
Abstract 

This thesis is presented in two parts. In the first part, we study a family of models 

of random partial orders, called classical sequential growth models, introduced by 

Rideout and Sorkin as possible models of discrete space-time. We analyse a particu-

lar model, called a random binary growth model, and show that the random partial 

order produced by this model almost surely has infinite dimension. We also give 

estimates on the size of the largest vertex incomparable to a particular element of 

the partial order. We show that there is some positive probability that the random 

partial order does not contain a particular subposet. This contrasts with other ex-

isting models of partial orders. We also study "continuum limits" of sequences of 

classical sequential growth models. We prove results on the structure of these limits 

when they exist, highlighting a deficiency of these models as models of space-time. 

In the second part of the thesis, we prove some correlation inequalities for mappings 

of rooted trees into complete trees. For T a rooted tree we can define the proportion 

of the total number of embeddings of T into a complete binary tree that map the 

root of T to the root of the complete binary tree. A theorem of Kubicki, Lehel and 

Morayne states that, for two binary trees with one a subposet of the other, this 

proportion is larger for the larger tree. They conjecture that the same is true for 

two arbitrary trees with one a subposet of the other. We disprove this conjecture 

by analysing the asymptotics of this proportion for large complete binary trees. 

We show that the theorem of Kubicki, Lehel and Morayne can be thought of as a 

correlation inequality which enables us to generalise their result in other directions. 
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Summary 

This thesis covers two areas in probabilistic combinatorics, specifically the com-

binatorics of partially ordered sets. Problems and areas of study in probabilistic 

combinatorics broadly fall into one of two classes. The first class contains prob-

lems of a deterministic nature, which are particularly suited to some application of 

probabilistic methods or techniques. The second class contains problems that are 

themselves of a probabilistic nature. We cover problems from both classes. 

In the first part of the thesis we investigate a family of random models of partial 

orders, called classical sequential growth models. We study in detail the simplest 

non-trivial model from the family and analyse the partial orders it produces. We 

also study "continuum limits" of sequences of classical sequential growth models, 

proving that particular sequences of these models do have continuum limits. We 

also prove some results about the continuum limit of a general sequence of classical 

sequential growth models, when it exists. 

In the second part of the thesis we look at enumeration of embeddings of trees 

into complete trees, which can be motivated by a partial-order variant of the best 

secretary problem. We show that a monotone property of binary trees that was 

conjectured to hold for arbitrary trees does not hold in general. We show that the 

monotonicity on binary trees is an example of a correlation inequality on a certain 

lattice, and using this we can prove generalisations in other directions. 



Part I 

Classical sequential growth models 



In this part we study a family of models of random partial orders, called classical 

sequential growth models, introduced by Rideout and Sorkin [24]. These models 

were proposed as possible models for discrete space-time, since they are the only 

models satisfying certain desirable physical-looking conditions. In particular, we 

will analyse the simplest non-trivial model from the family, and we will also define 

and study a particular limit of a sequence of classical sequential growth models. 

In Chapter 1 we give a full description of the family of models and a brief 

summary of the results in [24], explaining the physical-looking conditions imposed 

by Rideout and Sorkin, and noting that a particular model from the family can be 

specified by a sequence of non-negative constants. 

In Chapter 2 we study in detail the particular model called a random binary 

growth model, showing that a random poset produced by the model almost surely 

has infinite (poset) dimension. This shows that, despite the simple description of the 

model, the random poset it produces has a complex structure. We give estimates for 

bounds on the size of an up-set of a particular element and show that every element 

in the random infinite poset is incomparable to only finitely many others. We also 

present a specific poset that, with some positive probability, is not contained in the 

random poset produced by the model. This contrasts the model with other random 

models of partial orders, for example the random graph order, which contains any 

specific poset almost surely. 

In Chapter 3 we study the continuum limits of sequences of classical sequential 

growth models. Rideout and Sorkin [25] have provided computational evidence 

suggesting that particular sequences of models have a continuum limit. We formalise 

their results by defining what a continuum limit is, and we show that if a sequence 

has a continuum limit then it must be an almost-semiorder. Using some results of 

Pittel and Tungol [23] on random graph orders, we prove that the continuum limit 

of a sequence of random graph orders, when it exists, is a random semiorder. We 

also present some new results on classical sequential growth models. This chapter 



describes work carried out in conjunction with my supervisor, Professor Graham 

Brightwell. 



Chapter 1 

Introduction 

We study a family of models of random partial orders, called classical sequential 

growth models, introduced by Rideout and Sorkin [24]. Each model is defined on the 

(labelled) vertex set N, which we will always take to include 0. Any model can be 

restricted to [n] = {0,1, 2 , . . . , n} and regarded as a model of random finite posets. 

The model starts with a poset of one element (labelled 0), and grows in stages. At 

stage n = 1 ,2 , . . . , vertex n is added to the existing poset, P„_i, by placing n above 

some choice of vertices of P„_i. The poset Pn is defined on vertex set [n] by taking 

the transitive closure of the existing and added relations. This is called a transition 

from Pn-i to Pn, written Pn-\ Pn- The models are random, so each transition 

occurs with some probability. These transition probabilities are fixed and depend 

on the particular model. Let P(Pn-i —> Pn) denote the probability of transition 

Pn-i Pn occurring. 

Rideout and Sorkin then impose four conditions on the transition probabilities, 

with the aim of giving the model physical meaning. They call these conditions: 

internal temporality, discrete general covariance, Bell causality and Markov sum. 

The first and last conditions are implicit in the mathematical approach to random 

partial orders, namely that the labelling of a poset is natural (can be extended 

to the < order on the natural numbers), and that the model is indeed "random" 



(at each stage n and for any fixed Pn-\ the sum of probabilities over all possible 

transitions Pn_i —> Pn must be equal to 1). Discrete general covariance states that 

the probability of producing a particular poset should not depend on the labelling 

of the poset, that is, given two different sequences of transitions, (Pi —> Pi+1) and 

(Qi —>" Qi+i) which produce the isomorphic posets Pn and Qn, the products 
n—1 n—1 
П я + o a n d П ^ Gi+i) 
i = 0 i=0 

must be equal. So, for example, discrete general covariance immediately implies 

that any two transitions from P„_i to isomorphic posets Pn and P'n have the same 

transition probability P(Pn_i —> Pn) = P(Pn_i —> P^). Bell causality is a condition 

on ratios of transition probabilities. (Note that in [24] Rideout and Sorkin only 

study "generic" models, meaning that all transition probabilities are non-zero, in 

order to make sense of this condition.) Given a particular poset P, and any two 

transitions P —• P', P —> P" which add the new element n, let S be the set of all 

elements which are incomparable with n in both P' and P". Let Q be the poset 

formed from P by removing all the elements of S (and obsolete relations), and define 

Q' and Q" similarly. Then, Bell causality states that 
P(P -> P') = P(Q -> Q') 
P(P P") ~ P(Q Q")' 

the idea being that, since the new element is not placed above any of the elements 

of S in either transition, the presence of the set S should not affect the ratio of the 

transition probabilities. 

A particular model is specified by a sequence t = (to,ti , . . . ) of non-negative 

constants. The random poset is defined as the transitive closure of a directed random 

graph Gt on N in which all arcs go from a lower numbered vertex to a higher. The 

arcs are selected sequentially, considering each vertex n in turn and choosing the set 

Dn С [n — 1] of vertices sending an arc to n; the probability that Dn is equal to a 

set D being proportional to t\o\, so that 



A model defined according to this description is called a classical sequential 

growth model. Rideout and Sorkin show that these models are the only generic 

models satisfying their conditions. It is an easy exercise to check that these models 

do indeed satisfy the four conditions; for example, Bell causality holds essentially 

because the relative probability that element N selects a set D, defined as t\D\, is 

independent of n. 

Varadarajan and Rideout [31] and Dowker and Surya [12] have studied the sit-

uation where the transition probabilities are allowed to be zero. The Bell causality 

condition becomes a condition on products of transition probabilities and the type 

of models that satisfy the conditions are very similar to the generic models described 

here. 

The family of classical sequential growth models also contains models of random 

graph orders. A random graph order Рпф is defined as follows. The ground set of 

Pn.p is the set { 0 , 1 , . . . , n — 1}. For each pair of vertices i < j the relation (i,j) 

is introduced with probability p. The poset Pn>p is then the transitive closure of 

these relations. Random graph orders were introduced by Albert and Frieze [1] and 

have been studied further by Bollobäs and Brightwell [7, 8, 9] and Simon, Crippa 

and Collenberg [27]. The area is covered in the survey of random partial orders by 

Brightwell [10]. A classical sequential growth model defined by sequence t where 

U = f for all i, and t = p/(l — p), will after stage n — 1 produce a random graph 

order Pn<p. 

In the following chapter, we concentrate on the model where the sequence t is 

(0,0,1,0,. . . ) , i.e., where all U are zero except t2. This means that \Dn\ = 2 for each 

vertex n. We say that n selects the two vertices in Dn. So, in this model each vertex 

n selects two vertices chosen uniformly at random from the set [n — 1]. We assume 

that we start with the vertices 0 and 1 incomparable with probability 1 and then 

add vertices n = 2 ,3 , . . . according to the model. (So, for example, D2 = {0,1} 

with probability 1.) We call this model a random binary growth model and call the 



random poset it produces a random binary order. 

This is the simplest interesting model; the model defined by t with t0 non-zero 

and U equal to zero for i > 1 produces an infinite antichain (Dn = 0 with probability 

1, for all n), and the model defined by t with t0 and t\ non-zero and U equal to zero 

for г > 2 produces a forest of infinitely many infinite trees, where each vertex is an 

upper cover of exactly one other vertex and a lower cover of infinitely many other 

vertices. These are called the "dust universe" and "forest universe", respectively, in 

[24]. 

The random binary growth model also has potential applications in computer 

science. Under the name of a random binary recursive circuit, the random binary 

order has been studied by Mahmoud and Tsukiji [20, 21], Tsukiji and Xhafa [30] and 

Arya, Golin and Mehlhorn [4]. These papers typically focus on the "depth" of the 

circuit or the number of "outputs" of the circuit. These are considered as important 

parameters in a computer science setting; however, they correspond to the height 

of the random binary order and the number of maximal elements of the random 

binary order, which are not particularly interesting parameters of a partial order. 

Here we will consider parameters that are more interesting from a combinatorial 

viewpoint, but these will probably not have useful analogues in the recursive circuit 

formulation. 

