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—— Abstract

Most recent works on cryptographic obfuscation focus on the high-end regime of obfuscating general

circuits while guaranteeing computational indistinguishability between functionally equivalent circuits.
Motivated by the goals of simplicity and efficiency, we initiate a systematic study of “low-end”
obfuscation, focusing on simpler representation models and information-theoretic notions of security.
We obtain the following results.
Positive results via “white-box” learning. We present a general technique for obtaining
perfect indistinguishability obfuscation from exact learning algorithms that are given restricted
access to the representation of the input function. We demonstrate the usefulness of this approach
by obtaining simple obfuscation for decision trees and multilinear read-k arithmetic formulas.
Negative results via PAC learning. A proper obfuscation scheme obfuscates programs from
a class C by programs from the same class. Assuming the existence of one-way functions, we
show that there is no proper indistinguishability obfuscation scheme for k-CNF formulas for any
constant k > 3; in fact, even obfuscating 3-CNF by k-CNF is impossible. This result applies
even to computationally secure obfuscation, and makes an unexpected use of PAC learning in
the context of negative results for obfuscation.
Separations. We study the relations between different information-theoretic notions of indistin-
guishability obfuscation, giving cryptographic evidence for separations between them.
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1 Introduction

The study of program obfuscation and its applications has been a central research theme
in cryptography for the past two decades. Following the initial impossibility results for a
strong form of “virtual black-box” (VBB) obfuscation [6, 25], the notion of indistinguishability
obfuscation (10) emerged as one that is liberal enough to be realized under well-studied
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cryptographic assumptions [21, 32], yet strong enough for a surprisingly wide variety of
applications [42]. In fact, iO is a best-possible form of obfuscation, in the sense that if any
obfuscation scheme suffices for a given application then iO does as well [27].

More concretely, an iO scheme is an efficient randomized algorithm that maps a source
program P into a functionally equivalent target program P, while satisfying the following
intuitive security guarantee: for every two equivalent programs P, P’ of the same size, the
corresponding obfuscated programs P, P are computationally indistinguishable.

At this point, almost all research on iO has been focused on what we call the high-end
regime. In this regime, the source program P and/or the target program P’ are taken from
program classes with high representational power, such as boolean circuits or branching
programs. While recent work in the area has led to a variety of general constructions, they
are all quite complex, and inherently rely on cryptographic assumptions.

In this work, we deviate from prior research and instead focus on low-end obfuscation.
Here, by “low-end” we mean (1) the input program is in a weak representation model, such
as a decision trees or low-width CNF formulas, and (2) the obfuscation algorithm should
be proper,! in the sense that the output respects the representation of the source program.
For instance, if the source program P is a decision tree, then the target obfuscated program
P’ should also be a decision tree. While low-end obfuscation restricts the scope of the
“best possible” guarantee of iO to other proper obfuscation schemes, it can still provide a
meaningful and useful notion of security.

Of course, one can always apply high-end obfuscation schemes to weaker computation
models; however, this has several quite significant drawbacks:

Inefficiency. Current obfuscation constructions for general circuits (or even for weaker

computation models, e.g. [11, 5, 12, 28, 48, 20]) have a large concrete overhead, typically

making them infeasible to implement.

Incompatible formats. Current constructions do not respect the structure of their

source programs: for example, even for a simple program such as a CNF formula or decision

tree, the obfuscated program is still a general boolean circuit. Simple representation
models are often desirable in practice.

Computational vs. information-theoretic security. As soon as testing satisfiability

of a program is NP-Hard (alternatively, testing equivalence is coNP-hard), information-

theoretic iO for the class implies that the polynomial-time hierarchy collapses [27, 10].

This means that computational indistinguishability is the strongest guarantee we can

hope to get for rich models like boolean circuits; this is not true for weaker representation

models.
To summarize, current high-end obfuscation schemes may be “overkill” for weak representation
models, where much more efficient algorithms can exist that have a proper output and achieve
information-theoretic security guarantees.

While we believe that low-end obfuscation is natural to study in and of itself, we note
that there are alternative motivations for studying it. One natural motivation is private data
analysis. Low-end obfuscation provides a utility-preserving (albeit much weaker) alternative
to differential privacy [17]: instead of replacing a learning algorithm with a differentially
private one, we could leave the learning algorithm unchanged and then obfuscate the output
representation in order to eliminate unnecessary information leakage about the training set.
In this context, iO provides a means for maximizing privacy without sacrificing utility. This
is similar in spirit to history-independent data structures, which aim to achieve a similar
goal in a different context [39, 41, 40].

1 We borrow the name “proper” from the corresponding notion of proper learning in learning theory where
the output hypothesis must be from the same concept class.
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On a more conceptual level, a second motivation for studying low-end obfuscation is that
it reveals interesting new connections between obfuscation and learning theory. Even in the
original work introducing iO [6] it was observed that any exact learning algorithm using
membership queries implies the strong notion of information-theoretic VBB obfuscation. This
raises the question — which we address in the present work — of pinning down the “right”
learning model for such positive results when settling for the weaker notion of information-
theoretic i0. As we will see in the sequel, an unexpected consequence of the present work is
that learning algorithms can also imply negative results for low-end obfuscation.

We note that several prior works have studied various notions of obfuscation for simple
types of source programs [14, 38, 47, 31, 2, 29, 15, 11, 5, 12, 34, 13, 16, 8, 7, 20], but with
different goals in mind. Indeed, the prior works did not impose any restrictions on the
target program, and the presented constructions continued to suffer from the drawbacks
discussed above. One prior example for proper obfuscation from the literature is for the class
of (P)OBDDs [27], which was also used to separate proper iO from proper VBB obfuscation.
We will discuss other examples of this kind later (cf. Section 3).

1.1 OQOur Contributions

Before stating our results, let us cover some necessary background. If iO is an indistin-
guishability obfuscation scheme for a program class P, we say that iO is proper if iO(P) € P
for all P € P. As we have discussed above, when studying weaker representation models
obtaining information-theoretic security guarantees suddenly becomes an achievable goal. In
the present work, we will be interested in variations of information-theoretic security. The
weakest notion of information-theoretic iO that we consider is statistical iO, which guarantees
that for any two equivalent programs P = P’ of the same size, the output distributions iO(P)
and iO(P’) are close in statistical distance.

Once we enter the low-end regime, however, much stronger notions of iO are attainable.
For a motivating example let us consider the class of 2-CNF formulas. It is well-known
that testing equivalence of 2-CNF formulas is computable in polynomial time, and so
the complexity-theoretic barrier for information-theoretic iO does not apply to this class.
However, for 2-CNF formulas it is not hard to see (cf. Section 3) that we can design an
obfuscation algorithm that has much stronger indistinguishability guarantees than mere
statistical obfuscation. Indeed, the output of the obfuscation is not only statistically secure
but canonizing, in the sense that iO is a deterministic algorithm such that for any pair of
equivalent 2-CNF formulas F' = F’ (not even of the same size) we have iO(F) = iO(F”). This
is the strongest notion of indistinguishability that we consider.

In light of this we found it useful to systematically introduce further refinements of
information-theoretic indistinguishability. We define the following notions: if P = P’ are two
functionally equivalent programs of the same size then an indistinguishability obfuscation
scheme i0 is

statistical, if the output distributions iO(P) and iO(P’) are close in statistical distance,

perfect, if iO(P) and iO(P’) are identically distributed,

deterministic, if iO is a deterministic algorithm, and

canonizing, if i0 is deterministic and if iO(P) = iO(P’) for every pair of functionally

equivalent programs P = P’ (not only those of the same size?).

2 Therein lies the difference between deterministic obfuscation and canonization: the output of a determ-
inistic indistinguishability obfuscation scheme is only guaranteed to be the same on two equivalent
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Positive results via “white-box” learning

Our first contribution is a refinement of the connection between learning and information-
theoretic obfuscation. First, let us recall the observation of [6] connecting exact learning to
the very strong model of wvirtual black box (VBB) obfuscation. In the model of exact learning
with membership queries [3] we are given oracle access to a function f : {0,1}" — {0,1}
chosen from some concept class H, and the goal is to use the oracle in order to produce a
concept h € H such that h = f. For instance, if we have a deterministic polynomial-time
learning algorithm in this model then it is not hard to see that we also have a polynomial-time
canonizer for the class H. This is because in the canonization problem we are given a program
P representing f as input and can therefore use P to simulate the calls to the membership
oracle of f. Crucially, since the oracle calls depend only on f, and not on the particular
representation of f as a program P, the output of the underlying learning algorithm will
be the same for all functionally equivalent programs. And since membership queries can be
simulated given oracle access to f, we actually get an information-theoretic VBB obfuscator
for the program class.

