2,108 research outputs found

    Activity-driven content adaptation for effective video summarisation

    Get PDF
    In this paper, we present a novel method for content adaptation and video summarization fully implemented in compressed-domain. Firstly, summarization of generic videos is modeled as the process of extracted human objects under various activities/events. Accordingly, frames are classified into five categories via fuzzy decision including shot changes (cut and gradual transitions), motion activities (camera motion and object motion) and others by using two inter-frame measurements. Secondly, human objects are detected using Haar-like features. With the detected human objects and attained frame categories, activity levels for each frame are determined to adapt with video contents. Continuous frames belonging to same category are grouped to form one activity entry as content of interest (COI) which will convert the original video into a series of activities. An overall adjustable quota is used to control the size of generated summarization for efficient streaming purpose. Upon this quota, the frames selected for summarization are determined by evenly sampling the accumulated activity levels for content adaptation. Quantitative evaluations have proved the effectiveness and efficiency of our proposed approach, which provides a more flexible and general solution for this topic as domain-specific tasks such as accurate recognition of objects can be avoided

    Learnable PINs: Cross-Modal Embeddings for Person Identity

    Full text link
    We propose and investigate an identity sensitive joint embedding of face and voice. Such an embedding enables cross-modal retrieval from voice to face and from face to voice. We make the following four contributions: first, we show that the embedding can be learnt from videos of talking faces, without requiring any identity labels, using a form of cross-modal self-supervision; second, we develop a curriculum learning schedule for hard negative mining targeted to this task, that is essential for learning to proceed successfully; third, we demonstrate and evaluate cross-modal retrieval for identities unseen and unheard during training over a number of scenarios and establish a benchmark for this novel task; finally, we show an application of using the joint embedding for automatically retrieving and labelling characters in TV dramas.Comment: To appear in ECCV 201

    First impressions: A survey on vision-based apparent personality trait analysis

    Get PDF
    © 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.Personality analysis has been widely studied in psychology, neuropsychology, and signal processing fields, among others. From the past few years, it also became an attractive research area in visual computing. From the computational point of view, by far speech and text have been the most considered cues of information for analyzing personality. However, recently there has been an increasing interest from the computer vision community in analyzing personality from visual data. Recent computer vision approaches are able to accurately analyze human faces, body postures and behaviors, and use these information to infer apparent personality traits. Because of the overwhelming research interest in this topic, and of the potential impact that this sort of methods could have in society, we present in this paper an up-to-date review of existing vision-based approaches for apparent personality trait recognition. We describe seminal and cutting edge works on the subject, discussing and comparing their distinctive features and limitations. Future venues of research in the field are identified and discussed. Furthermore, aspects on the subjectivity in data labeling/evaluation, as well as current datasets and challenges organized to push the research on the field are reviewed.Peer ReviewedPostprint (author's final draft

    Multimodaalsel emotsioonide tuvastamisel pÔhineva inimese-roboti suhtluse arendamine