The random binary growth model is essentially the same as any other model 

with t3 — 14 = . . . = 0 since for large n the number of 2-element subsets of [n — 1] 

is significantly greater than the number of 1-element subsets and so the probability 

of n selecting just one vertex (or no vertices) is very small in comparison to the 

probability of n selecting two vertices. Therefore the results in the following chapter 

will carry over easily to such models. 



Chapter 2 

The random binary growth model 

Recall that the random binary growth model is defined as follows. Start with el-

ements 0 and 1 incomparable; then each element n = 2 , . . . selects two elements 

uniformly at random from [n — 1], and we take the transitive closure. We will 

denote the random binary growth model by B2 and the random binary order it pro-

duces by B2. We write B2[n] for the restriction of B2 to [n] and B2[ni,n2] for the 

restriction of B2 to n2] = {x £ N : щ < x < n2}. 

The random binary order B2 is a sparse order; each vertex n has at most 2 lower 

covers since a; is a lower cover of n if and only if it is selected by n and is not below 

the other vertex у selected by n. This means the Hasse diagram of B2[n] has at 

most 2n edges. Also, as we now show, the expected width (i.e., the expected size of 

the largest antichain) of B2[n] increases with n. A vertex x in B2{n\ is maximal if 

and only if all vertices у = x+l,x + 2,... ,n do not select x, so 

2\ rV У - 2 ®(ж-1) 'z n 
{x is maximal in B2 Ы) — I I ( 1 ]— И — / 

у й Л V ' 1ДД1 У n { n ~ l ) 

and so the expected number of maximal elements is 

1 n 1 n 

' i=2 4 ' \ж=1 i=l 
= 1 (п(п + 1)(2п+1) _ w(w+ 1)\ = (n + 1)/3 

n(n - 1 ) V 6 2 / 



(In fact, this is shown in [20], where Mahmoud and Tsukiji also show that the number 

of maximal elements of B2 [n] tends in distribution to a normal random variable with 

mean n/3 and variance 4n/45.) The maximal elements form an antichain, so the 

expected width of B2[n] is at least (n + 1)/3. 

However, the number of minimal elements is always 2, since only 0 and 1 are 

minimal. Moreover, the expected number of minimal elements of B2[ni,n2\, f° r 

щ > 2, is bounded above by щ as n2 tends to infinity. Indeed, a vertex x in 

B2 [fti, n2] is minimal if and only if it selects both vertices from [щ — 1], and the 

probability of this is ( ^ / ( s D = n i ( n i — l ) / x (x — 1). Summing over x from щ to 

n2 gives the expected number of minimal elements equal to щ — ni(ni — 1 )/n2. 

In Section 2.1 we study the dimension of B2. The dimension of a poset P 

on ground set X is the minimum number of linear orders on the set X whose 

intersection is equal to P. In other words, the minimum number of linear orders Li 

such that x < у in P if and only if x < у in Lj for all i. An equivalent definition 

is that the dimension of P is the smallest d such that P can be embedded into 

Rd, where Rd is the d-dimensional Euclidean space with ordering (x i , . . . , x<j) < 

( y i , . . . , yd) in Rd if Xi < yi in R, for all i = 1 , . . . ,d. (The equivalence can be 

easily proven; the essential observation is that the linear orders on X correspond 

to the coordinate-wise orderings of the embedded points in M.d.) Since B2 is sparse, 

one might suppose there to be a relatively simple structure to B2. However, we 

show this is not the case in so much as showing that B2 has infinite dimension, 

almost surely. Using standard notation (see, e.g., [29]), we write P( l ,2 ;m) for the 

subposet of the subset lattice formed by the 1-element and 2-element subsets of 

the m-element set { 1 , . . . , m} ordered by inclusion. Spencer [28] proved that the 

dimension of P ( l , 2; m) is greater than log2 log2 m, so we show that B2 has infinite 

dimension, almost surely, by showing it contains a copy of P ( l , 2; m) as a subposet, 

for each m, almost surely. This is done by counting (and bounding the expected 

number of) certain "paths" in B2 (the "paths" in B2 are exactly the paths in the 



directed random graph G t). 

In Section 2.2 we study the sizes of up-sets in B2[n] and, related to this, the 

number of elements in B2 incomparable with an arbitrary element. Although B2 is 

sparse, we show that for all r the number of elements incomparable with r is finite. 

In particular, this implies that B2 does not contain an infinite antichain, almost 

surely. Moreover, for any classical sequential growth model defined by sequence t 

where U ^ 0 for some i > 2, the same result is true, that the random poset produced 

does not contain an infinite antichain, almost surely. 

We use the differential equation method of Wormald [32, 33] which specifies when 

and how a discrete Markov process can be closely approximated by the solution to 

a related differential equation. We prove a version of Wormald's theorem which 

makes explicit the errors in the approximation. We use this result to analyse the 

growth of the up-set of an arbitrary point. For a fixed point r, write for the set 

of elements above r in the finite poset B2[n}. We can think of "growing the poset" 

by increasing n. Then |С4П'|, which depends on n, can be considered as a Markov 

process. Using this "differential equation method", we give good estimates on 

for particular values of n, and show that there exists an n = n(r) such that Ir С [п]. 

Here, Ir is the set of vertices greater than r which are incomparable with r. So, for 

fixed r, there are no vertices greater than n incomparable to r, and so the number 

of vertices incomparable with r is finite. We provide two similar proofs, one giving 

bounds for a typical r, and one giving bounds for all but finitely many r. 

Is the fact that P(l ,2,ra) is almost surely contained in B2 a special case of 

something more general? Is it possible, as in the case of random graph orders, that 

every finite poset is contained in B2, almost surely? In Section 2.3 we show that this 

is not the case. We use our result from Section 2.2, that there is an n = n(r) such 

that for all but finitely many r, there are no vertices greater than n incomparable 

with r. So, we know that if two elements in B2 have labels with a large enough 

difference then they must be comparable. We construct a poset which if contained 



in B2 must have two elements whose labels have large difference. Combining these 

two results, we provide an example of a poset not contained in B2 (or rather, there 

is a positive probability that B2 does not contain the poset). 

2.1 The dimension of B2 

We write P( l , 2; m) for the subposet of the subset lattice formed by the 1-element 

and 2-element subsets of the set { 1 , . . . , m} ordered by inclusion. For a particular 

vertex r, let Ur be the set of all vertices above r in B2 and let ufi be the set of all 

vertices above r in B2[t]. Denote by Tk the hitting time of the event \Ur\ — k, i.e., 

the smallest t such that = k, and the waiting time between events \Ur\ — к — 1 

and \Ur\ = к by Wk, so that Tfc+1 = Tk + Wk+i- We include the point r in Ur so 

that Ti = r. 

We now show that, for every m, there exists a copy of P( 1,2;m) in B2, almost 

surely. This is enough to show that B2 almost surely has infinite dimension, since 

dimP(l ,2 ;m) > log2log2m (see [28]). 

In fact, we will prove a stronger result, that for each m there exists an r0 such 

that the probability of there being a copy of P(l, 2; m) in B2[r, 2r1^} is greater than 

3/5 for all r > Го-

We use the following lemma to find a copy of P( l , 2; m) in B2[r, 2r7/5]. 

Lemma 2.1. For any m, and any щ < n2, if we have sets X = {xi,... ,xm} С 

[ni,n2], Y = {yi,... ,ум} ^ where M = and the following conditions 

hold 

(i) the points in X are incomparable in ^[ni, n2], 

(ii) for each pair of points CC j j CCj %rf\ X there is exactly one yk in Y which is above 

these points and no others in X (according to the order B2[n\,n2]), 



then X U Y is a copy of P( l , 2; m) in В2[щ,п2] where X is the set of minimal 

elements and Y is the set of maximal elements. 

Proof. Let < be the order on В2[п\,п2]. To show that X\JY is a copy of P( l , 2; m) 

we need to show that the only relations are those described by condition (ii). That 

is, that there are no relations of the form Xi < Xj, yk < yi or yk < X{. 

By condition (i) there are no relations of the form So, suppose there 

exists some relation Ук<Уь Since \Y\ = M = (™), condition (ii) implies that there 

exists a pair Xi, Xj with xi? Xj < yk. But then ж», Xj < yi contradicting condition (ii). 

Suppose there exists some relation у к < Xi. Then by condition (ii) there exists some 

yi with Xi < yi. But then yk < y% which leads to a contradiction as above. 

So, X U Y is a copy of P(l , 2; m) and X is the set of minimal elements and Y is 

the set of maximal elements. • 

Proposition 2.2. For every m, there exists an ro such that the probability of there 

being a copy of P( 1,2; rri) in B2[r, 2r7/5] is greater than 3/5 for all r > ro-

Proof. We will prove the result as follows. Assume that m is fixed, ro is sufficiently 

large and r > r0. First we find a set of points that satisfies condition (i) of Lemma 2.1 

with some high constant probability. Because of the sparsity of B2, it is easy to find 

this set. Here we will take the points r,r + 1,... ,r + m — 1. These points will form 

the minimal elements of a copy of P ( l , 2; m). We then grow the poset up to size r7/5, 

keeping track of the sizes of the up-sets of these chosen minimal points. The value 

r7/5 is chosen so that the up-sets are large enough, but their pairwise intersection is 

still an insignificant fraction of the whole up-set. This means that the set of points 

above one and only one of the minimal points is reasonably large. The bulk of the 

proof is in showing this. Finally, we grow the poset up to size 2r7/5 to find the points 

satisfying condition (ii) of Lemma 2.1. Indeed, we look for points in [r7/5 + 1,2r7/5] 

selecting a pair of points from each pair of "exclusive up-sets". Because the sizes of 

the exclusive up-sets are known, we can show that the probability of finding these 



points is at least some constant probability. We then apply Lemma 2.1 to obtain 

the result. 