Our main observation is that the weaker notion of information-theoretic iO is captured
by a stronger learning model. Concretely, since we are given the program P as input in the
obfuscation task, we are not restricted only to using membership queries and can instead use
any efficiently computable property of P that depends only on the underlying function f.
Indeed, for weak models of computation like decision trees we can make many inferences
from the representation that are impossible for strong models of computation such as boolean
circuits — for example, testing equivalence between two input programs. To capture this notion,
for a class of programs P we define a representation-oblivious hint function (cf. Section 3) to
be, roughly speaking, any efficiently computable function h : P x {0,1}* — {0,1}" such that
for any functionally equivalent programs P = P’ of the same size and for any = € {0,1}" we
have h(P,z) = h(P’,z). Now, it is natural to define the model of exact learning with hint
functions, where the learning algorithm is given oracle access to a predefined hint function
h(P, ) for some program P — but not the program P itself — and it must recover a hypothesis
P’ € P such that P’ = P using queries to h(P,-). Informally speaking, we think of a hint
function as representing the information that we can compute about f when given the
representation of f by P. Note that while membership queries are one obvious example of
hint functions, there are many other possibilities, such as equivalence queries or even more
esoteric operations.

We now state our first contribution, which exactly characterizes low-end obfuscation in
terms of exact learning with hint functions.

» Theorem 1 (Informal). For any class of programs P, P admits a polynomial-time perfect
(resp. deterministic, canonical) iO if and only if P has a polynomial-time exact learning
algorithm with randomized (resp. deterministic, canonical) hint functions. Furthermore, the
obfuscation algorithm is proper if and only if the learning algorithm is proper.

Using this connection, we observe that several learning results from the literature in
various models of learning imply low-end obfuscation schemes. For instance, we prove a
general result stating that if a concept class C is learnable in the well-studied mistake-bound

programs of same size. For a separating example, consider a family of programs where no two circuits
have the same size; the identity function, mapping each program to itself, is then trivially a deterministic
obfuscation scheme, but is not a canonizer as soon as two different programs (of different size) in the
class are functionally equivalent. In particular, deterministic obfuscation for a program class does not a
priori imply efficient equivalence testing.
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learning model then C admits a canonical iO scheme. We believe this result is interesting
for two reasons. First, it uses both membership and equivalence queries, which reaches
beyond the membership query algorithms due to [6] (indeed, note that 2-CNF formulas
are not exactly learnable with membership queries alone). Second, it immediately implies
canonizing algorithms for decision trees,® 2-CNF formulas, and multilinear read-k arithmetic
formulas. This is particularly interesting for the case of decision trees, as it simplifies an

ad-hoc canonizing algorithm for decision trees given by [4]. We refer to Section 3 for details.

Negative results for proper iO via PAC learning

Our next contributions are new impossibility results for low-end obfuscation. In particular,
we show that proper obfuscation for the class of 3-CNF formulas is impossible, even when we
settle for computational indistinguishability and even if we allow the obfuscation algorithm
to output an O(1)-CNF as the output.

» Theorem 2 (Informal). If one-way functions exist, there is no polynomial-time iO of 3-CNF
formulas by O(1)-CNF formulas with computational indistinguishability.

Several remarks on this result are in order. First, we note that this theorem is tight in the
sense that 2-CNF formulas can be canonized (and therefore admit proper indistinguishability
obfuscation). Second, the proof of this theorem also relies on the usage of learning algorithms:
this time, the known PAC learning algorithms for O(1)-CNFs [46]. In fact, the proof of this
result follows from a much more general statement: namely, that it is impossible to obfuscate
3-CNF formulas by any class of programs for which the dual class (in the sense of learning
theory) is PAC learnable. While it has been long-known that learning algorithms imply
positive results in obfuscation, to the best of our knowledge this is the first example of a
learning algorithm giving a negative result in obfuscation, which we believe is of independent
interest. The high-level idea is to use the PAC learning algorithm to break a public-key
encryption scheme that could be built from a one-way function using the low-end iO. We
refer to Section 4 for details.

Separating notions of information-theoretic iO

The feasibility of information-theoretic iO in the low-end regime motivates a more refined
study of the distinction between the different flavors of information-theoretic iO discussed
above. Given the previous positive examples, one might be tempted to conjecture that
information-theoretic iO can always be made deterministic (possibly under derandomization
assumptions).

Towards a counterexample, consider a program class P as an equivalence relation R
between bit-strings representing equivalent programs. A separation between perfect and
deterministic iO implies R for which it is possible to efficiently sample uniformly from the
equivalence class of a given program P, but there is no efficient deterministic algorithm
mapping each P to a canonical representative of its class. It turns out that such a relation R
is quite easy to construct under standard cryptographic assumptions. Concretely, consider a
non-interactive commitment scheme which is dense in the sense that every bit-string is a valid
commitment of some message and is rerandomizable in the sense that given a commitment
one can efficiently sample a random commitment of the same message. Such a commitment

3 In the case of decision trees, the canonizing algorithm runs in quasi-polynomial time.
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scheme can be based on the standard Decisional Diffie-Hellman (DDH) assumption. Now,
let R be an equivalence relation on n-bit strings, where two bit-strings are equivalent if they
represent commitments to the same message. Then an efficient sampling algorithm as above
follows directly from the rerandomization property. On the other hand, an efficient algorithm
for finding a canonical representative could be used to test equality of two committed
messages, violating the secrecy property of the commitment scheme.

While a relation R as above is necessary for the desired separation, it is not sufficient.
Indeed, so far we ignored the fact that each program P should have concrete semantics
defined by an efficient evaluation algorithm, where equivalent programs must have the
same semantics. This requirement is at odds with the secrecy property of the commitment
scheme. To get around this issue we take a different approach, which we can only instantiate
using strong forms of (computational, VBB) obfuscation or alternatively in a generic “ideal
obfuscation” model. The equivalence relation R is defined via a pseudorandom partition of
n-bit strings, where each program class is assigned a distinct “evasive” function, say a random
point function, as its semantics. (We could alternatively use a random constant function if
we only wanted to rule out proper deterministic i0.) Given the bit-string representing P,
the obfuscation gives oracle access to its assigned evasive function. To enable perfect iO
without allowing deterministic iO, we connect the programs in each equivalence class by a
random cycle of length IV, and implement a “fast-forward” oracle that given program P and
integer k returns the program P’ obtained by taking k steps along the cycle. Perfect iO is
then realized by invoking the fast-forward oracle with a uniformly random k, 0 < k < N.
On the other hand, a deterministic iO in this setting can be shown to be at least as hard as
solving the discrete logarithm problem in Shoup’s generic group model [43]. This separation
can be formalized by assuming either ideal obfuscation or strong forms of (computational)
obfuscation, where a common reference string (CRS) is used for defining the pseudorandom
graph.

» Theorem 3 (Informal). If one-way functions exist, and under a special-purpose VBB
obfuscation assumption (alternatively, using ideal obfuscation), there is a program class
P such that P admits perfect (proper) iO in the CRS model but not deterministic (even
improper) iO in the same model.

A somewhat unexpected feature of the above separation is that it uses a computational
notion of obfuscation to separate between information-theoretic notions of obfuscation. That
being said, the separation requires a special-purpose VBB obfuscation assumption, which
means that it can either be cast in an idealized model (such as ideal multilinear maps) or
instantiated heuristically using existing general-purpose iO constructions. A similar use of
special-purpose VBB obfuscation was made in other contexts (e.g., [22, 9, 30, 1]).

1.2 Open Problems

This work suggests many open problems. We record a few of the most interesting here:

1. What other natural representation models admit information-theoretic iO?

2. By using known learning algorithms we obtain quasipolynomial-time canonizing obfus-
cation algorithms for decision trees, but there likely does not exist polynomial-time
canonizing algorithms for decision trees since this would violate known hardness-of-
approximation results for decision tree size. Is it possible to obtain polynomial-time
proper iO for decision trees using our generalized exact learning framework?
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3. Can 3-CNF formulas be properly obfuscated by AC’-circuits, or even (unbounded-width)
CNF? Note that the known learning algorithms for AC° [35] only work over the uniform
distribution, which is not strong enough to apply the techniques from Section 4.

4. Can we separate between information-theoretic notions of iO using natural program
classes P or under cleaner assumptions?

2 Preliminaries

We recall the standard notions of perfect, statistical, and computational indistinguishability
of distribution ensembles.

» Definition 4 (Notions of indistinguishability). Two distribution ensembles X = {X}ren
and Y = {Ya}xen are (T, €)-indistinguishable, for T: N — N and e: N — [0, 1], if for every
circuit family Ay of size T(X\) and all sufficiently large X\ it holds that:

| Pr [Ax(z) =1] = Pr [A\(y) =1]| <e(N).

