1,444 research outputs found

    A general graphical user interface for automatic reliability modeling

    Get PDF
    Reported here is a general Graphical User Interface (GUI) for automatic reliability modeling of Processor Memory Switch (PMS) structures using a Markov model. This GUI is based on a hierarchy of windows. One window has graphical editing capabilities for specifying the system's communication structure, hierarchy, reconfiguration capabilities, and requirements. Other windows have field texts, popup menus, and buttons for specifying parameters and selecting actions. An example application of the GUI is given

    Parallel Architectures for Planetary Exploration Requirements (PAPER)

    Get PDF
    The Parallel Architectures for Planetary Exploration Requirements (PAPER) project is essentially research oriented towards technology insertion issues for NASA's unmanned planetary probes. It was initiated to complement and augment the long-term efforts for space exploration with particular reference to NASA/LaRC's (NASA Langley Research Center) research needs for planetary exploration missions of the mid and late 1990s. The requirements for space missions as given in the somewhat dated Advanced Information Processing Systems (AIPS) requirements document are contrasted with the new requirements from JPL/Caltech involving sensor data capture and scene analysis. It is shown that more stringent requirements have arisen as a result of technological advancements. Two possible architectures, the AIPS Proof of Concept (POC) configuration and the MAX Fault-tolerant dataflow multiprocessor, were evaluated. The main observation was that the AIPS design is biased towards fault tolerance and may not be an ideal architecture for planetary and deep space probes due to high cost and complexity. The MAX concepts appears to be a promising candidate, except that more detailed information is required. The feasibility for adding neural computation capability to this architecture needs to be studied. Key impact issues for architectural design of computing systems meant for planetary missions were also identified

    Automatic specification of reliability models for fault-tolerant computers

    Get PDF
    The calculation of reliability measures using Markov models is required for life-critical processor-memory-switch structures that have standby redundancy or that are subject to transient or intermittent faults or repair. The task of specifying these models is tedious and prone to human error because of the large number of states and transitions required in any reasonable system. Therefore, model specification is a major analysis bottleneck, and model verification is a major validation problem. The general unfamiliarity of computer architects with Markov modeling techniques further increases the necessity of automating the model specification. Automation requires a general system description language (SDL). For practicality, this SDL should also provide a high level of abstraction and be easy to learn and use. The first attempt to define and implement an SDL with those characteristics is presented. A program named Automated Reliability Modeling (ARM) was constructed as a research vehicle. The ARM program uses a graphical interface as its SDL, and it outputs a Markov reliability model specification formulated for direct use by programs that generate and evaluate the model
    corecore