Following this scheme, where m is fixed, ro is sufficiently large and r > ro, 

consider the points r, r + 1,... ,r + m — 1. We attempt to find a copy of P(l, 2; m) 

in which these are the minimal elements. We have, 
m—l /r\ 

P(r, r + 1 , . . . , r + m - 1 are incomparable) = JJ jgl- > 9/10 for rQ > 20m2. 
i=1 \ 2 ) 

Now grow the poset by adding points up to n = r7/5. We consider the growth 

of the set Ur- We calculate the expected waiting time EWk+i as follows. Suppose 

Tfc = i, then since Wk+i always takes integer values greater than or equal to 1 we 

have 
00 00 j /t+l-k\ 

ЕИ4+1 = 1 + J > ( W f c + i > j ) = 1 + J ] П " S b r j=1 j=1 1=1 V 2 ) 

and using the inequalities 1-х <e~x and f{x)dx < / ( j ) < f^ f(x)dx, 

for / decreasing, we have 
oo j /t+l-k\ OO / j 

w.^i+EIlWf+E П 
2 

Cr) " t + i 

J=1 \ 1=1 
°° ( P + X 1 \ 

< l + g e x p [ ~ 2 k J t — d l ) 

f + 1 V * = 1+Е(щтт] 
f°° 1 < 1 + ( t + 1 ) - y o 

(t + l)2k 1 
= 1 + 

That is, 

E(Wfc+i|Tfc) < 1 + 

(t+l)2k~1 2k-1' 

Tk + 1 
2k-1 

So, we have 
/ ET1 4-1\ 2 к 

ETk + 1 = ETk + EWfc+1 < ETk + ( 1 + ) = р(ЕТ, + 1), (2.1) 



which by induction on к gives 

ET fe+1< (22k /(2k))r + 2k. (2.2) 

Using Stirling's approximation we have 

/ 2 k\ V2ir(2k)2k+1/2e-2k+1tt24k+V 22k+1/2e1^24k+1^ 
\k ) ~ (^fefc+l/2e-fc+l/12fc)2 ~ ^fcl /2 e l /6fe ' f 0 ^ ^ 1 ' 

so ETk+i < + 2k, for к > 1. For к > 2, ^£ei/e*-i/(24fe+i) < 2 

and using (2.2) we have ET2 < 2r + 2, so ETk+i < 2r\[k + 2k and so 

ETk < 2rVk + 2k. (2.3) 

If we similarly define Ur+l, T^, for r + г, г = 1 , . . . , rn — 1 and write for 

Tk, then we have T^ = r + г, giving equations 

Е Т « 1 < ( 2 2 А / © ) ( г + г) + 2А;, (2.5) 

ETf < 2(r + i ) Vk + 2k, (2.6) 

corresponding to equations (2.1),(2.2) and (2.3). 

For r0 > m we have r + г < r + m < 2r, so (2.6) becomes 

ETfc(i) < + 2k, i = 0 , . . . , m - 1. 

So, recalling that n = r7//5, we have 

P(|C/j"l| < r3 / 4 ) = P(T
r 3
/4 > n) < E T

r 3
/ 4 / n 

< (4Г11/8 + 2r3 /4)/r7/5 < 6/r1/40 < l/10m 

for r0 > (60m)40, and similarly for г = 1 , . . . , т - 1 . 

Therefore, P(all |c4n]|, • • -, > rz 'A) > 9/10. 

We say a point a; selects a pair of sets (Xi,X2) if Dx = {:ri, x2} for some x\ e Xx 

and xo Xo. t,ha,t, is. if x selects a point from each set Xx and X2. Using the lower 



bounds on uj^i we can show that, with high probability, there exist points in B2 [2n] 

selecting each pair ( U ^ , U ^ ) . We might hope for these to form the maximal points 

of a copy of P( 1,2;m), since for each pair of minimal points r + i,r + j we have a 

point above both. However, it is possible for these potential maximal points to be 

above more than 2 minimal points. We need to find points above exactly 2 of the 

minimal points. To do this we need to look at a subset of Ur+i, namely the set of 

points above r + i but not above any other r + j for j Ф i. 

For points x, у in B2, write Uxy for the set of points above both x and y. Consider 

the restricted poset B2[n] and write ut'y for the set of points in B2[n] above both x 

and y. We will show that is small in comparison to |f4"'| and Call 

a sequence of integers (i,)*=1 from [r, n] a path if ij selects ij-\ in the poset, for 

j = 2 , . . . , s. So a path is necessarily a strictly increasing sequence. We say a path 

(b)j=i is fr°m 4 to is. Define a forked path with ends x,y, z and connection point 

w to be three paths, one from x and one from у both to w, and a third from w to z 

(so x, у < w < z), with w the only common point of the first two paths. Note that 

we allow the possibility that w = z, in which case the third path is the single point 

w = z. 

For each point и in there must be paths Pr from r to и and Pr+1 from 

r+1 to щ if we set v = min{j : j is a common point of Pr and P r+i} then by taking 

the subpath (subsequence of consecutive terms of a path) from r to v (of Pr), the 

subpath from г + 1 to и (of Pr+i) and the subpath from v to и (of either Pr or 

Pr+1) we have a forked path with ends r,r + 1 and u, and connection point v. This 

forked path is not necessarily unique, since Pr and Pr+i are not necessarily unique. 

Let FP(r, r + l,v) be the total number of forked paths with ends r and r + 1 and 

connection point v all fixed, and with arbitrary third end u, with v < и <n. Let 

FP(r, r + 1) = J2v=r+2 F P г + 1, «)• Then \Urr+i\ < FP(r, r + 1). 

Now, the probability that a strictly increasing sequence is a path in B2[n] 

is P(nj = 2 ( i j selects ij-1)) = П^=2(2/b')> by independence. 



We can also calculate the probability that the points {г 0 ,4, • • •, i s} , i0 < i\ < 

•••< is form two disjoint paths in B2 [n], one from г0, the other from ii, as follows. 

Start with two sequences A — (г0) and В = (ii), then taking each point ij,j = 

2 , . . . , s in turn make it the next term in either sequence A or sequence B. (So, the 

resulting A and В are disjoint subsequences of (ij)j=0)- The probability that we 

can make A and В paths is the probability that at each step ij selects one of the 

current end terms of A or B. For step j this is at most 4/ij so by independence the 

total probability is less than П^=2(4/г^). We have inequality here because we are 

over-counting the case where ij is above both of the current end terms of A and B. 

The expected size of FP(r,r + 1, v) is the sum over all subsets I of [r, n], 

with r,r + l,v G / , of the probability that I forms a forked path with ends 

r, r + l ,max l and connection point v. This is the probability that I<v = {г € 

I : г < v} forms two disjoint paths from r and r + 1; and v selects the end of 

both paths; and />„ = {i e I : i > v} forms a path from v to max/. So, 

for / = {r, r + 1,г2 , . . - ,is-i,v,is+i,... , i s + s / } with ij increasing and r + 1 < г2, 

is~i < v < is+i this probability is less than x 1 / g ) x UU^M-

So the sum over all such subsets I can be written as the following product, since 

the individual terms of the expanded product correspond exactly to the required 

probabilities for all subsets I, 

~ \r + IJ v(v-l) w 
2 n2 

using the inequalities 1 + x < ex and =a / (г) < Ja6_1 f(x)dx for / decreasing, so 

in particular Ya=o. 1Д < log 6 - log (a - 1). 

Therefore. E F P f r . r + 1) < 2n3/r4 and since n = r7 /5 , we have EIC/ÜJ < 



E F P ( r , r + 1) < 2r1/5. The same method gives the same upper bound on the 

expected size of U^y for all pairs (x, y) in [r, r+m— 1](2) so P(| ü M j > (10 m2)rl'b) < 

l/5m2 and P(all |c4nJ| < (10m2)r1/5) > 9/10. 

Let Ain' be the set of points above r but not above r + 1 , . . . , r + m — 1 in B2[n], 

then 4 n l = Uln] \ UI^1 Similarly define A[?\ x e [r + 1, r + m - 1]. Then, 

for v > r0 > 400m6, we have (10m2)rlj/5 < r3^/2m so with probability greater than 

4/5 we have all \A[x]\, x € [r,r + m - 1] at least |r3/4. 

We grow the poset by adding a further n = r7/5 points, to find our maximal 

points: M = points a i , . . . ,ам, so that each pair of sets (Ai"', A^'), {x,y) S 

r, r + m — is selected by some a*. 

Now, 

1 4 M 1 1 4 M I „3/2 „3/2 

P(» + i selects ( 4 " U " i ) ) = > > ~ b, i < n, 

so 
/ r3/2\ 

P(none of n + 1 , . . . , 2n selects (Aj.n], АД1)) < ( 1 - ^ ) 

< exp(-r1 /1 0 /8) , 

which is less than 1/10M for r0 > (8 log 10M)10. The same calculations give the 

same upper bound on the probability of failing to find a point in [n + 1,2n] which 

selects for each (x,y) £ [r,r + m — so the probability of failing to 
find points a i , . . . , ам in [n + l,2n] as desired is less than 1/10. 

So with probability at least 3/5 we have sets { r , r + l , . . . , r + ra — 1} and 

{ a b a 2 , . . . , aM} satisfying the conditions of Lemma 2.1. Therefore {r,r+ 1,... ,r + 

m - 1, ai, a2,..., aM} is a copy of P( 1,2; m) in B2[r, 2n], • 

Theorem 2.3. For every m there exists a copy o / P ( l , 2 ; m ) in B2, almost surely. 

Proof. This follows from Proposition 2.2. Fix m. Let r0 be given by Proposition 2.2. 



To find a copy of P( 1,2; m) in B2 we split B2 into disjoint sets of the form B2[nx,n2) 

as follows. 

For i = 1 ,2 , . . . , let ri = 2r7£ + 1. By Proposition 2.2 the probability of there 

not being a copy of P ( l ,2 ;m) in В2[г{)2г7/5] is less than 2/5, for each i. The 

probability of not finding a copy of P ( l ,2 ;m) in the infinite poset B2 is less than 

the probability of not finding a copy of P( l ,2 ;m) in every poset В2[г^2г7,ъ\. But 

the sets В2[г^2гУ5} are disjoint, so the events "not finding a copy of P(l ,2;m) in 

B2[ri, 2rJ^5]" are independent. Therefore the probability of not finding a copy of 

P( l , 2; m) in the infinite poset B2 is zero, as required. • 

Corollary 2.4. B2 has infinite dimension, almost surely. 

Proof. This is immediate, since dimP(l ,2;m) > log2log2m. • 

This tells us that, almost surely, there is no finite d such that B2 can be embedded 

into Rd, the d-dimensional Euclidean space with ordering ( x i , . . . , xa) < (j/i, • • •, Уа) 

in Rd if X{ < yi in R, for all i = 1 , . . . , d, as defined earlier. What can be said for 

embeddings into other partial orders? Since classical sequential growth models have 

been proposed as possible models of discrete space-time it would be interesting to 

know whether the partial orders they produce can be embedded into a rf-dimensional 

Minkowski space for some finite d. 