.’,E(s;XA y($—Y>\

We say that X and Y are:
computationally indistinguishable if they are (T,1/T)-indistinguishable for every polyno-
mial T';
statistically indistinguishable if they are (T”,1/T)-indistinguishable for every polynomial
T and arbitrary T';
perfectly indistinguishable if they are identically distributed, namely X\ = Yy for all .

2.1 Obfuscation

Towards a unified definition of proper obfuscation, we capture different representations of
functions (such as circuits, CNF formulas, or decision trees) via the following general notion
of a program class.

» Definition 5 (Program class). A program class is a pair P = (Eval, Size) with the following
syntax.
Eval : {0,1}* x {0,1}* — {0,1}*U{L} is a polynomial-time algorithm such that Eval(P, x)
returns the output of program P on input x. The algorithm Eval returns 1 if P is not a
valid program or x is not a valid input for P.
Size : {0,1}* — N is a polynomial-time algorithm returning a size parameter Size(P) < |P|
for a given program P.
The programs P, P’ are functionally equivalent, written P =p P’, if Eval(P,x) = Eval(P’, z)
for all x € {0,1}*. For notational convenience, when the program class is known from
context we will simply write P = P’ to denote equivalent programs, use the shorthand
P(z) := Eval(P,x), and also write P € P to denote that P is a valid program chosen from
the class P.

Standard representation models for functions, such as (boolean or arithmetic) circuits,
formulas and decision trees, can all be cast as instances of the above definition. For these
classes, the size parameter is typically defined as the number of nodes in the corresponding
graph.

We next define a general notion of indistinguishability obfuscation that captures the
notions of proper and improper obfuscation we will consider in this work.

23:7
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» Definition 6 (Indistinguishability Obfuscation (i0)). A computational (resp. statistical,

perfect) indistinguishability obfuscation scheme of program class P = (Evalp, Sizep) (Defini-

tion 5) by program class P’ = (Evalp:, Sizep/) is a p.p.t. algorithm iO satisfying the following:
Syntax: For any security parameter X\ and a program P, i0(1*, P) € P.
Completeness: For every A € N and program P we have:

Pr[P=i0(1*,P)] =1

where the probability is taken over the internal randomness of iO.
Indistinguishability: For every pair of program sequences P/{), P/{ such that P/{) = P/{
and Size(PY) = Size(P}), the following distribution ensembles are computationally (resp.
statistically, perfectly) indistinguishable:

{iO(].)‘,P)(\))}AeN and {iO(lA,P)})})\eN .
The obfuscation scheme i0O is said to be proper if P =P’ and improper otherwise.

The standard notion of iO considered in the cryptographic literature corresponds to
proper computational iO for the class of boolean circuits. We note that perfect iO implies
statistical iO, which in turn implies computational iO. Next we define two deterministic
models of iO.

» Definition 7. An iO scheme for a program class P is deterministic if it is computed by a
deterministic algorithm. Formally, for any two equivalent programs P = P’ in P satisfying
Size(P) = Size(P’) it holds that iO(P) = iO(P’).

A canonization scheme for the program class P is a deterministic iO scheme such that
iO(P) =i0(P’) for all equivalent programs P = P’ in P.

A canonization scheme for a program class P implies very strong structural properties
for P — for example, it implies that equivalence testing for programs in P is easy. Despite
this, we show in the next section that canonization is achievable for several natural program
classes. Furthermore, we remark that deterministic iO is weaker than canonization since it
does not imply efficient equivalence testing for program classes.

We will also consider a natural extension of the above notions of iO to the common
reference string (CRS) model. Here the CRS is generated by a trusted setup algorithm and
is available both to programs and to distinguishers.

» Definition 8 (Virtual Black Box Obfuscation (VBB), Adapted from [6]). An (efficient) virtual
black box obfuscation scheme of program class P = (Evalp,Sizep) (Definition 5) by program
class P' = (Evalp:, Sizep/) is a p.p.t. algorithm VBB satisfying the following:

Syntax: On input a security parameter 1% and a program P, VBB outputs a program P’.

Preserving Functionality: For every A € N, program P, and input x, the following
holds:

Pr [Evalp,(P',x) — Evalp(P,z): P' & VBB(F,P)} =1

Polynomial Slowdown: There is a polynomial p such that for every program P, the
following holds:

Pr [Size(P’) < Size(P): P' & VBB(1%, P)} —1
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“Virtual Black Box”: For any p.p.t. A, there is a p.p.t. S and a negligible function o
such that for all programs P, the following holds:

| Pr[A(VBB(P)) = 1] — Pr [SP(1Size<P> =1)| | < a(Size(P)) .

The VBB obfuscation scheme is said to be proper if P = P’ and improper otherwise. If we
omit the program class P, then it is assumed to be the collection of all circuits.

3 Low-End Obfuscation from Learning

As we have discussed above, several connections between various models of learning and
obfuscation have been previously observed, such as the connections between exact learning
and membership queries [6], and also with PAC learning [10]. The goal of this section is
refine the connection between learning theory and information-theoretic indistinguishability
obfuscation, and show how to use learning algorithms to give strong proper iO guarantees
for some program classes. The key idea is to think of indistinguishability obfuscation as
an exact learning task where we are given a representation of the function as a program,
but, we can only use this program to query semantic properties of the function*. Intuitively
speaking, this re-frames proper obfuscation as understanding which semantic properties we
can learn about functions when given their representations as programs. The next definition
formalizes this idea.

» Definition 9 (Representation-Oblivious Hint Function). Let C = (Size, Eval) be a program
class. A representation-oblivious hint function h : € x {0,1}* — {0,1}*U{L} is a randomized
polynomial-time algorithm such that for any equivalent programs ¢ = ¢’ with Size(c) = Size(c')
and for any any input x € {0,1}* the output distributions of h(c,z) and h(c,x) are the
same. The hint function is deterministic if it is computed by a deterministic algorithm, and
is canonical if it is deterministic and if for any equivalent programs ¢ = ¢’ and any input x
we have h(c,z) = h(c, z).

For example, the evaluation function Eval for any program class C is a hint function by
definition (indeed, it is just a membership query oracle by a different name). For the family
of decision trees, a slightly more sophisticated example is the function that takes as an input
a decision tree T' and outputs a uniformly random point # € T~!(1). Note that we can
compute this efficiently® and also it does not depend on the representation of the decision
tree, but only on the function the tree computes. Another example is an equivalence query:
it takes as input two decision trees T7 and T, and either outputs “equivalent” if T3 = T5 or
outputs an input x such that Tj(z) # Ta(x); such queries are also well-known to be efficiently
computable for decision trees.

» Definition 10 (Exact Learning with Hint Functions). A program class C is exactly learnable
with a hint function if there is a hint function h for C and a polynomial-time algorithm L
such that the following holds. As input, the algorithm L receives |c| and oracle access to the
hint function h(c,-) for some unknown ¢ € C, and satisfies the following property: for every
c € C, L halts and outputs a hypothesis ¢’ such that ¢’ = c. We say the learning algorithm is
proper if ¢ € C, and is improper otherwise.

4 Note that otherwise the learning task is obviously trivial since we could output the program we were
given.

5 This can be done by taking a random walk on the tree, weighted by the number of 1-leaves in the
sub-tree rooted by the current vertex in the walk.
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We emphasize that in the previous definition the algorithm L only receives access to the
program c through the hint function h(c,-), and is not given ¢ explicitly. Moreover, since the
hint function can only compute semantic properties of the function Eval(c, ) corresponding
to ¢, it means that the learning algorithm cannot do something naive like simply outputting
c. Indeed, the main theorem of this section shows that this notion of learning is equivalent
to information-theoretic indistinguishability obfuscation.

» Theorem 11. A program class C can be exactly learned with a (deterministic, canonical,
resp.) hint function if and only if it can be perfectly (deterministically, canonically, resp.)
obfuscated. Moreover, the obfuscation is proper if and only if the exact learning algorithm is
proper.

Proof. First let C be a program class which admits an exact learning algorithm L with
respect to a hint function h. Consider the randomized algorithm O which, on input a
program ¢ € C, runs the learning algorithm L — answering its queries by calling h(c,-) —
and outputs the hypothesis produced by L. O is a perfect obfuscation scheme for program
class C: completeness follows from the correctness of the learning algorithm, and perfect
indistinguishability follows from representation-obliviousness of h. Indeed, for any two
equivalent programs of same size ¢; and co, h(cy,-) = h(cs, ) and therefore the distributions
O(c1) and O(cs) are identical. Furthermore, it follows from inspection that if L is proper
then so is O, and that if L and h are both deterministic or canonical, then so is O.

