7 research outputs found

    Complete Derandomization of Identity Testing and Reconstruction of Read-Once Formulas

    Get PDF
    In this paper we study the identity testing problem of arithmetic read-once formulas (ROF) and some related models. A read-once formula is formula (a circuit whose underlying graph is a tree) in which the operations are {+,x} and such that every input variable labels at most one leaf. We obtain the first polynomial-time deterministic identity testing algorithm that operates in the black-box setting for read-once formulas, as well as some other related models. As an application, we obtain the first polynomial-time deterministic reconstruction algorithm for such formulas. Our results are obtained by improving and extending the analysis of the algorithm of [Shpilka-Volkovich, 2015

    Deterministically Factoring Sparse Polynomials into Multilinear Factors and Sums of Univariate Polynomials

    Get PDF
    We present the first efficient deterministic algorithm for factoring sparse polynomials that split into multilinear factors and sums of univariate polynomials. Our result makes partial progress towards the resolution of the classical question posed by von zur Gathen and Kaltofen in [von zur Gathen/Kaltofen, J. Comp. Sys. Sci., 1985] to devise an efficient deterministic algorithm for factoring (general) sparse polynomials. We achieve our goal by introducing essential factorization schemes which can be thought of as a relaxation of the regular factorization notion

    On Some Computations on Sparse Polynomials

    Get PDF
    In arithmetic circuit complexity the standard operations are +,x. Yet, in some scenarios exponentiation gates are considered as well. In this paper we study the question of efficiently evaluating a polynomial given an oracle access to its power. Among applications, we show that: * A reconstruction algorithm for a circuit class c can be extended to handle f^e for f in C. * There exists an efficient deterministic algorithm for factoring sparse multiquadratic polynomials. * There is a deterministic algorithm for testing a factorization of sparse polynomials, with constant individual degrees, into sparse irreducible factors. That is, testing if f = g_1 x ... x g_m when f has constant individual degrees and g_i-s are irreducible. * There is a deterministic reconstruction algorithm for multilinear depth-4 circuits with two multiplication gates. * There exists an efficient deterministic algorithm for testing whether two powers of sparse polynomials are equal. That is, f^d = g^e when f and g are sparse

    On Low-End Obfuscation and Learning

    Get PDF
    Most recent works on cryptographic obfuscation focus on the high-end regime of obfuscating general circuits while guaranteeing computational indistinguishability between functionally equivalent circuits. Motivated by the goals of simplicity and efficiency, we initiate a systematic study of "low-end" obfuscation, focusing on simpler representation models and information-theoretic notions of security. We obtain the following results. - Positive results via "white-box" learning. We present a general technique for obtaining perfect indistinguishability obfuscation from exact learning algorithms that are given restricted access to the representation of the input function. We demonstrate the usefulness of this approach by obtaining simple obfuscation for decision trees and multilinear read-k arithmetic formulas. - Negative results via PAC learning. A proper obfuscation scheme obfuscates programs from a class C by programs from the same class. Assuming the existence of one-way functions, we show that there is no proper indistinguishability obfuscation scheme for k-CNF formulas for any constant k ? 3; in fact, even obfuscating 3-CNF by k-CNF is impossible. This result applies even to computationally secure obfuscation, and makes an unexpected use of PAC learning in the context of negative results for obfuscation. - Separations. We study the relations between different information-theoretic notions of indistinguishability obfuscation, giving cryptographic evidence for separations between them

    LIPIcs, Volume 251, ITCS 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 251, ITCS 2023, Complete Volum
    corecore