The Minkowski space Md is defined as the partial order on Rd with ordering 

(x0,..., xd. i) < ( y o , y d - i ) in Md if y0- x0 > у ( i / < ~ ®02 in The 

Minkowski dimension of a partial order P is the smallest d such that P can be 

embedded into Md. It is known that a finite partial order P can be embedded into 

Md+1 if and only if P can be represented as a d-sphere order. A c?-sphere order is 

a partial order on a ground set of spheres in Rd, with the ordering on the spheres 

given by (geometric) containment. For example, the partial order P(l ,2 ;m) can 

always be represented as a 3-sphere order. This is a specific case of a result of 

Scheinerman [26]. This means that the Minkowski dimension of P( l ,2 ;m) is at 



most 4, for all m. 

We believe that the random binary order B2 has infinite Minkowski dimension. 

A proof of this result could follow the proof strategy of Theorem 2.3; find a family 

of partial orders with arbitrarily large Minkowski dimension that are almost surely 

contained in B2. Unfortunately, the partial orders known to have large Minkowski 

dimension are all significantly more complex than P( l , 2; m). Given the complexity 

of the proof of Proposition 2.2 it would be ambitious to attempt a proof using this 

strategy. Instead, we make the following conjecture. 

Conjecture 2.5. B2 has infinite Minkowski dimension, almost surely. 

We justify the conjecture as follows. If the poset B2 has finite Minkowski dimen-

sion, then it can be embedded into Md for some d. Since the model B2 produces the 

poset B2 sequentially, this means that at each stage n the finite poset B2[n] can be 

embedded into Md. However, this seems unlikely since at each stage the element n 

selects two existing elements at random, each pair of elements being equally likely 

with no regard to the existing structure of the embedding of B2[n — 1] in Md. It 

seems more likely that the random nature of the model B2 is such that, for large 

enough n, the poset B2[n] produced at stage n cannot be embedded into Md. 

2.2 Up-sets of vertices in B2 

Brightwell [11] proved that, almost surely, each element of B2 is comparable with 

all but finitely many others. This result is contained within what we prove here; 

we need a more refined version, providing an estimate of the number of elements 

in B2[n] that are incomparable with an element r, and an estimate of the largest 

element incomparable with r. Recall that U|nl is the up-set of r in B2[n] and that 

= [r, n] \ U^ is the set of points larger than r and incomparable with r. We 

study the size and give good estimates of how ([/]"'| grows with n. We then 



use these estimates to provide estimates of the size 

In [32, 33], Wormald presented a theorem which describes when and how a dis-

crete time Markov process can be approximated by the solution to a related differ-

ential equation. However the approximation is only in terms of asymptotic bounds; 

here we state and prove a version of the theorem which gives explicit expressions for 

the approximation. 

We begin with some definitions. 

Definition 2.6. A function / : R2 —> R satisfies a Lipschitz condition on a con-

nected open set P C R 2 if there exists a constant L > 0 with the property 

for all (xi,yi) and (£2,2/2) in V. 

Definition 2.7. For У a real variable of a discrete time random process Go, Gi, •. • 

which depends on a scale parameter n, we write Y(t) for Y(Gt), and for a connected 

set P C R 2 define the stopping time Tv = TV(Y) to be the minimum t such that 

Definition 2.8. A sequence of random variables Yo, У , • • • is a martingale with 

respect to a sequence of сг-algebras f o ^ f i С . . . if, for all i, 

(i) Yi is .^-measurable, 

(ii) E|Yi| < 00, 

(iii) E(y i + i I Ti) = Yi almost surely. 

If, instead of (iii), we have: 

• E(y i +i I Ti) < Yi almost surely, then (Уг) is a supermartingale with respect to 

• Е(Уг+11 Ti) > Yi almost surely, then (Уг) is a submartingale with respect to 

№ ъ Ы ~ f ( x 2,2/2)1 < Ц\хх - x2\ + I yi - 2/2I) (2.7) 

(t/n,Y(t)/n)$ V. 



The following lemma will be used in the theorem and is a simple extension of 

a martingale inequality, known as Azuma's inequality [5], to supermartingales. We 

omit the proof, which can be obtained by an obvious modification to the proof of 

Azuma's inequality. 

Lemma 2.9. Let lo> Yb ... be a supermartingale with respect to a sequence of a-

algebras Q Q • • • with JF0 trivial, and suppose Y0 = 0 and \Yi+i — < с for 

i > 0 always. Then for all a > 0, 

РФ > ас) < exp (—a2/2i). 

We are now in a position to state and prove our version of the theorem. 

Theorem 2.10. Let Y be a real-valued function of the components of a discrete time 

Markov process {Gt}t>o- Assume that V С R2 is connected, closed and bounded and 

contains the set 

{(0, y) : P(Y(0) = yn) 0 for some non-negative integer n} 

and 

(i) for some constant ß, 

\Y(t + l)-Y(t)\<ß 

always for t < Tv, 

(ii) for some function f : R2 —> Ж which is Lipschitz with constant L on some 

bounded connected open set Vq containing V, and some constant X, 

|E(Y(* + 1) - Y(t)\Gt) - f(t/n, Y(t)/n)I < X/n 

for t < Tv, 

(in) f : R2 —> R is bounded on VQ, i.e., there is a constant 7 such that \f(x,y)\ < 7 

for all (x,y) в T>o-



Let w = w(n) be a fixed integer-valued function with w = o(n). Then the following 

are true. 

(a) For (0, у) 6 V the differential equation 

t x = f ^ V ) 

has a unique solution у = y(x) in V passing through y(0) = y, and which extends 

for some positive x past some point, at which x = a say, at the boundary ofD; 

(b) Writing i0 = min{\Tv/w\, [an/wJ} and ki = iw, there exists some В > 0 such 

that 

P(|Y(£) - ny(t/n)I > Bt + {ß + i)w) < 2ie~2w3/n2 

for all i = 0 ,1 , . . . , г'о — 1 and all t, ki <t < ki+i, and for i = iQ and h0 <t < 

min {Tu, an), where B{ = ((1 + Lw/n)г — l)Bw/L, and y(x) and a are as in 

(a) with у = Y(0)/n. 

Proof. Following the proof in [32], we have part (a) from the theory of differential 

equations. Let y(x) and a be as in part (a). 

Let 0 < t < T-p — w and let 0 < к < w. This implies that t + к < T-p and so 

\ n ' n ' 

By (i), we have \Y(t + к + 1) - Y(t + k)\ < ß. Also, by (ii), 

E(Y(t+k+l) - Y{t+k)\Gt+k) < f + ^ 

<!&m n n 
) I L ( k I I л 
J \n n J n 

. , (t_ Y(t)\ L(w + ßw) + X 
\n' n ) n 

where the second inequality follows from (2.7). Writing g(n) for (L(w +ßw) + \)/n, 

the inequality becomes 

E(Y(t + k+l)-Y(t + k)\Gt+k) < f ( - , + g(n). \ТЬ ТЬ J 



Therefore, conditional on Gt, 

Y(t + k)~ Y(t) - kf ( - , Ш-) - kg(n) 
\n n J 

is a supermartingale in к with respect to the sequence of cr-fields generated by 

Gt>. •., Gt+W. The differences of the supermartingale are, by (i) and (iii), at most 

ß + f +g(n) < ß + -r + g(n). 
V ТЬ Tt J 

So, by Lemma 2.9, for all a > 0, 

P [Y(t + w)~ Y(t) - «,/ ( l Ш) - wg(n) >a(ß + 1 + g{n))) < e^^. (2.8) 

The same argument with 

Y(t + k)~ Y(t) -kf(~, Ш-) + kg(n) 
\n n J 

a submartingale gives 

P [Y(t + w)~ Y(t) - wf ( i , HÜ) + wg(n) <~a(ß + 7 + g(n))) < e~a''2w. (2.9) 

Setting a = 2w2/n and combining (2.8) and (2.9) gives 

Р(|У(* + w) - Y(t) - w f f a Z ? ) I > 2(w2/n) (ß + 7 + g(n)) + wg(n)) < le'2^^. 

(2.10) 

Now, define k{ = iw, i = 0,1, . . . , i0 where i0 = min {\Tvlw\. [an/w\}. We 

show by induction that for each such i, 

P(|y(fci) - y(ki/n)n\ > Bi) < 2ге-2*'3/"2 (2.11) 

where Bt = ((1 + Lw/n)1 - 1 )Bw/L for some В > 0. 

The induction begins by the fact that y(0) = Y(0)/n. (Take у = Y(0)/n and 

use part (a).) 



So, assume (2.11) is true for i. Write 

Ai = Y(ki) - y(ki/n)n 

A3 = Y{hi+1)-Y{ki) 

A3 = y(ki/n)n - y(ki+i/n)n 

The inductive hypothesis (2.11) gives |Ai| < Bi with probability at least 1 -

2ie~2w3/n2. By (2.10) we have 

\A2 - wf(ki/n, Y(ki)/n)\ < 2(w2/n)(ß + 7 + g(n)) + wg(n) 

with probability at least 1 - 2e~2w*/n2. 

Since / satisfies the Lipschitz condition and (k i+i/n,Y{k i+i)/n) € V (because 

ki+1 < Tx>), we also have 

Из +wy'(ki/n)\ = Iy(ki/n)n - y(ki+l/n)n + wy'(ki/n)\ 

= I-wy'(k/n) + wy'(ki/n)I for some k, h < к < ki+i 

= w\f(k/n,y(k/n))-f(ki/n,y(ki/n))\ since у is solution to (a) 

< wL [w/n + Iy(k/n) - y(ki/n) |] by (2.7) 

< wL[w/n + (w/n)\f(k'/n,y(k'/n)) |] for some к', h<k' <k 

< wL [w/n + {w/n)7] by (iii) 

= L( 1 + 7 )w2/n 

where we have used the Mean Value Theorem (twice, to get lines 2 and 5). So, 

Wih/n)- f{ki/n,Y{ki)/n)\ = \1{к/щу(^/п)) - f{ki/n,Y{ki)/n)\ < ЦА^/п 

and so assuming \Ai\ < Bi, we have 

|Лз - ( - » / № / » , Y(K)/n))I < a i ± 2 i « ! + to < + + toД. 
n n n n 



So, we have 

IY{ki+l) - y(ki+1/n)n\ = \Ai + A2 + A3\ 

<Bi + 2 (w2/n) (ß + 7 + g{nj) + wg(n) + L( 1 + 7)w2/n 4- BiLw/n 

= [2{w2/n) (ß + 7 + g{n)) + wg{n) + L( 1 + 7)w2/n] + Д (1 + Lw/n) (2.12) 

with probability at least 1 - 2 ( i + l)e~2w3/n\ 

There exists В > 0 with 

2(w2/n) (ß -f 7 + + + L( 1 + 7)w2/n < 5w 2 /n (2.13) 

for all n, so the term on the right hand side of inequality (2.12) can be replaced 

with Bi( 1 + Lw/n) + Bw2/n, which is exactly Bi+1_. So we have (2.11) for г + 1. 