To see the other direction, note that if a class of programs C has a perfect iO (deterministic
or statistical) Obf, then the class C can also be exactly learnt with a hint function: the hint
oracle simply sends Obf(c) to the learner. Thus, exact learning with hint functions precisely
captures the notion of proper obfuscation. |

It is natural to compare this result to the argument of [6] that exact learning with
membership queries implies VBB obfuscation. Since information-theoretic iO is weaker than
VBB obfuscation it makes sense that an easier learning task should capture it. Indeed, any
program class for which equivalence queries are efficiently implementable but which are not
exactly learnable with membership queries alone are not VBB obfuscatable, but they can
potentially admit information-theoretic iO. In the remainder of this section we will see three
such examples.

First, we will use Theorem 11 to prove a very general result, showing that any efficient
learning algorithm in the online mistake-bound model implies canonization, as long as we
can implement equivalence queries efficiently. We consider this an interesting result since
canonization is, arguably, the strongest form of indistinguishability obfuscation. For this we
must recall the definition of mistake-bound learning, introduced by [36].

» Definition 12. Let C be a class of programs. The task of mistake-bound learning of C is
defined as follows. There is a fized target program c € C that we must learn. The learner
starts with an initial hypothesis hg € C, and then receives a stream of inputs x1, T2, T3, . ..
for their hypotheses. After receiving input x;, the learner outputs the value of hi—1(x;) and
learns if hi—1(x;) = c(x;). Afterwards, if the learner makes a mistake (i.e. h;—1(x;) # c(x;)),
the learner updates their hypothesis to h; € C.

An algorithm A learns C in the mistake-bound model with M = M (n, |c|) mistakes if for
any c € C and any ordering of inputs the algorithm A makes at most M mistakes. We say
that A is a polynomial-time learning algorithm if A runs in polynomial-time in each learning
stage, and that C is efficiently learnable if there is a polynomial-time learning algorithm A
that makes at most polynomially-many mistakes.
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Littlestone proved that learning in the mistake-bound model is closely related to exact
learning with equivalence and membership queries [36]. In particular, these models are
essentially identical up to the efficiency of implementing equivalence queries. For our
purposes we will only need one direction of this equivalence, which we record in the next
theorem.

» Theorem 13 ([36]). Let C be a class of programs. If there is an algorithm that learns C
in the mistake-bound model with at most M mistakes, then there is an algorithm exactly
learning C with membership and equivalence queries that makes at most M + 1 equivalence
queries and at most M + 1 membership queries.

With these results in hand we prove the following theorem.

» Theorem 14. Let C be a class of programs such that equivalence queries for C can be
implemented in polynomial time. If C can be learned in polynomial time in the mistake-bound
model with M mistakes, then C can be canonically obfuscated in time O(M - poly(n)).

Proof. By Theorem 13, there is an algorithm exactly learning C with membership and
equivalence queries that makes M + 1 equivalence and M + 1 membership queries. We use
this to give an exact learning algorithm for C with a canonical hint function. Let ¢ € C
be our target program. Our learning algorithm will simulate the exact learning algorithm
with membership and equivalence queries. To do this, the canonical hint function h(c, -)
will simulate the membership queries and equivalence queries on ¢. Both of these queries
can be implemented in polynomial time by assumption, however, we must ensure that the
equivalence queries are themselves canonical in that whenever we make an equivalence
query to nonequivalent programs a # c¢ the program will always return some canonical
counterexample. Formally, we require the following guarantee: for any programs a,b,d € C,
if a = b, ¢c =d, and a # ¢, then counterexamples returned by the equivalence queries
a = c and b = d must be the same.

Fortunately, this is easy to ensure. We show something stronger: since the equivalence
queries for C can be carried out in polynomial time, it follows that for any nonequivalent
a,b € C we can find the lexicographically-first counterexample z such that a(z) # b(x). To
see this, let a,b be non-equivalent programs and let x1,xs, ..., x, be the n input variables
of a and b. Given a partial restriction p to the input variables, let a [ p be the program
obtained by substituting p for the appropriate input variables to a. Consider the following
algorithm. Initially, let ¢ = 1 be a counter, let p = %™ be the empty restriction, and repeat
the following process. Query if a [ (pU (x; < 0)) =b [ (pU (x; < 0)). If they are not
equivalent, then update i =i + 1 and p = p U (z; + 0); otherwise, update p = p U (x; <+ 1).
Once all variables are assigned it is easy to see that the (now total) assignment p is the
lexicographically-first input x witnessing that a(x) # b(x). By using this equivalence query
algorithm in place of the original one we can make the hint function h(c,-) canonical, and
this completes the proof. |

Using this theorem we can now use known results in the learning literature to canonize
some well-known program classes. First, we observe that polynomial-size decision trees can
be canonized in quasipolynomial time. This was proved directly using an ad-hoc argument
in [4], but thanks to our general result it follows automatically from known learning results.

» Corollary 15. The class of size-s decision trees on m variables can be canonized in time
nO(log s)
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Proof. Simon [45] proved that rank-r decision trees can be learned by a polynomial-time
algorithm in the mistake-bound model with at most M = n©(") mistakes, and it is known
that the rank of a size-s decision tree is at most log s [18]. Furthermore, it is known that
given two decision trees T7,T> we can compute the decision tree T ¢ T5 in polynomial-time;
this means that we can efficiently perform equivalence testing of decision trees. The corollary
then follows immediately from Theorem 14. <

A second easy corollary is that 2-CNF formulas can be canonized.
» Corollary 16. The class of 2-CNF' formulas can be canonized in polynomial time.

Proof. It is well known that equivalence testing of 2-CNF formulas is computable in poly-
nomial time so we focus on constructing an efficient mistake-bound algorithm for 2-CNFs.
The algorithm is just the standard “monotone disjunction” learning algorithm from learning
theory. Let n be the number of variables of the target CNF formula F'. Our initial hypothesis
H is the trivial 2-CNF that contains every width-2 clause on n variables. Let x be the most
recently arrived input on the stream. If H(x) = 0 but F(x2) = 1 then we remove all clauses
from H that are not satisfied; otherwise, we do not update H. Observe that H = F at
each stage of this algorithm (in other words, H contains every clause that F contains), and
thus at no point will H(z) = 1 but F(x) = 0. Finally, this algorithm achieves a mistake
bound of O(n?) since we start with O(n?) clauses in H and each mistake leads to the removal
of at least one clause. >

Finally, we give an example of exact learning with hint functions from algebraic circuit
complexity that does not use the mistake-bound model. Let F be a field and consider the
polynomial ring Flz1,...,z,]. An arithmetic circuit ® is circuit with input gates labelled
with variables from x1, ..., z, or field elements from [F, and whose internal gates are labelled
with multiplication () or addition (4) operations over the field. An arithmetic circuit
computes a polynomial in F[xy, ..., z,] in the natural way. An arithmetic circuit is a formula
if the underlying graph is a tree, it is read-k if each input variable labels at most k leaves,
and finally it is multilinear if the polynomial output by the circuit has individual degree at
most 1 for every variable.

It is interesting to note that for the class of multilinear, constant-read arithmetic formulas
there is a super-polynomial gap between the running time of the best known learning
algorithm with only membership queries (i.e. oracle access to the formula) and a learning
algorithm that is allowed to use more powerful queries. Shpilka and Volkovich proved that if
® is a multilinear read-k formula, then given black-box access (i.e. membership queries) to
any arithmetic circuit C' computing @ there is a deterministic algorithm that constructs a
read-k multilinear polynomial computing ® in time nk< " +klogn [44, Theorem 1.6]. In other
words, this is an exact learning algorithm with membership queries, and we have already
observed that membership queries are hint functions above.

However, more interestingly, Shpilka and Volkovich observed that knowing the discrete
partial derivatives of the polynomial computed by ®, there is an algorithm that can reconstruct
K™ The discrete partial derivatives are a semantic property of the polynomial
®, and moreover they can be efficiently evaluated given an arithmetic circuit for ® and thus
they can be implemented as hint functions. We therefore have the following theorem:

® in time n

» Theorem 17 (cf. Theorem 1.6 in [44]). The class of multilinear read-k arithmetic formulas
over n variables can be properly obfuscated in deterministic time nk".
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4 Impossibility of Obfuscating 3-CNF to k-CNF

This section is dedicated to ruling out the existence of (computational) proper obfuscation
for the class of 3-CNF. In fact we show that there is no obfuscation from 3-CNFs to k-CNF
for any constant k (or even for slightly super-constant k, but at the cost of only ruling out
obfuscation with slightly super-polynomial security). The astute reader will note by reading
between the lines that we in fact show a more general statement (however we restrict our
proof and formalism to C; = 3-CNF):

If a program class C; is expressive enough to evaluate sparse pseudorandom
generators® or injective one-way functions, then it cannot be properly obfuscated to a
class Cy whose dual (c.f. Definition 18) is PAC-learnable”.