    Get PDF
    VĂ€itekirja elektrooniline versioon ei sisalda publikatsiooneÜks afektiivse arvutiteaduse peamistest huviobjektidest on mitmemodaalne emotsioonituvastus, mis leiab rakendust peamiselt inimese-arvuti interaktsioonis. Emotsiooni Ă€ratundmiseks uuritakse nendes sĂŒsteemides nii inimese nĂ€oilmeid kui kakĂ”net. KĂ€esolevas töös uuritakse inimese emotsioonide ja nende avaldumise visuaalseid ja akustilisi tunnuseid, et töötada vĂ€lja automaatne multimodaalne emotsioonituvastussĂŒsteem. KĂ”nest arvutatakse mel-sageduse kepstri kordajad, helisignaali erinevate komponentide energiad ja prosoodilised nĂ€itajad. NĂ€oilmeteanalĂŒĂŒsimiseks kasutatakse kahte erinevat strateegiat. Esiteks arvutatakse inimesenĂ€o tĂ€htsamate punktide vahelised erinevad geomeetrilised suhted. Teiseks vĂ”etakse emotsionaalse sisuga video kokku vĂ€hendatud hulgaks pĂ”hikaadriteks, misantakse sisendiks konvolutsioonilisele tehisnĂ€rvivĂ”rgule emotsioonide visuaalsekseristamiseks. Kolme klassifitseerija vĂ€ljunditest (1 akustiline, 2 visuaalset) koostatakse uus kogum tunnuseid, mida kasutatakse Ă”ppimiseks sĂŒsteemi viimasesetapis. Loodud sĂŒsteemi katsetati SAVEE, Poola ja Serbia emotsionaalse kĂ”neandmebaaside, eNTERFACE’05 ja RML andmebaaside peal. Saadud tulemusednĂ€itavad, et vĂ”rreldes olemasolevatega vĂ”imaldab kĂ€esoleva töö raames loodudsĂŒsteem suuremat tĂ€psust emotsioonide Ă€ratundmisel. Lisaks anname kĂ€esolevastöös ĂŒlevaate kirjanduses vĂ€ljapakutud sĂŒsteemidest, millel on vĂ”imekus tunda Ă€raemotsiooniga seotud ̆zeste. Selle ĂŒlevaate eesmĂ€rgiks on hĂ”lbustada uute uurimissuundade leidmist, mis aitaksid lisada töö raames loodud sĂŒsteemile ̆zestipĂ”hiseemotsioonituvastuse vĂ”imekuse, et veelgi enam tĂ”sta sĂŒsteemi emotsioonide Ă€ratundmise tĂ€psust.Automatic multimodal emotion recognition is a fundamental subject of interest in affective computing. Its main applications are in human-computer interaction. The systems developed for the foregoing purpose consider combinations of different modalities, based on vocal and visual cues. This thesis takes the foregoing modalities into account, in order to develop an automatic multimodal emotion recognition system. More specifically, it takes advantage of the information extracted from speech and face signals. From speech signals, Mel-frequency cepstral coefficients, filter-bank energies and prosodic features are extracted. Moreover, two different strategies are considered for analyzing the facial data. First, facial landmarks' geometric relations, i.e. distances and angles, are computed. Second, we summarize each emotional video into a reduced set of key-frames. Then they are taught to visually discriminate between the emotions. In order to do so, a convolutional neural network is applied to the key-frames summarizing the videos. Afterward, the output confidence values of all the classifiers from both of the modalities are used to define a new feature space. Lastly, the latter values are learned for the final emotion label prediction, in a late fusion. The experiments are conducted on the SAVEE, Polish, Serbian, eNTERFACE'05 and RML datasets. The results show significant performance improvements by the proposed system in comparison to the existing alternatives, defining the current state-of-the-art on all the datasets. Additionally, we provide a review of emotional body gesture recognition systems proposed in the literature. The aim of the foregoing part is to help figure out possible future research directions for enhancing the performance of the proposed system. More clearly, we imply that incorporating data representing gestures, which constitute another major component of the visual modality, can result in a more efficient framework

    End-to-end learning, and audio-visual human-centric video understanding

    Get PDF
    The field of machine learning has seen tremendous progress in the last decade, largely due to the advent of deep neural networks. When trained on large-scale labelled datasets, these machine learning algorithms can learn powerful semantic representations directly from the input data, end-to-end. End-to-end learning requires the availability of three core components: useful input data, target outputs, and an objective function for measuring how well the model's predictions match the target outputs. In this thesis, we explore and overcome a series of challenges as related to assembling these three components in the sufficient format and scale for end-to-end learning. The first key idea presented in this thesis is to learn representations by enabling end-to-end learning for tasks where such challenges exist. We first explore whether better representations can be learnt for the image retrieval task by directly optimising the evaluation metric, Average Precision. This is notoriously challenging task, because such rank-based metrics are non-differentiable. We introduce a simple objective function that optimises a smoothed approximation of Average Precision, termed Smooth-AP, and demonstrate the benefits of training end-to-end over prior approaches. Secondly, we explore whether a representation can be learnt end-to-end for the task of image editing, where target data does not exist in sufficient scale. We propose a self-supervised approach that simulates target data by augmenting off-the-shelf image data, giving remarkable benefits over prior work. The second idea presented in this thesis is focused on how to use the rich multi-modal signals that are essential for human perceptual systems as input data for deep neural networks. More specifically, we explore the use of audio-visual input data for the human-centric video understanding task. Here, we first explore if highly optimised speaker verification representations can transfer to the domain of movies where humans intentionally disguise their voice. We do this by collecting an audio-visual dataset of humans speaking in movies. Second, given strong identity discriminating representations, we present two methods that harness the complementarity and redundancy between multi-modal signals in order to build robust perceptual systems for determining who is present in a scene. These methods include an automated pipeline for labelling people in unlabelled video archives, and an approach for clustering people by identity in videos
    • 

    corecore