Finally, ki+\ — ki = w and the variation in Y(t) when t changes by at most w is 

at most ßw, by (i), and as before \y{ti/n)n — y{t2/n)n\ is less than w\f(t/n,y(t/n))\ 

for some t, ti < t < t2 and this is less than jw. So 

V(\Y(t) - ny(t/n)I > Bi + {ß + y)w) < 2ie~2w3/n2 

for all i = 0 ,1 , . . . , г'о — 1 and all t, ki < t < ki+1, and for г — io and kio < t < 

min{Tx>, an}. • 

We can apply Theorem 2.10 to \uln̂ \ as follows. We take as the Markov process 

the random binary growth model, and as the real-valued function the size of the 

up-set of a fixed vertex r. We then find sets V and Vo, a function / , and constants 

ß, Л and 7 satisfying the assumptions of the theorem. We obtain the following 

corollary, which shows fairly precisely how grows as m goes from some initial 

n to [a + 1 )n, where a is a large constant. Over this range, \U^\/n grows from a 

small value to a value near to 1. 

Corollary 2.11. For fixed r and any n> r, if = c(n)n for c(n) an arbitrary 

function of n, then 

a + i 
P 

n(a + l) a+l/c(n) 



for any constants 0 < 5 < 1/3, a > 0. 

Proof. Fix a vertex r in B2[n}. Let the Markov process {Gt}<>o be the random 

binary growth model but starting at stage n, so that Gt corresponds to B2[n +t]. 

Let Y(t) be the size of the up-set of r in B2[n + t], i.e., Y(t) = |f/]n+il|. For any 

constant о-, define V as the region {(x, у) : 0 < x < о, 0 < у < x + 1}. The region 

T> contains the interval {(0,у) : 0 < у < 1}, and since = c(n)n, we must 

have c(ri) < 1 for all n. So, V satisfies the assumption in Theorem 2.10, since it 

contains all points (0, c(n)) for n = 1 , 2 , — We now find a set T>0, a function / , 

and constants ß, Л and 7 satisfying assumptions (i)-(iii). 

Since Y(t) = \uln+t]\ < n+t we have Y(t)/n < t/n+1, and so (t/n,Y(t)/n) E V 

as long as t/n < cr. This implies Tv = \on\ + 1. 

Let ß = l, then (i) holds since \Y(t +1) - У(4)| = |^n+t+1]| - < 1 always 

for t < an. 

Let f{x,y) = 2y/(x+l)-y2/{x+l)2. Let L = 2.1 and 7 = 1.1. The function / 

is bounded on V by 1 (attained when у = x+1) and is continuous over the boundary 

of V, so there exists an open set V containing V on which / is bounded by 7 = 1.1. 

Also, ||V/||, the length of the gradient vector of / (V / = is bounded on 

P by 2 and is continuous over the boundary of T>, so there exists an open set T>" 

containing V on which ||V/|| is bounded by L = 2.1. But then 

| / ( u ) - / ( v ) | < L | u - v | (2.14) 

for all u, v e T>", so / is Lipschitz with constant L on V" (this follows by applying 

the triangle inequality to the right hand side of (2.14)). Let V0 be the intersection 



of the two sets V, V". So, (iii) holds, and (ii) holds with Л = 1, since 

E(Y(*+1) - Y(t)|Gt) = 0 x P (Y(t+1) = Y(t)\Gt) + 1 x P(Y(*+1) = Y(t) + l|Gt) 

= г _ (n + t+l-Y(t))(n + t-Y(t)) 
(n + t + l)(n + t) 

= 2Y(t)(n + t+l)-Y(t)(Y(t) + l) 
{n + t + l){n + t) 

which differs from f(t/n, Y(t)/n) by at most 1/n for t < an. 

Now T-d — [an\ + 1 and so Tv > an. So Theorem 2.10 gives the result (b) for 

г = io, t = an, namely that, for some В > 0, 

P(|Y(<m) - ny{a)\ > Bio + 2.1 w) < (2.15) 

Here у (x) is the solution to the differential equation 

V y 2 
dx x + 1 (x + l)2 

with initial condition y(0) = c(n). This is a homogeneous equation with solution 

I N-
У [ х ) ~ х+1/с(пУ 

Also, i0 < an/w, so Bio = ((1 + Lw/n)io - 1 )Bw/L < BweLa/L, and (2.15) be-

comes 

P \uln+<Tn]\ -ri-
ff + l/c(n) 

for some В > 0. 

> Bweba/L + 2.1^ < 2(an/w)e —2w3/n2 

Choose <5 with 0 < 6 < 1/3 and set the arbitrary function w(ri) to n2/3+<5. Then 

w(n) = o(n) and so using the particular values for L, /3,7 and Л, we can satisfy 

equation (2.13) with В = 21 and this gives the required result. • 

In the proof of Proposition 2.2 we bounded the expectation of the hitting time 

of the event \Ur\ — k. We use this bound to show that Ur contains all but finitely 

many points of B2, almost surely. In terms of Ir we have the following theorem. 



Theorem 2.12. For any constants e, rj with 0 < e < 1/4 and 0 < 77 < 1 there exists 

r0 such that for all r > r0 both \Ir\ < r2+4e and Ir С [r,r4+8e] hold with probability 

at least 1 — 77. 

Proof. Assume that r is sufficiently large. As before, let Tk be the hitting time of 

event \Ur\ = k, in terms of the growth model, i.e., the smallest t such that |Uf1 \ = k. 

As in (2.3), we have ETk < 2ry/k + 2k. So E7> < 4r2 and Markov's inequality gives 

P( ( C / [( i6/^]| < r2j = p ^ > (i6 / 7 ?) r2) < ^ ( 2 1 6 ) 

so that with suitably high probability the size of the up-set, \Ur16^r2\ is at least 

fraction ?7/16 of the size of the poset, (16/?7)r2. 

Set щ = (16/т7)г2. We can rewrite equation (2.16) as 

F(\Ulno]\/n0 > nj 16) > I-77 /4 . (2.17) 

Assume we have \ulno]\/n0 > 77/I6. Let г be an arbitrary constant with 0 < e < 

1/4. We will use Corollary 2.11 to show that as the size of the poset, тг, increases 

from щ to (<7 + 1)тг0, for some constant a, the ratio \U^\jn also increases, to a 

value that is at least 1 — e/2. 

i[/Mi 
Claim 2.1. There exists a constant o0 (dependent on e and r/) such that if—-—- > 

Щ 
,jy[(<T0 + l)n0]| 

77/I6 then r — - > 1 — e / 2 with probability at least 2<уощ e~2no . 
(£70 + 1)тг0 

Proof of Claim 2.1. Suppose |[/]"о1|/^о > Г7/16. Applying Corollary 2.11 with 

n = n0, c(n0) = 77/I6 and S — 1/12 we have 

\Ulno(<T+1)]\ <7 + 1 
P 

n0(<7 + 1 ) CT + I6/77 

for any a > 0. Set a0 so that 

ffo + 1 

/ 10e21<7 + 2.1 \ 1 \ 1 /4 -1/4 , 
-v g+1 )^)-2anle (2Л8) 

oo + I6/77 



/10е21<т° + 2.1\ 1 
and then for sufficiently large r, - — - j - < e/4. Combining this 

V ao + 1 J nQ' 
inequality with (2.18) and (2.19) and setting a = <r0 gives the result. • 

Let M = (l6/rj)(a0 + 1), so that (cr0 + l)n0 = Mr2. We have shown that, with 

suitably high probability, \uln\/n > 1 — e/2 for n — Mr2. We now show that 

\Uln]\/n remains close to 1 for all larger n. That is, that \U^\/n > 1 — e for all 

n > Mr2. 

Let n\ = Mr2, and щ = (1 + e/2) i _1ni for i = 2,3, 

Claim 2.2. If\ulni]\/rn > 1 -e/2 then 

(a) \Uln]\/n >1 — e for n = щ + 1,щ + 2 , . . . , |ni+ij and 

(b) \ulni+l]\/ni+1 > 1 - e/2 with probability at least 1 - еп)/Ае'2п^. 

Proof of Claim 2.2. Suppose we have |f4nil \/щ > 1 - e/2. 

For part (a) we use the fact that is increasing in n, so that 

\uln]\ > \uini]\ _ \ulni]\ > l - e / 2 > 1 

n ~ ni+1 (1 + е/2)щ ~ 1 +e/2 ~ £ 

for all n = щ + 1, rii + 2,..., [ni+1\. 

For part (b) we apply Corollary 2.11 with n = щ, a = e/2 and S = 1/12. We 

have 

\Ul n i { £ / 2 + l ) ] \ г / 2 + l 
P 

щ(е/2 + 1) e/2 + 1 /с{щ) 

with с(щ) > 1 - e/2. So, 

A O e ^ ^ n W 1 /4 , 
£/2 + 1 J n y 4 , - K 

(2.20) 

e/2 + 1 e/2 + 1 
e/2 + 1 /с{щ) - e/2 + 1/(1 - e/2) 

and for sufficiently large r, 

e/2 + 1 _ /I0e2-W2 + 2.1\ 1 
e / 2 + 1 / ( 1 - e / 2 ) V e/2 + 1 ) n)/A 

> 1 — e/2. (2.21) 



Then, (2.20) becomes < 1 - e/2) < en],Ae~2n''A. • 

Notice that, since ni+1 > щ, if the inequality (2.21) is satisfied for i — 1, then it 

is automatically satisfied for all larger i. That is, if we have r sufficiently large to be 

able to apply Claim 2.2 once, then we can apply it repeatedly to get the following. 

Assuming ]t/]nil|/ni > 1 — e/2, we have \U^\/n > 1-е for all integers п>щ = 

Mr2 with probability at least 1 - X ^ i erh'^4е~2п*', for sufficiently large r. 

Let r be sufficiently large so that 2a0n0 /4e-2no4+YaLi еп/4е~2п¥4 < tj/4. Then, 

we have \U^\/n > 1 — e for all integers n > Mr2 with probability at least l — rj/2. 

Once \uln]\ is always a large fraction of n, we can show that C/jn' becomes almost all 

of the poset B2[n] for n — r4+8e. Rather, we now look at lln\ the set of points in 

[r, n] incomparable with r in -B2[n]. 

For t > Mr2, set st = \1^\/уД, and consider the sequence (st) as a stochastic 

process. 