» Definition 18 (Dual Class of Boolean Circuits). Let C,, be a class of n-input boolean formulae.
We define the dual class of C,, as the class of circuits taking as input a circuit in C, and
evaluating it on a fived, hardcoded input xz € {0,1}", i.e.

::{%: € = {01} :mE{O,l}"}.

¢ 6 = o)

n

Note that C,, and C!, can both be cast as program classes as defined in Definition 5.

Before we proceed, let us clarify that in the course of the proof we will be using the fact that
the dual class is PAC-learnable from random samples with respect to any® distribution, and
not just e.g. the uniform distribution. For this reason, the impossibility result does not a
priori rule out the existence of obfuscation from 3-CNF to ACY.

» Theorem 19 (PAC Attack). Assuming the existence of a one-way function, there is a
universal constant ¢ € (1,4] such that if C}, (the dual class of C,,) is T(-,+,-)-PAC learnable
then for any €(-),0(-) € (0,1)N there is no (T(e(n®),8(nc),n®), €(n®) + §(n°))-secure iO
scheme from n-input 3-CNFs to C,,.

Before we proceed with the proof of Theorem 19, let us observe that, because the dual
class of k-CNF is (k + 1)-CNF — which has been shown to be n**1-PAC learnable by [46] — it
implies the following corollaries.

» Corollary 20 (PAC Attack against iO of 3-CNFs to k-CNFs). Assuming the existence of
a one-way function, there is a uniform time-(’)(n4'(k+1)) attack with success probability
1 —1/0(n**+1) against any iO scheme from n-input 3-CNFs to k-CNFs.

» Corollary 21 (Impossibility of Properly Obfuscating 3-CNF to O(1)-CNF). Let k > 3 be a
constant. Assuming the existence of a one-way function, there is no iO scheme from n-input
3-CNFs to k-CNFs with security against uniform p.p.t. adversaries.

6 A PRG is said to be sparse if a random string is outside its image with overwhelming probability, i.e. if
it has superlogarithmic stretch.

In fact it suffices for the impossibility result to go through that C2 be learnable on the distribution of
ciphertexts of random bits.

We do not require the ability to learn with respect to any distribution per se, but rather only with
respect to a single “esoteric” (i.e. not uniform or any other distribution likely to have been studied on
its own) and unknown distribution.

7

8
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In order to prove Theorem 19, we first show that assuming the existence of a one-way
function and a secure iO scheme from 3-CNFs to C,,, we can build a semantically secure
public-key encryption scheme whose decryption circuit, once the key has been hardcoded, is
in C/, (the dual class of the target class C,, of the obfuscator) with constant probability over
the randomness of the key generation algorithm. This means C!, cannot be PAC-learnable
without contradicting the security of the PKE, i.e. without contradicting the security of
(the OWF or) the iO. Note that this idea of opposing “easiness of learning” to cryptographic
assumptions has been exploited before, notably in [33]. Recall that semantic security is
equivalent to CPA-security as shown by [26], and that CPA security implies that security
must hold even if the adversary is allowed to make encryption queries. In particular the
adversary can use this power to sample random plaintexts and make encryption queries in
order to collect the positive samples required to PAC-learn the decryption circuit on the
distribution of valid encryptions of a random bit: this contradicts security of the PKE.

The PKE scheme we present is very similar in spirit to that in [19, Fig. 1], which makes
use of a sparse PRG rather than an injective one-way function. Whether one uses a sparse
PRG or an injective OWF, the idea is to have the encryption process be the obfuscation of
a “compute-and-compare” to guard access to a payload which is hard to retrieve without a
trapdoor (the secret key). However, it may not be immediately clear how this is linked to
obfuscation of 3-CNF unless the PRG or injective OWF is 3-local (which allows the “compute-
and-compare” circuit to be expressed as a 3-CNF). The main difference with [19, Fig. 1]
is that we add a specification of how a “compute-and-compare” formula is converted to
3-CNF using the Tseytin transformation in order to control the form of the decryption circuit.
Because the Tseytin transform only preserves equisatisfiability, not equivalence, special care
must be taken in order to reduce security of our PKE scheme to security of the iO for 3-CNF.

» Lemma 22 (PKE with Simple Decryption from 3-CNF Obfuscation). For n € N, let C,, be
a class of n-input polynomial-size boolean formulae. Let C,, denote the dual class of Cy,, i.e.

C;L:—{ﬁzz: Cn — {0,1} :xe{O,l}"},
o = o)

Assuming the existence of an injective one-way function and of a i0° scheme from n-input
3-CNFs to Cy,, there is a PKE scheme whose decryption circuit is in Coy U (1 & C'N), where N
s a fized polynomial in n which only depends on the choice of the injective one-way function
and where 1 &C'n = {1 f: f € Ciy} is the class of negations of Ci. Moreover, an explicit
construction is provided in Figure 1.

Proof. The proof of Lemma 22 is given by considering the PKE construction of Figure 1,
then proving its correctness and security. The construction is in two parts. The construction
relies on an “functionality-preserving conversion of compute-and-compare formulae to 3-CNF”
primitive whose properties have been abstracted out in Figure 1. Then Figure 2 provides an
explicit instantiation of this primitive.

9 The theorem holds using null-iO instead of iO.
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—{ Public-Key Encryption Scheme

Tseytin-based Conversion to 3-CNF — Idealized

Notations. BF,, := {0, 1}({0’1}n) denotes the set of all n-input boolean formulae, and
3-CNF,, denotes the set of all 3-CNF with n inputs.

Requirements. The below conversion procedure is parametrized by a pair of boolean
functions f,g: {0,1}" — {0,1}, and applies to boolean formulae of the form
Bfgym (@1, xn) = (f(x1,. .., 2n) == y)A(g(x1, ..., z,)Dm), where y € {0,1}",
and m € {0,1}. It is convenient to introduce a third parameter, which depends only
on f and on g: N is some polynomial in n to be made explicit.

Syntax. The conversion to 3-CNF is a pair : {0,1}" — {0,1}"V (the variable conver-
sion) and Cvrt: BF,, — 3-CNF,,;y (the formula conversion).

Properties (Functionality-Preserving Conversion). 7 should be injective and inde-
pendent of y and m, and Vz € {0,1}", ¢¢ .y.m(z) = Cvrt(@s,g.4.m) (7 (2)).

An explicit construction of this primitive is given in Figure 2.

Public-Key Encryption

Requirements and Notations. = An injective one-way function f, and a hardcore
predicate hc for f.
A i0 scheme O which, on input an n-input 3-CNF, outputs a circuit in C,,.
(Cvrt, ) is defined as above for the choice of functions (f, g) + (f, hc).

Syntax. The encryption scheme is a triple (PKE.KeyGen, PKE.Enc, PKE.Dec) which are
defined as follows.
PKE.KeyGen(1") : Sample = & {0,1}", set b « hc(z), sk « (b, 7(z)), pk «
(f(x), pp) where public parameters pp contain a succinct description of w. Output
(sk, pk).
PKE.Enc(pk,m) : On input the public key pk and a message m € {0,1},
1. Parse pk as pk = (y, pp);
2. Build the boolean formula ¢ < (f(-) == y) A (hc(-) & m);
3. Run ¢ & O(Cvrt(¢)) and output .
PKE.Dec(sk, ¢) : On input the secret key sk and a ciphertext ¢ € C,,,
1. Parse sk as sk = (b, a);
2. Set m’' < b @ ¢(a) and output m’.

Figure 1 PKE from injective OWF and iO for 3-CNF.
Let us now show that the triple (PKE.KeyGen, PKE.Enc, PKE.Dec) as defined in Figure 1 is
a semantically secure public-key encryption scheme.

