffic load is heavy or the QoS re-

quirements are stringent. By incorporating correlation-aware differential coding and

load balancing in the routing process, the CAQR algorithm provides an effective way

to improve the quality of visual information received at the sink.
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CHAPTER VI

CONCLUSION

6.1 Research Contributions

Wireless multimedia sensor networks requires the design of energy-efficient commu-

nication protocols while providing quality of service support for various applications.

A major challenge to achieve this design goal is the difficulty to process and deliver

the huge amount visual information on resource-constrained sensor nodes. To address

this challenge, this thesis proposes a correlation-based communication framework by

leveraging the spatial correlation of observations from camera sensors in WMSNs.

A novel spatial correlation model for visual information for WMSNs is proposed

in Chapter 2. In WMSNs, multiple camera sensors are deployed to provide multi-

ple views, multiple resolutions and enhanced observations of the environment, and

there exists correlation among the visual information observed by camera sensors

with overlapped field of views. Based on the sensing model and deployment infor-

mation of camera sensors, a spatial correlation coefficient is derived to describe the

degree of correlation between camera sensors, which could be obtained through low

computation and communication costs. As part of the correlation model, how much

information can be gained from multiple camera sensors is also investigated. The con-

cept of entropy (a measure of the amount of information) is used in the analysis of

this problem. We propose a correlation-based approach to estimate the joint entropy

of multiple cameras. It is found that cameras with larger degree of correlation lead to

less joint entropy. Based on the analysis of joint entropy, a correlation-based camera

selection scheme is designed. It selects the minimum number of sensors to report to

the sink, such that the amount of information gained at the sink can be maximized.
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In Chapter 3, a collaborative image compression framework is designed to reduce

the redundancy among correlated cameras. The framework consists of an entropy-

based divergence measure (EDM) and a distributed multi-cluster coding protocol

(DMCP). The EDM utilizes the results from the above correlation model, and pre-

dicts the compression efficiency of performing joint coding of images from correlated

cameras. Utilizing the predictions from EDM, the DMCP partitions the entire net-

work into a set of coding clusters, such that the global coding gain is maximized.

Simulations show that the framework can bring in promising coding gains. The pro-

posed image compression framework is independent of specific image types and coding

algorithms, thereby providing a generic mechanism for image compression in WM-

SNs. Experimental results on commercial video coding standards have shown that

the EDM can effectively predict the efficiency of joint coding, i.e., the percentage

of bandwidth that can be saved through coding among correlated cameras. Further

simulation results show that using the joint coding efficiency as a clustering metric,

the DMCP protocol can achieve better performance than other common clustering

algorithms.

In Chapter 4, the correlation of visual information is utilized to design a net-

work scheduling scheme to maximize the lifetime of WMSNs. The scheduling scheme

consists of three components including MinMax Degree Hub Location (MDHL), Min-

imum Sum-entropy Camera Assignment (MSCA), and Maximum Lifetime Scheduling

(MLS). First, the MDHL problem finds the optimal locations to place the multimedia

processing hubs, which operate on different channels for concurrently collecting im-

ages from adjacent cameras, such that the number of channels required for frequency

reuse is minimized. With the locations of the hubs determined by the MDHL prob-

lem, the objective of the MSCA problem is to assign each camera to a hub in such a

way that the global compression gain is maximized by jointly encoding the correlated

images gathered by each hub. At last, given a hub and its associated cameras, the
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MLS problem targets at designing a schedule for the cameras such that the network

lifetime of the cameras is maximized by letting highly correlated cameras perform dif-

ferential coding on the fly. Approximation and heuristic algorithms are proposed to

solve the three problems, and their corresponding performances are evaluated through

simulations.

To further exploit the correlation characteristics in WMSNs in communication

protocols, in Chapter 5, a correlation-aware QoS routing algorithm is introduced to

efficiently deliver visual information under QoS constraints. First, a correlation-aware

inter-node differential coding scheme is introduced to remove traffic redundancy along

routing paths. Then, a correlation-aware load balancing scheme is proposed to prevent

network congestion by splitting the correlated flows that cannot be reduced to dif-

ferent paths. These correlation-aware operations are integrated into an optimization

QoS framework that minimizes energy consumption subject to delay and reliability

constraints. It has been shown in simulation results that correlation-aware QoS rout-

ing improves the energy efficiency and the received quality of visual information at

end users.

6.2 Future Work

In the future we intend to broadly address the problem of multimedia communica-

tion and processing in WMSNs. An intrinsic feature of wireless multimedia sensor

networks is the coexistence of heterogeneous types of traffic such as video streams,

snapshot images, audio streams, and scalar data. Different types of sensors capture

different aspects of the environment, and they can provide complementary informa-

tion which is not available from a single type of sensor. Heterogeneous types of traffic

may have different quality of service requirements and may subject to different trans-

mission and scheduling policies. As an extension of the work in this dissertation,

we can exploit the correlation that exists among different types of media to design
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efficient communication protocols. Furthermore, we can perform analytical study on

the relationships among multimedia in-network processing, energy consumption, and

QoS networking protocols, and as a result of this study, optimal solutions will be

developed that integrates multimedia in-network processing together with the under-

lying networking protocols. These research directions are explained in more details

below.

• Inter-media correlation-based communication. Apart from the correlation of

visual information mentioned above, different types of observations may be

correlated with each other, e.g., video and audio signals could be triggered

by the same source or collected over a common geographical region. If the

observations from different media are correlated, they can be grouped together

to improve the performance of multimedia applications. For example, many

target detection and tracking systems employ both audio and video sensors, and

it has been shown that the fusion of audio and video measurements can improve

the tracking performance [76]. Streams from different types of media may also

have different importance levels [7]. In good lighting condition, video analysis

may be more useful in detecting human than audio analysis; while in a dark

environment, information observed by audio sensors could be more useful. We

can study the correlation of information observed by different types of sensors.

More specifically, we will address the problems of determining which media

streams are correlated, estimating the degree of correlation, and evaluating

the confidence levels of different media streams. And we will further develop

rate-distortion models for heterogeneous multimedia streams. These studies

will then be utilized to develop efficient rate control and scheduling schemes

for heterogeneous sensors, so that the limited resources in WMSNs could be

properly allocated to different types of media to guarantee quality of service.
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• Integration of collaborative multimedia in-network processing and networking

protocols. The huge amount of multimedia traffic poses a major challenge for the

communication in multimedia sensor networks. To reduce the amount of traf-

fic injected into a sensor network, various collaborative multimedia in-network

processing schemes have been introduced, where sensor nodes could filter out

uninterested data independently or coordinate with each other to aggregate

correlated data [5]. The performances of multimedia in-network processing and

networking protocols are related in several ways. As the processing of multime-

dia content needs intensive computation, the energy consumption for processing

is not negligible. It is worthwhile to investigate how to allocate sensors’ limited

power to processing and communication. Multimedia in-network processing re-

moves the redundancy of traffic at the expense of introducing extra processing

delay, and the reduced traffic could be more prone to channel errors. Thus,

multimedia in-network processing influences the performance of QoS commu-

nication protocols, which usually aim to provide QoS support in the real-time

and reliability domain. We intend to perform comprehensive analysis on the

benefits and costs of multimedia in-network processing, and more importantly,

on the trade-offs between in-network processing and providing QoS support of

networking protocols. Followed by these analytical studies, we expect to find

integrated solutions to optimize the performance of multimedia in-network pro-

cessing together with the underlying networking protocols. In this way, we can

better utilize the limited resources in WMSNs to provide satisfactory quality

for various multimedia applications.
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