We have that 

I s t j ( L with probability 1 - C f O / C t 1 ) 
st+i = < 

[ ^ with probability ( I f I) / C+1) 

Therefore 

St-Ji+ Cf)/('?) _ ГГ / S t s f i - 1 

= — = 4—111 + t(t+1) 

Now, provided st < е\Д (which will be the case unless \U®\ drops below (1 - e)t), 

we have 

< M 1 - г т т У / 2 ( l + г т т ) < e t f l - 1 / 2 £ t + l j V t + l j - V t+1 



for all t > Mr2. So 

< ( Mr2 + 1 \1/2~£ 

- 4 \ Mr2 + k + 1J 
( Mr2 + 1 

4 \Mr2 + k+1 

where we have used the fact that e < 1/4 to get the last line. So, 

Using Markov's inequality, we have sr4+se < (4/77)M1_£r_2£+8e2 with probability at 

least 1 — 77/4. 

Therefore |4r4+8e]| < V ^ . { 4 / r i ) M l - £ r ~ 2 ^ S £ 2 = Mr 2 + 2 £ + & 2 with probability 

at least 1 - 77/4, where M = (4/?7)М1_г. 

Finally, let us consider the probability that all vertices with a label higher than 

r4+8e a r e comparable with r; in other words /,И = if + ^ for s > r 4 + & . Given the 

size I i t + this probability is exactly 

77/4. Also, |4r4+8S]| < Mr2+2e+8e2 < r + , for sufficiently large r. So, combining all 

This result is close to the best possible; as the following lemma shows, we have 

that E|t4n]| < n2 /r2 , so for small e > 0, \Ir \ > r2~e with high probability. 

Lemma 2.13. For all n>r, E|c4n]| < n2 /r2 . 

which is at least 

the probabilities, we have |/r| = \Ir 

at least 1 — 77, as required. 

[r4+8e] < r2+4e and Ir С [r, r4+8e] with probability 

• 



Proof. Firstly, we make an observation similar to that in the proof of Proposition 2.2 

on page 26, that for all и e U^ there must exist a path from r to u. Therefore, 

it is enough to provide an upper bound on the expected number of paths in B2[n] 

with start point r. As before, for r < ii < i2 < • • • < is, the probability that 

{ г ,ц , г 2 , . . . ,г8} is a path is 

s a 2 
P(ii selects r) selects ij-\) = J"J —. 

j=2 j=i гз 

So, the expected number of paths in B2[n] starting at r is bounded above by 

£ P ( { r } U / i s a p a t h ) = £ П т = П ( 1 + 7 ) 
/С[г+1,п] /С[г+1,п] iel i=r+1 ^ ' 

= ( w + l ) ( n + 2) 
~ ( r + l)(r + 2) - r2 ' • 

We have shown that for a typical r, the size is a constant fraction of n for 

n = ©(r2), and that the set Ir is contained in [r4+8e], with \Ir\ = 0(r2 + 4 e) . What 

about for a worst case r? Can we say something about all but finitely many r? 

Clearly, we cannot always expect | U^ \ to be a constant fraction of n for n = 

6 (r2). As we showed in Section 1, 

t(T — 1) 
P(r is maximal in B2\n\) = — — 

n(n — 1) 

which is approximately r2/n2. Setting n = r3/2, we have that 

P(r is maximal in B2[r3/2]) « ^ 

which means there are infinitely many r with |f4r3/2]| = 1. When this is the case, 

the growth process of for n > r3/2 is identical to the growth process of 

for n > r3//2, since the sizes of U[f2] and U[ 3/2' are the same. So, the expected size 

of can be found by substituting r3//2 for r in Lemma 2.13, which shows that 

E|f4n'| < n2 / (r3 / 2 )2 = n2 /r3 . So, for such an r the expected size of U^ ' is less than 

r, and we need n = 6(r 3 ) before the expected size of f/|n' is a constant fraction of n. 

We believe this is the worst case, that is a constant fraction of n for n — 6(r3 ) , 



and then Ir is contained in [r6+£'j, with \Ir\ = 0(r3+£). Heuristically, it appears that 

the growth of |c4n'| is highly dependent on the values of the hitting times, for 

small к, which are not concentrated near the mean values; for example, the above 

argument shows that T2 can be as large as r3/2, whereas the mean ET2 is bounded 

above by 2r + 2, using equation (2.2). Indeed, once is a t least 1/n1/3 we can 

apply Corollary 2.11, to closely approximate the growth. However, it appears rather 

difficult to prove these statements in full, and we settle for the following polynomial 

bounds on the size \Ir\ and the value of the largest s incomparable with r. 

Theorem 2.14. For all but finitely many r, |Jr| < r27/5 and Ir С [r12]. 

The proof is naturally very similar to the proof of Theorem 2.12. 

Proof. Fix r. As before, let Tk be the hitting time of event \Ur\ = к, in terms 

of the growth model, i.e., the smallest t such that |[/W| = к. As (2.3), we have 

ETI < 2ту/к + 2k. So ETri3/6 < 4r13/6. Markov's inequality gives 

Р(|С/Г8/45]1 < г13/6) = Р(ГР1з/. > r3+8/45) < 4/r91/90. (2.22) 

Set nQ = r3+8/45. Equation (2.22) becomes 

P(|£/JnolIA>o > 1 / n D > 1 - 4/r91/,9°. 

Assume we have |c4n°Vno > 1 Inj 2 2 . We will use Corollary 2.11 to show that as 

we increase the size of the poset by a factor of 2, the fraction |£/,H|/n also increases 

by a factor that is only slightly smaller than 2. We can use this method repeatedly 

until |t4n]|/n is at least some constant fraction. 

Let щ = 2®по for i = 1 ,2, . . . and let c(n) = \U^\/n for all n > nQ. 

Claim 2.3. Ifl/nJ22 < c(n*) < 1/300 thenc(ni+1) > (149/75)c(n;) with probability 

at least 1 - 2 п ] ' 2 Ъ . 



Proof of Claim 2.3. Suppose 1 /п70/22 < с(щ) < 1/300. The upper bound on 

c(rii) implies 

iTikö> v™'™^ <2-23> 
and the lower bound implies 

( 1 0 е 2 1 2 + 2 Л ) 4 m < ( 1 / 1 5 0 ) ^ < (1/150)с(гц). (2.24) 
\ / ni n0 

So applying Corollary 2.11 with п = щ,5 = 1/75, a = 1, we have 

|̂2Пг1| 2 P 
nf5 2 щ 1 + 1 /с(щ) 

which, using (2.23) and (2.24), gives the result. • 

Using Claim 2.3 repeatedly we have that for к = 0 ,1 , . . . either с(щ) > 1/300 

for some I < k, or 

c(nk) > (149/75)fcc(n0) > (149/75)fe/nJ/22 

with probability at least 1 - Z t o 2n*/25e~2n>/25. 

So, there exists а к < ^ such that \ЫПк]\/пк > 1/300 with 
log(149/75) 

probability at least 1 - (logn0)no//2e"2no/25. 

We have 
Пк < 2bg(^ / 2 2 /300)/log(149/75)72o = ^ 7 / 2 2 / 3 ^ 2 / ^ ( 1 4 9 / 7 5 ) ^ ^ 

Using n0 = r3+8 /45 we get nk < r21/5/317. 

Assume we have \Ulnk]\/nk > 1/300. We will apply Corollary 2.11 once more to 

increase the fraction \U^\/n to a constant close to 1. 

Claim 2.4. > 77/78 with probability at least 1 - 105nkße-2nl , where n = 

46345nfc < 150r21/5. 

Proof of Claim 2.4. We have \u\nk]\/nk > 1/300. Applying Corollary 2.11, with 

n = nk and 5 = 1/12 we have 

\u}?k(a+1)]\ a + i P 
nk(a + l) a + l/c(nk) 



for any a > 0. Set a = 46344 so that 

<t + 1 46345 
> 155/156, (2.27) a + l/c(nk) 46344 + l/c(n f c) 

which is possible, since c(nfc) > 1/300. Then for sufficiently large r, 

10e21<7 + 2.1 1 

Combining with (2.26) and (2.27) and setting a = 46344 gives the result. • 

Mi 
By a similar method we can show that —— > 77/78 for all t > n with proba-

bility at least 1 - J2?=n i1 / 4e"M l /\ 

As before, for t > n, set st = \№\/\Д, and consider the sequence (st) as a 

stochastic process. Again, we have 

- — j m — -*vrrг [1+w+w) • 
Now, provided st < Vt/78 (which will be the case unless drops below (77/78)t), 

we have 
1/2 

E e t + i 

which gives 

E * » < « П ( l - < « exp ( - ( 1 9 / 3 9 ) £ ^ 

- 78 \t + k + l) 

So, for example, Es^/r < l/(78i17/42), and for t = r21/5 this gives Esri2 < 1 /г17/10 . 

By Markov's inequality, we have sr 12 < I/7*3/5 with probability at least 1 — l/r11/10. 

Therefore |/jrl2]| < v ^ / r 3 ' 5 = r27/5 with probability at least 1 - l/r11-710. 

Finally, let us consider the probability that all vertices with a label higher than 

r12 are comparable with r; in other words i f i = Ir ^ for s > r12. Given the size 
Г 1 2 1 

IЦ ]|, this probability is exactly 

ft f . - Ф ) , 
= г12+ 1 у (2) J 



which is at least 

f, J _ _ , мПч, 1 
(s\ - 1 ^ L 2 (s\ r12 - л r6/5 • 

So, combining all the probabilities, we have \Ir\ = < r27/5 and = Ir^ 

for s > r12 with probability at least 

oo 
1 _ 4/r91 /90 - (log n0)n0/2e-2no25 - 1 0 5nl/Ae~2</4 - ^ t^e'2^ -1 /г11/10 - 1/r6/5. 

t=n 

Since 

OO / 00 \ 
£ 4r-91/9°+(log n0)n; /2e"2"o /25 + 1 0 5 n f e - 2 ^ / 4 t 1 / 4 e - 2 i l / 4 + г - и / ю + т . - б / 5 
r=1 V t=n / 

is finite, the first Borel-Cantelli Lemma gives us the required result. • 

Notice that in this proof we use Markov's inequality twice, each time introducing 

a factor of r, which is why our bound is (essentially) |/r| < r5 + £ and not \Ir\ < r3+e 

as we believe. 

