150,864 research outputs found

    On weighted depths in random binary search trees

    Get PDF
    Following the model introduced by Aguech, Lasmar and Mahmoud [Probab. Engrg. Inform. Sci. 21 (2007) 133-141], the weighted depth of a node in a labelled rooted tree is the sum of all labels on the path connecting the node to the root. We analyze weighted depths of nodes with given labels, the last inserted node, nodes ordered as visited by the depth first search process, the weighted path length and the weighted Wiener index in a random binary search tree. We establish three regimes of nodes depending on whether the second order behaviour of their weighted depths follows from fluctuations of the keys on the path, the depth of the nodes, or both. Finally, we investigate a random distribution function on the unit interval arising as scaling limit for weighted depths of nodes with at most one child

    The shape of random tanglegrams

    Full text link
    A tanglegram consists of two binary rooted trees with the same number of leaves and a perfect matching between the leaves of the trees. We show that the two halves of a random tanglegram essentially look like two independently chosen random plane binary trees. This fact is used to derive a number of results on the shape of random tanglegrams, including theorems on the number of cherries and generally occurrences of subtrees, the root branches, the number of automorphisms, and the height. For each of these, we obtain limiting probabilities or distributions. Finally, we investigate the number of matched cherries, for which the limiting distribution is identified as well

    Fringe trees, Crump-Mode-Jagers branching processes and mm-ary search trees

    Full text link
    This survey studies asymptotics of random fringe trees and extended fringe trees in random trees that can be constructed as family trees of a Crump-Mode-Jagers branching process, stopped at a suitable time. This includes random recursive trees, preferential attachment trees, fragmentation trees, binary search trees and (more generally) mm-ary search trees, as well as some other classes of random trees. We begin with general results, mainly due to Aldous (1991) and Jagers and Nerman (1984). The general results are applied to fringe trees and extended fringe trees for several particular types of random trees, where the theory is developed in detail. In particular, we consider fringe trees of mm-ary search trees in detail; this seems to be new. Various applications are given, including degree distribution, protected nodes and maximal clades for various types of random trees. Again, we emphasise results for mm-ary search trees, and give for example new results on protected nodes in mm-ary search trees. A separate section surveys results on height, saturation level, typical depth and total path length, due to Devroye (1986), Biggins (1995, 1997) and others. This survey contains well-known basic results together with some additional general results as well as many new examples and applications for various classes of random trees

    Width and mode of the profile for some random trees of logarithmic height

    Full text link
    We propose a new, direct, correlation-free approach based on central moments of profiles to the asymptotics of width (size of the most abundant level) in some random trees of logarithmic height. The approach is simple but gives precise estimates for expected width, central moments of the width and almost sure convergence. It is widely applicable to random trees of logarithmic height, including recursive trees, binary search trees, quad trees, plane-oriented ordered trees and other varieties of increasing trees.Comment: Published at http://dx.doi.org/10.1214/105051606000000187 in the Annals of Applied Probability (http://www.imstat.org/aap/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Random structures for partially ordered sets

    Get PDF
    This thesis is presented in two parts. In the first part, we study a family of models of random partial orders, called classical sequential growth models, introduced by Rideout and Sorkin as possible models of discrete space-time. We analyse a particular model, called a random binary growth model, and show that the random partial order produced by this model almost surely has infinite dimension. We also give estimates on the size of the largest vertex incomparable to a particular element of the partial order. We show that there is some positive probability that the random partial order does not contain a particular subposet. This contrasts with other existing models of partial orders. We also study "continuum limits" of sequences of classical sequential growth models. We prove results on the structure of these limits when they exist, highlighting a deficiency of these models as models of space-time. In the second part of the thesis, we prove some correlation inequalities for mappings of rooted trees into complete trees. For T a rooted tree we can define the proportion of the total number of embeddings of T into a complete binary tree that map the root of T to the root of the complete binary tree. A theorem of Kubicki, Lehel and Morayne states that, for two binary trees with one a subposet of the other, this proportion is larger for the larger tree. They conjecture that the same is true for two arbitrary trees with one a subposet of the other. We disprove this conjecture by analysing the asymptotics of this proportion for large complete binary trees. We show that the theorem of Kubicki, Lehel and Morayne can be thought of as a correlation inequality which enables us to generalise their result in other directions
    • …
    corecore