Correctness: If (sk = (hc(z),g(x)),pk = f(z)) & PKE.KeyGen(1") and ¢ &
PKE.Enc(pk,m), then Dec(sk,c) = hc(z) @ e(n(z)) = he(z) ® Cvrt(n(x)) = he(z) B
((f(z) == f(x)) A (he(z) ®m)) = m (note that this statement becomes probabilistic in
nature if O only preserves equivalence with probability less than 1).
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Security: Consider the following distributions:

Ay = {(pk,c): (sk,pk) & PKE.KeyGen(1"), ¢ & Enc(pk,0)}
A} = {(pk,c): pk « (f(z), pp) where 2 & {0,1}" s.t. he(x) = 0, ¢ < Enc(pk,0)}
Ay = {(pk,c): (sk,pk) & PKE.KeyGen(1"), ¢ & Enc(pk, 1)}
Al = {(pk,c): pk « (f(z), pp) where 2 & {0,1}" s.t. he(x) = 1,¢ < Enc(pk, 1)}

For ¢ € {0,1}, the difference between A, and Al is that the secret key
in the latter case is sampled (e.g. through rejection sampling) such that

hc(z) = o. But since hc is a hardcore bit, Ag ~ A} and A; ~ A}. Indeed,
{(f(z),hc(z)): z & {0,1}"} ~ {(f(2),1 — he(z)): © & {0,1}"} (the definition of a
hardcore bit) implies {f(z): z & {0,1}"} ~ {f(z): z & {0,1}" ,hc(z) = o}. In turn,
this implies that A, ~ A/, for o € {0,1}.

By security of the iO scheme O, Aj ~ A, Indeed since f is injective, if he(z) = m

then (f(-) == f(z)) A (hc(-) @ m), and therefore Cvrt((f(-) == f(x)) A (hc(-) & m)), is
unsatisfiable. It follows that {(pk, O(Cvrt((f(-) == f(x)) A (he(-) @ 0)))): pk +
(f(x),pp) where z & {0,1}" s.t. he(z) = 0} ~  {(pk,O(Cvrt((f(:) ==
f(@)) A (he(:) @ 1))): pk « (f(z),pp) where z & {0,1}" s.t. he(z) = 1}, ie.
Ay~ Al

Therefore, Ag =~ AO ~ A =~ Al, which concludes the proof.

Notations. BF,, := {0, 1}({0’1}") denotes the set of all n-input boolean formulae, and
3-CNF,, denotes the set of all 3-CNF with n inputs.

Requirements. The below conversion procedure is parametrized by a pair of boolean

functions f,g: {0,1}" — {0,1}, and applies to boolean formulae of the form

fgym (@1, xn) = (f(x1,.. . 20) == y)A(g(z1, ..., z,)Dm), where y € {0,1}",
and m € {0,1}. It is convenient to introduce a third parameter, which depends only
on f and on g: N is some polynomial in n to be made explicit.

Syntax. The conversion to 3-CNF is a pair 7: {0,1}" — {0,1}" (the variable con-
version) and Cvrt: BF,, — 3-CNF,,; x (the formula conversion) which is defined as
follows.

Cvrt : Consider the n-variable boolean formula ¢ gy m. If f(-);; denotes the
formula equal to the i*" output of f, ®¢,g,y,m can be rewritten as follows: ¢y ., (-) =

(FOn==y) A A ==u) Alg() ©m).

Consider the formula ¢}7g7ym(fn1, ooy Tptat1) defined by:

Gy (@15 Tpang1) =(@n1 & @1, ) ) A (T ==y1) A -
(Tnixn < (@1, ) p) A (Tngn == ya) A
(xn-l-/\-i-l A g(xl, R 73371)) A (xn-l-/\-i-l D m)

Using fresh variables z, 42, Zntr+3... each formula of the form (z,4;
f(@1,... 20)) or (Tnyas1 <+ g(21,...,2,)) can be converted to 3-CNF using
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the Tseytin transformation (without further specification). Crucially, these
conversions are independent of y,m and depend only on f,g. In turn, the
(Tp+i == v;) and (zp4ap1 ® m) are simple literals, depending on y and m.
Plugging all these 3-CNF into gb}’g’y’m yields an N-variable formula Cvrt(¢y g4 m)
where N is some fixed polynomial in n which depends only on f and g (and on the
— canonical — choice of variable switches performed by the Tseytin transformation).
7 {0,1}" = {0,1}" : g(aq, ..., o) is defined as follows:

the first n outputs are equal to (aq,...,a,);

for i =1...\, the (n + )™ output is equal to f(ay, ... , Q) [N

the (n + A+ 1) output is equal to g(aq, ..., q,);

similarly the last N — (n+ \) output values are functions of (a1, ..., a,) given
by the variable changes which introduced (z,4x42,...,2Zn) as functions of
(21,...,2y) in the definition of Cvrt.

Note that by construction, = is injective (and independent of y,m) and Vz €
{0,137, @5,g,5,m(x) = Curt(¢y,g.4,m) (7(2)).

Figure 2 Construction of the Tseytin-based Conversion to 3-CNF.

5 Separating Forms of Information-Theoretic iO

In this section we establish a separation between two flavors of information-theoretic ob-
fuscation: perfect (randomized) iO and deterministic iO. Before we discuss our separation,
it is first worth noting what makes this an interesting and challenging problem. In order
to do this, let us begin by considering the following “toy” version of obfuscation where
instead of trying to obfuscate programs, we simply try to obfuscate some arbitrary equivalence
relation. More formally, consider a sequence of equivalence relations R = {R,},, where
R, C{0,1}" x {0,1}" for each n. We can define analogous notions of “obfuscation” for R:
for instance, a canonizer would be an algorithm Can such that for alln € Nand all z € {0,1}"
we have that (x,Can(x)) € R, and if (z,y) € R,, then Can(z) = Can(y). Similarly, a perfect
obfuscator iOr would be a p.p.t. algorithm such that iOr(z) outputs the uniform distribution
over all y such that (z,y) € R,. From these abstract definitions we can recover the standard
notions of obfuscation simply by letting R be =¢, the standard notion of equivalence for a
program class C.

In this more abstract setting it turns out to be quite easy to separate forms of obfuscation.
For a simple example, we can roughly sketch how to separate perfect iO from canonization (a
formal argument can be found in Appendix A). Consider any randomly self-reducible function
f:{0,1}" — {0,1}". Roughly speaking'®, this means that there is a p.p.t. algorithm o such
that for all n and for all x € {0,1}", f(x) = f(o(x)) and furthermore o(z) is distributed
uniformly at random over the set {y € {0,1}": f(z) = f(y)}. Given such a function we can
define the equivalence relation R by (z,y) € R iff f(x) = f(y), and o is a perfect iO for R.
However, if checking that f(z) = f(y) is hard deterministically then we cannot expect to be
able to canonize the relation R. In Appendix A we construct such a function using ElGamel
encryption, thus “separating” these abstract forms of perfect iO and canonization under the
DDH assumption.

10The definition of random self reducibility is actually a bit different in multiple ways, e.g. it is usually
defined as a non-uniform reduction; an input x can be mapped into polynomially many “shares”, etc.
Here we explain an idea, and so for simplicity do not define random self reducibility in its full generality.
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So, what makes separating the “standard” notions of iO more difficult? In short, it is
due to the fact that the elements of the underlying equivalence relation must be programs
from some class, and two programs are equivalent if and only if they compute the same
underlying boolean functions. In our constructions below we will show already that it is
hard to distinguish between program classes which can only compute two “functions”: a
point function on the one hand, and the trivially 0 function on the other.

5.1 Separating Perfect and Deterministic Obfuscation in the CRS Model

We start by introducing the notion of iO in the CRS model in Definition 23, then state our
separation result in Theorem 24.

In the CRS model we allow program classes to be defined as a function of the CRS.
Therefore, concretely, the separation is of the form: there exists a CRS generation algorithm
Setup which yields a world in which there is a program class for which there exists a perfect
iO scheme, but no deterministic iO. In fact, we show a slightly stronger statement: there is a
proper perfect i0, but no (even improper) deterministic iO.

» Definition 23 (iO in the CRS model). A computational (resp. statistical, perfect) iO scheme
in the CRS model for P = (Evalp, Sizep) by P’ = (Evalp/, Sizep:) is a pair of p.p.t. algorithms
(Setup, i0) satisfying the following requirements:
Syntax:

Setup : On input a security parameter 1*, Setup outputs a common reference string

CRS.

i0 : On input a security parameter 1*, a common reference string CRS, and a program

P, i0 outputs a program P’.

Completeness: For every A € N, common reference string CRS € Supp(Setup(1*)),
program P, and input x, the following holds:

Pr [Evalp/((CRS,P'),x) — Evalp((CRS, P),z): P' & i0(1*, CRS, P)| =1

Indistinguishability: For every polynomial-time nonuniform (resp. unbounded) ad-
versary A such that A(CRS) outputs a pair of programs P°, P! where (CRS,P°) =
(CRS, PY) and Size(PY) = Size(P?), the following distribution ensembles are computa-
tionally (resp. statistically, perfectly) indistinguishable:

{i0(1*,CRS, P°)Yren  and  {iO(1*,CRS, P)}ren.

Here the probability space is over CRS generated by Setup(1*) and P°, P! generated by
A(CRS).