Note that Theorem 2.14 implies that, almost surely, |Jr| is finite for all r, as 

follows. Suppose for a contradiction that the event that there exists some x with 

\IX\ infinite has positive probability. Since the probability that r selects x is equal 

to 2/r for r > x, we have that x is selected infinitely often, almost surely. So there 

are an infinite number of elements comparable to x and any such element r must be 

incomparable with the elements in Ix \ [r], meaning that \Ir\ > \IX \ [r]|. Therefore, 

conditioned on x having \IX\ infinite, we have an infinite number of elements r with 

\Ir\ infinite, almost surely, which contradicts Theorem 2.14. 

2.3 A poset not contained in B<i 

In Section 2.1 we have shown that B2 contains P ( l , 2; m) almost surely. It is natural 

to ask whether this is typical: which posets are contained in B2? For any poset P, 



A 

{1,2} {1,3} {2,3} 

к 

{1} (2 } {3} 

Figure 2.1: P{ 1,2; 3) 

Figure 2.2: P(l,2;3)<*> 

¥(B2 2 P) is positive, as P is a subposet of some possible binary order. So, is 

every finite poset contained, almost surely? This has been shown for random graph 

orders; here we show that it is not true for B2. 

Recall that we write P( l , 2; 3) for the poset consisting of the 1-element and 2-

element subsets of {1 ,2 ,3} ordered by inclusion (Figure 2.1). Write P ( l , 2 ; 3 ) ^ for 

a "tower" of к copies of P ( l , 2; 3) with the maximal elements of copy г identified 

with the minimal elements of copy г+ 1, for г = 1 , . . . , fc — 1 (Figure 2.2). 

The result from Proposition 2.2, for the case m = 3, is that a copy of P(l , 2; 3) 

with minimal points r,r + l , r + 2 is contained in B2[r, n], where n = 2r7/5, with 

probability at least 3/5. The method used certainly requires к2 = \Ur\2 > n = 

2ry/k + 2k, i.e., n > r4/3. We now consider the probability that there exists any 

copy of P( l , 2; 3)(fc) in B2[r, n], and show this is very small for n = o(r(k+2^3). (So 

for к = 1 this is a trivial result but, interestingly, if we restrict to only copies of 

P( l , 2; 3)(fc) with minimal points r,r + l , r + 2 then the result becomes that the 



probability that there exists such a copy in B2 [r, n] is very small for n = o(rfc/3+1). 

This gives a certain justification to the method used to construct such a P( 1,2; 3).) 

Using this result with Theorem 2.14 we provide an example of a poset that, with 

positive probability, is not contained in B2. 

Theorem 2.15. The probability that there exists a P{l,2;3)(fc) as a subposet of 

B2[r,n} is 0(n9 /r3 f c + 6). 

Proof. The proof strategy is as follows. We first define a framework which is a 

subset of B2 [r, n] satisfying certain properties. The definition of a framework implies 

that if B2[r, n] contains no frameworks then it contains no copies of P( 1,2; 3)(fc). We 

then calculate the expected number of frameworks in B2 [r, n] by a path counting 

method similar to that in the proof of Proposition 2.2. This method provides an 

upper bound on the expected number of frameworks. The bulk of the proof is in 

defining a framework in a way that makes the path counting possible. We start 

with some observations of the structure of copies of P( l , 2; 3) and P( 1,2; 3 ) ^ in B2, 

motivating the precise definition of a framework. 

Throughout we will write x is above (below) у to mean x is above (below) у 

in B2, and write x is greater (less) than у to mean x is greater (less) than у in N. 

Usually, we will reserve <, <, > and > for the order on N. 

Consider P( l , 2; 3) as a subposet of B2 and take a minimal point, a. It is below 

two maximal points, 61,62, so there is at least one path from a to bi and at least 

one path from a to 62- Choosing one path to b\ and one to b2, we can find the 

greatest point common to both paths, call this a branching point. We can do this 

for all three minimal points to obtain three branching points. The six chosen paths 

can also be paired according to which maximal point they go to, and taking the 

least point common to a pair of paths gives three connection points, one for each 

maximal point. Note that the branching and connection points are not unique if 

we had a choice of paths, but are distinct for any choice of paths. We label the 



(a) 7 < a ' (b) cl < 7 

Figure 2.3: P ( l , 2; 3) with branching and connection points 

branching points a, ß, 7 and the connection points a', ß', 7', so that a < ß < 7 and 

a' < ß' < 7'. Each path contains both a branching point and a connection point, 

and since each connection point is contained in two paths, it must be greater than 

(at least) two branching points. In particular, a' must be greater than a and ß. 

Similarly, each branching point is less than (at least) two connection points, so 7 

must be less than ß' and 7'. So, we have the inequalities ß < a' and 7 < ß', which 

gives the order a < ß < 7, a! < ß' < 7'. It is not possible to order 7 and a'. 

An example of the branching and connection points for the two cases 7 < a' and 

a' < 7 are shown in Figure 2.3. Note that in Fig. 2.3(a) a' can be above any pair 

of branching points, whereas in Fig. 2.3(b) a' has to be above a and ß. 

For a particular copy of P( l , 2; 3 ) ^ in B2 we have к copies of P ( l , 2; 3) so we can 

find branching points and connection points for each copy. We label the branching 

points in copy i by ßi, 7, and the connection points by a'^ß-, 7.. So, we have 



sequences a, /3,7 of branching points and sequences ac', ß', V of connection points, 

where subscript i denotes the points in copy %. We have the order a* < Д < 7;, a[ < 

ß[ < 7- for each г, as before. Call the points cti,ßi, 7i, г-branching points, and the 

points a'^ßl, 7-, г-connection points. 

Ideally, we would aim to separate the copies of P( l ,2 ;3) to analyse them indi-

vidually (for example by assuming 7- < аг+1). Unfortunately this is not possible so 

we have more cases to consider. 

Since P( l , 2; 3 ) ^ is formed by identifying maximal points in copy г of P( l , 2; 3) to 

minimal points in copy г + l , we have that each (z+l)-branching point a i + i < /?i+1 < 

7i+i is above (and therefore greater than) a distinct г-connection point ot[ < ß[ < 7г'. 

This immediately gives the inequalities ai+x > a\ and 7. < 7 i+1 . Looking at ßi+i, 

either it is above ß[ or 7- which implies ßi+i > ß[, or it is above a- in which case 

is not above a[ and so must be above ß[ or 7-. But this implies A+i > «г+i > ß[. 

To summarise, we have 

which is all we can deduce about the order of branching and connection points. 

Suppose we have a P ( l , 2 ; 3 ) ^ in B2[r,n]. We partition [r, n] into sets of two 

types (plus two 'end' sets). A set of Type I is of the form [Д, /3-] and a set of Type II 

of the form [ßl+l, ßi+1-l]. The к sets of Type I and к-1 sets of Type II and the 'end' 

sets [r, ß\ — 1] and [ß'k + 1, n] form the partition of [r, n]. We investigate which parts 

can contain the branching and connection points. Clearly, ßi and ß[ are contained in 

the Type I sets. From (2.28) we have that 7 a [ <E [ßh /ЭД (г = 1 , . . . , к). Also, (2.28) 

and (2.29) give the inequalities ß^ < аг < ßt and ß[ < 7- < ß'i+1 which implies that 

a, e [A-i.A'-iM/^j + l . A - l ] (i = 2,...,k) and 7̂  € [^ + l , /? i + 1 - l ]U[ /3 i + 1 ,^+ 1 ] 

(г = 1 , . . . , к - 1). The end cases аг £ [r,ßi - 1] and G [ß'k + 1, n] are obvious. 

So, looking at a Type I set [Д, /?•], it contains ß h 7г, a- and ß[ and possibly 7г'_! and 

OLi < ßi < < ßi < ii - for г = 1 , . . . , /г 

a i + i>Q! - 7 i+ i>7 i for г = ! , . . . , * ; - 1 

(2.28) 

(2.29) 



2 . 3 . A POSET NOT CONTAINED IN B2 

ß'i 

(a) Contains ß[ (b) Also contains 

®i+1 «i+i 

(c) Also contains a i + \ (d) Also contains 7l'_1 and a»+1 

Figure 2.4: Points in — 4 possible cases 

This gives four possibihties which are shown in Figure 2.4. Finally, we have 

that the points in the Type II sets are determined by the points in the two adjacent 

Type I sets. That is, [ß[ + 1, A+i - 1] may contain 7- (but only if 7̂  £ [ßi+i, ß'i+1}) 

and ttj+i (but only if a i + i <£ [$,$])• 

Fix a , /3 ,7 , a ' , /3 ' , 7 ' . We call a set J С [r, n] an (a, /3,7, a',/3',7')-framework 

in B2[r,n] if J contains all the points in the sequences a, /3,7, a ' , /3', 7 ' and the 

remaining points in J form disjoint paths so that: 

(a) there are two paths from each branching point, 



(b) there are two paths to each г-connection point, which are from two г-branching 

points so that no two г-connection points have their paths from the same two 

г-branching points, for i = 1 , . . . , k, 

(c) there is one path from each connection point (except for the ^-connection 

points), 

(d) there is one path to each г-branching point, which is from а (г — l)-connection 

point, for г = 2 , . . . , к. 

Note that these paths can just consist of start and end points, that is, it is possible for 

the set that only contains the points in a , /3,7, a', ß', 7 ' to be an (a , /3,7, a', ß', 7 ')-

framework. Indeed, for any set J С [r, n] containing all the points in a, ß, 7, a ' , 

/3', 7 ' there is a positive probability of J being an (a, /3,7, a ' , /3', 7/)-framework. 

For any copy of P( 1,2; 3)(fe) with branching points given by a , /3,7 and connec-

tion points given by a ' , ß', 7 ' , we can construct an (a, /3,7, a ' , /3', 7/)-framework 

by taking the set of all the branching and connection points and the points of 

the paths that defined them (but not including those paths below 1-branching 

points, and those paths above the ^-connection points). Calling a set J С [r, n] 

a framework in B2[r, n] if it is an (a, /3,7, a', ß', 7/)-framework in B2[r, n] for some 

a , /3 ,7 , a ' , /3 ' ,7 ' , we have that if B2\r, n] contains no frameworks then it also con-

tains no copies of P ( l , 2; 3 )^ . 

So, it is enough to show that the expected number of frameworks in B2[r, n] is 

small and we do this by showing that the expected number of (a , /3,7, a ' , /3', 7 ')-

frameworks in B2[r,n] is small for all sequences a , /3,7, a', /3 ' ,7 ' satisfying (2.28) 

and (2.29). 

