43,398 research outputs found

    On cubic bridgeless graphs whose edge-set cannot be covered by four perfect matchings

    Get PDF
    The problem of establishing the number of perfect matchings necessary to cover the edge-set of a cubic bridgeless graph is strictly related to a famous conjecture of Berge and Fulkerson. In this paper we prove that deciding whether this number is at most 4 for a given cubic bridgeless graph is NP-complete. We also construct an infinite family F\cal F of snarks (cyclically 4-edge-connected cubic graphs of girth at least five and chromatic index four) whose edge-set cannot be covered by 4 perfect matchings. Only two such graphs were known. It turns out that the family F\cal F also has interesting properties with respect to the shortest cycle cover problem. The shortest cycle cover of any cubic bridgeless graph with mm edges has length at least 43m\tfrac43m, and we show that this inequality is strict for graphs of F\cal F. We also construct the first known snark with no cycle cover of length less than 43m+2\tfrac43m+2.Comment: 17 pages, 8 figure

    Counting dimer coverings on self-similar Schreier graphs

    Get PDF
    We study partition functions for the dimer model on families of finite graphs converging to infinite self-similar graphs and forming approximation sequences to certain well-known fractals. The graphs that we consider are provided by actions of finitely generated groups by automorphisms on rooted trees, and thus their edges are naturally labeled by the generators of the group. It is thus natural to consider weight functions on these graphs taking different values according to the labeling. We study in detail the well-known example of the Hanoi Towers group H(3)H^{(3)}, closely related to the Sierpi\'nski gasket.Comment: 29 pages. Final version, to appear in European Journal of Combinatoric

    Regularity of Edge Ideals and Their Powers

    Full text link
    We survey recent studies on the Castelnuovo-Mumford regularity of edge ideals of graphs and their powers. Our focus is on bounds and exact values of  reg I(G)\text{ reg } I(G) and the asymptotic linear function  reg I(G)q\text{ reg } I(G)^q, for q≥1,q \geq 1, in terms of combinatorial data of the given graph G.G.Comment: 31 pages, 15 figure

    Vertex decomposable graphs, codismantlability, Cohen-Macaulayness and Castelnuovo-Mumford regularity

    Get PDF
    We call a (simple) graph G codismantlable if either it has no edges or else it has a codominated vertex x, meaning that the closed neighborhood of x contains that of one of its neighbor, such that G-x codismantlable. We prove that if G is well-covered and it lacks induced cycles of length four, five and seven, than the vertex decomposability, codismantlability and Cohen-Macaulayness for G are all equivalent. The rest deals with the computation of Castelnuovo-Mumford regularity of codismantlable graphs. Note that our approach complements and unifies many of the earlier results on bipartite, chordal and very well-covered graphs
    • …
    corecore