» Theorem 24 (Conditional Separation between Perfect and Deterministic Obfuscation with
Setup). Assuming the existence of one-way functions and VBB obfuscation for a specific
cireugt class (the class {Helper, : k € {0, 13}, as defined in Figure 3), there is a program
class for which there exists perfect but not deterministic 1O in the CRS model.

The rest of this section is dedicated to proving Theorem 24, which we do by providing a
Setup algorithm (Figure 4) and defining a program class Peep (Figure 5) for which there exists
a perfect iO scheme (with respect to Setup) but no deterministic iO scheme (again, with
respect to Setup). Abstracting out all semantic details for now, for each CRS € Supp(Setup)
there are 2" different programs in Psep(CRS), each described by a 2n-bit string. These
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programs are partitioned into 2"/2 different equivalence classes of size 2/ each. Specifically,
the CRS generated by Setup is the description of a VBB obfuscated program we call the
“helper program” Helper, defined in Figure 3, which can be seen as succinctly described oracle,
answering two types of queries:

1. Evaluation queries: These allow us to define Psep; evaluating a program in Peep, is done

by making a corresponding evaluation query to the helper program.

2. Jump queries: These are used to facilitate perfect (but not deterministic) obfuscation.
The helper program has hardcoded the key to a strong pseudo-random permutation, mapping
the 2" valid program descriptions to the nodes of 2/2 different length-2"/2 directed cycles
in such a way that each cycle corresponds to an equivalence class of =p,, (i.e. two programs
are functionally equivalent if any only if they label nodes in the same cycle): each program

is a point function, equal to 1 on the index of the cycle to which it belongs, and 0 elsewhere.

We are now ready to clarify what “jump queries” are: on input the description of a program,
and d € {0, 1}”/ 2, the helper program returns the label of the d'" successor on the cycle of
the node labeled P. This way, the CRS can be used to achieve perfect iO in a straightforward
way: on input a program P, sample d & {0, l}n/ % and output the d™ successor of P on the
cycle.

—{ Program Helper,

Parameters: Helper; has hardcoded the security parameter A, an input length para-
meter n, a strong PRP F(-,-): {0,1}* x {0,1}*" — {0,1}*" which admits an efficiently
computable “reverse permutation family”® G(-,-): {0,1}* x {0,1}*" — {0,1}*", and a
key k € {0, I}A. These parameters define two functions f and g:

g: {0,1}*" — {0,1}"uU{L}
{[G(k, Whm Gk Ym0 = 0"

1 otherwise

£ {0,13" = {0,1}*"
T — F(k,z||0") Y

// When convenient we will see g as a function from {0,1}*" to {0,1}" but which is
only defined on f({0,1}") C {0,1}*".
Evaluation: Helper, tries to match its input with one of the following patterns:
On input (“jump”,f’, d), where Pe {0, 1}2” and d € {0, 1}"/2:
1. Check that g(P) # L and output L otherwise.
2. Parse g(P) as (¢, 1), with |zo| = |z1] = n/2 .
3. Output f(zo||(z1 ®d)) .

On input (“eval”, P,a), where P € {0,1}*" and « € {0,1}"/%:
1. Check that g(P) # L and output L otherwise.
2. Compute zg < [9(15)]1% .
3. Output (zg == a) .

On input (“IsWellDefined”, P), where P € {0,1}*":

Output =(g(P) == 1) .
Helper,, outputs L if it receives an incorrectly formatted input.

“ For every choice of key k € {0,1}*, G(k,-) is the inverse of F(k,-), i.e. Yk € {0,1}*,Vz €
{0,1}*" , F(k,G(k,x)) = G(k, F(k,z)) = x .

Figure 3 The helper program defining the evaluation of programs in Peep.
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Observe that Helper,, is parameterized by a strong PRP which can be efficiently inverted
given the key. Such a permutation exists under the assumption there exists a one-way
function. By combining the seminal results of [24, 23, 37], one-way functions (constructively)
imply strong pseudorandom permutations. By inspection of this construction of a PRP, we
can observe that the resulting PRP has the desired properties. Indeed, the permutation is
defined as the sequential composition of four rounds of the Feistel network, where a single
round is the application of rdy: (zg,x1) — (21,20 @ F(k,z1)) where |xg| = |z1| and with
F(-,-) being a pseudorandom function, which can be evaluated efficiently by definition. Each
round can be inverted by the application of rd,:1 : (Yo,y1) — (y1 ® F(k,y0),y0) and therefore
the reverse permutation can also be efficiently computed given k as (rd,;l)‘l.

—{ Program Setup

Parameters: Setup is parameterized by a special-purpose virtual black-box obfuscation
scheme VBB for the class {Helper };c ¢ 13 -

Evaluation: On input the security parameter 1*, Setup samples a key k & {0, 1}A,
computes H & VBB(Helper,,), sets CRS <— H where H is a description of H, and
outputs CRS.

Figure 4 The setup procedure with respect to which there exists perfect but not deterministic iO
for Psep-

— Program Py

Parameters: Setup is defined as in Figure 4. Psp is parameterized by some hardcoded
value a, an input size n, and a string CRS of polynomial size.

Evaluation: On input ((CRS,~P),J:) where P e {0, 1}2" and z € {0, 1}”/2, Psep first

tries to parse CRS as CRS = H, where H is the description of some program H, and
outputs L if the parsing fails; Psep, outputs H(“eval”, P, x) .

Figure 5 The program class Psp leading to a (conditional) separation between perfect and
deterministic iO in the CRS model.

» Lemma 25 (Existence of perfect iO for Psep). The procedure iO of Figure 6 is a perfect iO
scheme for Peep.

Proof. Completeness follows from the fact that Vao,z1,d € {0,1}"2, [x=1(n(zo]|(z1 &
d)||0™))]1...n/2 = wo. Perfect indistinguishibility follows from the fact that for all 2, z; €
{0, 1}"/2, if d is sampled uniformly at random in {0, 1}"/2 then m(xo||(z1 ® d)]|0™) follows
the uniform distribution on {7 (zo|a||0™): a € {0, 1}"/2}. <
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— Obfuscator Perfect Indistinguishability Obfuscation for Peep

Setup: Setup is defined as in Figure 4.

i0: On input a security parameter 1*, a common reference string CRS, a program

description P € {0, 1}2n from the class Peep,

1. Parse the CRS to retrieve the description of a program H which, on input a program
in Psep outputs a tuple of n/2 programs in Psep (and output L if the parsing fails).

2. If ~H(“IsWellDefined”, P) then output L .

Sample d & {0, 1}”/27 and compute P’ < H(“Jump”, P, d) .

4. Output ]Stmp .

w

Figure 6 Perfectly secure iO scheme for program class Peep.

» Lemma 26 (Impossibility of deterministic iO for Psep). There is no deterministic 1O scheme

for Psep.

Proof. In a nutshell, the proof boils down to a reduction to the discrete logarithm problem

(in cyclic groups) in Shoup’s generic group model, which was shown in [43] to be impossible.

At a high-level, the sequence of hybrids is the following. First, observe that a deterministic
obfuscation scheme Obf (which must necessarily have perfect completeness and security) can
be used to perfectly decide equivalence of two programs. This means, by security of the
VBB obfuscation scheme, that this predicate of “functional equivalence” can also be decided
efficiently given only oracle access to the helper program. The next step is to show that,
by security of the strong PRP, Obf can also be used to decide equivalence when interacting
with an idealized helper oracle, where the PRP is replaced with a truly random permutation.
While there is a priori no reason why Obf should be an obfuscation scheme for Pse, defined
with respect to the ideal oracle (as this is not the same class as Psep defined with respect to
“real” helper oracle), we show that it must still be able to decide equivalence of programs
in an average-case sense (over the randomness of the ideal oracle and that of the choice
of programs). However, because the only source of randomness for Obf is provided by the
answers to the queries it makes, it must behave the same way for two different oracles whose
answers match on those queries in particular. By a counting argument (and using the vertex
transitivity!! of a union of cycles), it is not hard to see that unless Obf is able (in the average-
case) to build a sequence of jumps from its input to its output it will be incorrect in deciding
equivalence with non-negligible probability. Because it knows the distances of the jumps, it
is able to determine the relative distance on the cycle between its input and the program
that it outputs. Therefore, running Obf on two random equivalent programs allows us to
determine their relative distance too, by transitivity. The final step is to show that this is im-
possible, by a reduction to the discrete logarithm problem in Shoup’s generic group model [43].

LA graph is vertex-transitive if its automorphism group acts transitively on its vertices. Intuitively, this
means that there is no structural (i.e. “without using the labels”) way to distinguish vertices of the
graph.
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We now formalize the steps sketched above. By contradiction, assume there is a determ-
inistic iO scheme Obf for Pep. By completeness of Obf and VBB,

k& {01
CRS & VBB(Helper,,) N N
Pr| zg,ay,2) & {0,1}"? : Obf(1*,CRS, P) = Obf(1*,CRS, P')| =1. (1)

P F(k,zolz0")
P Fk, ol ]07)

By security of VBB there exists a simulator S and a negligible function negl such that:
k& {0,117
zo, o1,y & {0,137

P F(k,aolle[07)
P+  F(k,zq|x}]|l0™)

Pr . SHelpen (12 Py = SHeleeri (12 Py | > 1—negl(n) . (2)

The next step is to move the problem to an ideal world for ease of analysis. Consider the
family of oracles {ldealHelper, } (0,132 as defined in Figure 7, where IdealHelper,. acts
exactly as Helper, except that the strong pseudorandom permutation F'(k,-) is replaced with
a truly random permutation 7 & &({0, 1}2n). Because, by construction, the only difference
between Helper,, and IdealHelper,. is that where the former uses the permutation F(k,-) (with
its inverse Gk, -)) the latter uses m (and 1), they can be described as a single algorithm®?
HO1:02 where HE+Fi " = Helper, and H™™ ' = IdealHelper,,.

— Oracle IdealHelper

Parameters: IdealHelper, has hardcoded the security parameter A, an input length
parameter n. It is assumed that the oracle has sampled a truly random permutation
7 {0,1}*" — {0,1}*". These parameters define two functions f and g:

g: {0,1}"" — {0,1}"uU{L}
[ﬂ_il(y)h...n if [Wﬁl(y)}nﬁ—lan =0"
1 otherwise

o {0,1}" = {0,1}*"
z —  7(z]||0") y — {

// When convenient we will see g as a function from {0,1}*" to {0,1}" but which is
only defined on f({0,1}") C {0,1}*".

Evaluation: IdealHelper tries to match the query with one of the following patterns:
On input (“jump”, P, d), where P € {0,1}*" and d € {0,1}"/%:
1. Check that g(ﬁ) # 1 and output L otherwise.
2. Parse g(P) as (¢, 1), with |zo| = |z1] =n/2 .
3. Output f(zol/(z1 ®d)) .

On input (“eval”, P,a), where P € {0,1}*" and «a € {0, 1}"/2:
1. Check that g(P) # L and output L otherwise.
2. Compute xg < [g(ﬁ)hj .
3. Output (xg == «a) .

12With the notations of Figures 3 and 7: The code of Helper,, and IdealHelper is the exact same up to the
definition of f and g, and these functions can be re-written as making oracle access to (O1, O2) where

(O1,02) is (F(k,-),G(k, ")) or (m, 7).



E. Boyle, Y. Ishai, P. Meyer, R. Robere, and G. Yehuda

On input (“IsWellDefined”, P), where P € {0,1}*":

Output =(g(P) == 1) .
IdealHelper, outputs _L if it receives an incorrectly formatted input.

Figure 7 The oracle IdealHelper, is an idealized version of the helper program Helper,, where
the PRP with key hardcoded F'(k,-) is replaced with a truly random permutation.

Now consider the following algorithm D, interacting with a pair of oracles (O, O3) (which,
skipping ahead, should be thought of as as being either of the form (Fj, Fk_l) or (m,m~1)):
1. Sample zg, z1, ) & {0,1}"/2
2. Set P < Oy (xo||z10™) and P’ + Oy (zol|2]|0™)

3. Run y + SH7V72 (12, P) and ¢ «+ SH7V7* (17, P')

4. Output y ==19/' .

By security of the strong PRP F', D cannot distinguish with better than negligible probability
between oracle access to (Fy, Fj, ') and (7, 7~!) over the randomness of k < {0, 1}* and
7 & &({0,1}*"). Therefore there exists a negligible function negl’ such that

| Pr [DRTAM =1 Pr [D™T(1%) =1]| < negl'(n) . (3)
k&10,13* D 7&.6({0,1}2"),D

Combining Equations (2) and (3) yields Pr_ _ D™ (17) = 1] > 1 — negl(n) —

7r<—b({0,1}2”),D[
negl’(n).

In particular, this means that over the randomness of m & &({0,1}*") (i.e. that of
CRS & Setup), and for a random pair of equivalent programs P; and Py, S'deaHeleer~ (p)) s
equal to S'dealteleers (P)) with all but negligible probability. Therefore there is an efficient
algorithm which (over the randomness of ), and given two random equivalent programs in
Psep is able to determine their relative distance is the cycle.

Recall that in Shoup’s generic group model [43], a generic algorithm for solving the
discrete logarithm problem in Zy on S is given the access to group elements via random
labels, and may send a “group operation” oracle the labels for a and b and recover the label
for a+0b. A generic algorithm can run the aforementioned “relative distance algorithm”, using
fast exponentiation to emulate the ldealHelper queries using the “group operation” oracle.
Therefore, there exists a generic algorithm which can determine the discrete logarithm of
a random group element. By [43] this is impossible, which contradicts the existence of a
deterministic iO scheme for Psep. <
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A Separating Perfect and Deterministic “Obfuscation” for Equivalence
Relations

The goal of this section is to formally separate the “abstract” notions of perfect iO and
canonization as was roughly outlined in the beginning of Section 5.

In this section, we consider a sequence of equivalence relations {R, }nen, where R, C
{0,1}" x {0,1}", and define similar notions of canonization and perfect obfuscation for the
equivalence classes of R,. This can be thought of as an abstract notion of obfuscation.

» Definition 27 (Canonizer for R,,). A canonizer for R = {R,}nen s a polynomial time
algorithm Can, such that for all n and for all x € {0,1}" it holds that (x,Can(z)) € R,.
Moreover, for all n, and for all (z,y) € R, it holds that Can(z) = Can(y)

» Definition 28 (Perfect obfuscation for R,.). A perfect iO for R = {Rp}nen is a p.p.t.
algorithm i0, such that for all n and for all z € {0,1}", iO(x) has the uniform distribution
over all the strings y{0,1}" such that (x,y) € R,,.

We recall the Decisional Diffie-Hellman problem. Let G be polynomial-time a group
generator that takes the security parameter A as input and outputs (G, ¢, g), where G is a
multiplicative cyclic group of prime order ¢ and g is a generator of the group.

» Definition 29 (Decisional Diffie-Hellman problem). Let A be the security parameter. We say
that the decisional Diffie-Hellman problem is hard relative to G if

(G.4,9.9". 9", 9") ~ (G,q.9, 9", 9" ¢°)
where (G,q,g) < G(1*) and (a,b,c) & 7Z,.

We show that under the DDH assumption there exists a relation R with a perfect iO but
without a canonizer.

» Theorem 30 (Separating deterministic and perfect abstract i0). Under DDH, there exists a
relation R such that:

There exists a perfect obfuscator iO for R.

There is no canonizer for R.

Proof. Let G = (g) be a DDH-hard group. Define the relation R C G* x G* over triples of
elements in G as follows: ¢ = (21, x2,x3) and y = (y1,y2,ys) are in R if and only if

zs3 Y3

log,(z2) —  log,(y2) ’
Ty Y1

where log, (h) is the discrete logarithm in the group G with respect to the generator g.
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First, we show how, given = = (21, x2, z3), to sample y uniformly at random from the
equivalence class of x. In order to do so, pick ki, ks uniformly at random from the set
{1,2,...,|G|}, and return the triple

k k ki, ko kik
(x1g Y 129", wawytx P g™t 2) .

The pairs are in the same class,

1.31.1;1 mlf29k1 kz x3x§1 x’f2gk1 k?z - :L.S

e = = .
k1)10gg(x29 2) m;Ogy(zQ)xllﬂzgh 10gg(1‘2)gk/1k2 xll()gg(z?)

(»Tlg

Moreover, the output is distributed uniformly at random over the equivalence class of x by
construction.

We now prove the lower bound. We do so by showing that canonizing R would imply
distinguishing between the distributions D; and D, where

Dy ={(9%,9"9") 1 a,b & {1,2,...|G[}},
and
Dy ={(g"¢",9° ra,b,c & {1,2,...|G|}},

which would break the DDH assumption.

In order to distinguish between D; and D, given a canonizer for R, on input z =
(21,2, x3), the distinguisher picks arbitrary a,b € {1,2,...,|G|}, and canonize the triple
(g%, g% g?). It then canonize its input . If the results are equal (Can(z) = Can((g%, g%, g%%))),
the distinguisher knows the input triple was sampled from D;, and otherwise it knows it was
sampled from Ds. |
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