For fixed a, /3,7, a', /3' 7 ' we count the number of (a, /3,7, a ' /3' 7')-frameworks 

in B2[r,n] by considering the event "J is an (a, /3,7, a ' , /3', 7')-framework" as 

a sequence of events in the sets of the partition of [r,n]. That is, we split an 

( a , / 3 , 7 , a ' , / 3 ' , 7 / ) - fra r nework j n t o j . f r a m eworks and /-frames, defined below, and 



we show that it is possible to count the expected number of (a,ß,y,ac',ß',y)-

frameworks by independently counting the number of /-frames in each part of the 

partition. 

Label the partition 

Ki = \r,ßi - 1], K2k+1 = [ß'k + l,n] 

K2i = [ßi,ß'i\,i = l,...,k 

K2i+1 = \ß'i + l,ßi+1-l],i = l,...,k-l. 

We write maxKj for the largest element of Kj. In a definition similar to that 

of an (a,/3,7,a',/3',7')-framework, for j = l,...,2k + 1, we call a set J С 

[r, max Kj) a j-framework in B2 [r, max Kj] if J contains all the points in the se-

quences a , ß, 7 , a ' , ß', 7 ' that are in [r, max Kj] and the remaining points in J form 

disjoint paths so that 

(a) there are two paths from each branching point in J, 

(b) there are two paths to each г-connection point in J, which are from two i-

branching points in J so that no two г-connection points in J have their paths 

from the same two г-branching points in J, for г = 1 , . . . , к, 

(c) there is one path from each connection point in J (except for the ^-connection 

points), 

(d) there is one path to each г-branching point in J, which is from а (г—l)-connection 

point in J, for г = 2 , . . . , к. 

Again, for any set J С [r, max Kj] containing all the points in a , ß, 7 , a ' , ß', 7 ' that 

are in [r, max Kj] there is a positive probability of J being a j-framework. 

So, a (2k+l)-framework is the same as an (a , ß, 7 , a ' , ß', 7')-framework. Notice 

that, whereas in a (2 A;+1) - framework all paths are between branching and connection 



points, in a j-framework, for j ф 2k + 1, there can be paths from some branching 

and connection points that do not end at a branching or connection point (the 

paths from the branching and connection points that are not below any others in 

J). Call the end points of these paths the end points of the j-framework. We shall 

see that, although the end points of a j-framework can be different for different j -

frameworks, what is important for our calculations is that the number of end points 

of a j-framework is the same for different j-frameworks, for fixed j . 

Now, define an /-frame as follows: 

• 1 = 1: A 1 -frame is a set J\ С K\ which is a 1-framework in B2 [r, max ifi]. 

• / ф 1: Given that J is an (/ — l)-framework in B2[r, maxi^-i] , an l-frame for 

J is a set J\ С K\ such that J U Ji is an /-framework in B2[r, max Kj\. 

So, for sets Jj С Kj, j = 1 , . . . ,2k + 1, we have 

/2k+l \ 
P i |J Jj an (а, Д 7 , at', ß', 7')-framework j = 

P(Ji a l-frame)P(J2 a 2-frame for Л) • • • P ( j 2 f c + 1 a (2k + l)-frame for JJ . 

(2.30) 

Now, write X(ot, ß, 7 , a', ß', 7 ' ) for the number of (a, ß, 7 , a', ß\ 7')-frameworks. 

We have X(a, ß, 7 , a ' , ß', 7 ' ) equal to the sum 

(2fc+l \ 
( J Jj is an (a, ß, 7 , a ' , /3', 7')-framework , (2.31) 
j'=i / 

but U j t 1 JJ i s a n ( « , ß, 7, a ' , ß', 7')-framework only if (J2^1 Jj contains all the 

points in a , /3,7, a ' , ß', 7'. So, writing Kj(BC) for the set of branching and con-

nection points that are in Kj, the sum (2.31) is equal to 

(2fc+l \ 
(J Jj is an (a, /3,7, a ' , ß', 7')-framework j . 

з=i / KI{BC)CJ\ K2K+I(BC)CJ2K+1 



Taking expectations and using (2.30) gives 

EX(a , /3 ,7 ,a ' , / 3 ' , 7 ' ) = 

• • • J ] P(Ji a 1-frame) • • • P (j2k+i a (2к + l)-frame for |J JjJ 
JiQKv J2k+iQK2k+v \ j=l J K2k+1(BC)cj2k+1 

(2.32) 

But P(Ji an /-frame for Uj=i Jj) does not depend on J\,..., J\-\\ this is the condi-

tional probability that Uj=i Jj a n ^-framework, given that Uj=i Jj is an (I — 1)-

framework. Since Ki(BC) С Jh this is the probability that the points in Ц = 1 Jj 

form paths satisfying (a)-(d). But we know that Jj is an (I — l)-framework, 

so Uj= i Jj is a n ^-framework provided the points in Jj form paths that continue the 

paths in Uj=i Jj in such a way that (a)-(d) are satisfied. That is, the points in Ji 

must either select other points in Jj, or one of the end points of the (I—l)-framework, 

Uj~i Jj- So the probability P(J; an /-frame for Uj=i Jj) can only depend on the set 

Ji and the number of end points of However, the number of end points 

of a j-framework is determined by which branching and connection points are not 

below any others in the j-framework and these are fixed for particular sequences 

a , /3 ,7 , a', /3', 7'. 

So, for j = 2 , . . . , 2k + 1 we write P;(J{) for P(J; an /-frame for (Jj=i Jj), and we 

write Px(Ji) for P(Ji a 1-frame). Equation (2.32) becomes 
2fc+l 

Е Х ( а , / 3 , 7 , « ' , / 3 ' , У ) = П E 
1=1 JiCKf. 

KI(BC)CJI 

Writing X for the total number of frameworks and E; for ^j^kcKi(bc)cJi ^ 

we have that the expected number of frameworks is 
2fc+l 

EX = y, П 
J;|;7y:(2.28),(2.29) 1=1 

We now calculate an upper bound for each Е/ by a path counting method. There 

are various cases to consider depending on the ordering of the branching and connec-



tion points a, ß, 7 , a ' , ß', 7However , we calculate an upper bound for Пг=1 ^ 

for the case a* < ßi < 7* < a\ < ß[ < 7- < ai+1, etc. (Figure 2.4(a)) and then 

show that this ordering is the worst case. That is, that the upper bound for the 

case Q!j < ßi < 7j < a[ < /3- < 7- < a l + 1 , etc, is an upper bound for any ordering of 

the branching and connection points subject to (2.28) and (2.29). 

We again use the inequalities 1 + x < ex and J2bj=afU) — fa-1 f(x)^x f°r f(x) 

decreasing, so that in particular 

For I = 1, Кi(ВС) — {ai}, so we sum over J\ С Ki = [r,ßx — 1] containing 

{a i } . If J\ = {»1, j i , . . . ,jt} with ax < ji < • • • < jt < ßi — I, then the probability 

Pi( J\) is the probability that the points j s , s = 1 , . . . , t form two disjoint paths from 

cki, which is at most ]^ = 1 ( 4 / j s ) , by independence, and if J\ % [oti,ßx — 1] then 

Pi(Ji) = 0, so 

i ) V «1 У <4 

For I = 2, K2 = we sum over J2 С K2 = {ßi,ß[} containing 

{ß1,ll,a[,ß'1}. So, J2 = {ßuj[1],---, ji?, 71 ,3? , • • •, ff,, j?], • • •, i!33), ß[} and 

the probability P2(J2) is the probability that 

(i) the points ji1^, s = 1 , . . . , t\ form four disjoint paths — two from ßi, two from 

the existing end points in the 1-frame Ji, 

(ii) the points jjp, s = l,...,t2 form six disjoint paths — two from 71, four from 

the end points of the paths formed in (i), 

(iii) the point o^ is above two of the end points of the paths formed in (ii) (specif-

ically, two paths with different starting points), 

(iv) the points js3\s = 1 , . . . , t3 form five disjoint paths — one from a[, four from 

the end points of the remaining paths formed in (ii), 



(v) the point ß[ is above two of the end points of the four "branching" paths 

formed in (iv) (i.e., not the path from a'v and again specifically, two paths 

with different starting points). 

All these events are independent of each other, and so this probability is at most 
41 8 \ (X 12 \ 12 (X 10 П^ П ж Й П I I .(1) i I 11 (2) \ (а'Л I 1 1 .(3) J / # 4 ' 

s=l Js / \s=l Js J \ 2/ \s=1 Js ) \2) 

so the sum over all subsets of K2 is 

^ / 8\ "i -1 / 12\ 12 / 10\ 4 

< 

j = 0 l + l 4 J 7 J = 7 i + l 4 v 2 / j = c * ; + l 

7 l - l \ 8 / a i - l V 2 2 4 fß[-1\10 

ft 7i « i ( a i - 1) V « i / ß ' M - 1) 
/Э/8 

< 263-
ßhr 

For I = 2i + 1 (г = 1 , . . . , к - 1), K2i+1 = [ßi + 1, ßi+i - 1], K2i+1{BC) = ai+1} 

and by a similar calculation we have 

j=ß'.+1 \ ' V 2 / j=7^+l t + 1 j - « i + i + l 

W ) Ш -1) V J «H-I ) 

< 2 2 3 -

2 ^ a i + i - l V 6 ( ß i + i ^ l 

ßh 

and for I = 2i (i = 2 , . . . , к - 1), K2i = [ßi, K2i(BC) = {ßi, ъ, # } and 

4 ^ / 10\ 2 ^ f 12\ 12 К Л 10\ 4 

И 3=ßi+1 N J / 7г j=7i+l 4 J J Ы j=ai+l 4 J ' \2) 

<±hi-l\10 2 24 fßi-l\10 8 
ßi\ßi J Ъ\ Ii J \ < J ßKßl-l) 

< 293-")9o ßi8 

ßl'ir 
and 

4 W ( 10\ 2 1 t 1 ( 12\ 12 ' f ? / 8\ 4 iE П (1 + 7 k П {1 + j)W) П + 
И j=ßk+1 ^ J J l k j=7fc+l V J J V 2 ) j=a'k+l 4 J ' \ 2 ) 

<±(ltzl\1° А / Ч - ^ 1 2 24 f f t - l V J 

< 2 9 3 ^ 6 

ßk\ ßk J ъ \ ik J 4 K - i ) V < ) ß'M-1) 

sSSl 
ßl'll 



and 
T*- 1 / , ч , / / Л 4 

This gives the upper bound 

2 Ü 1 /44 /0/8 / /38 \ / /Э/8 \ n n огб ^/2 
Pi 060 Pi T T / o2q Pt+1 \ T T / o9o ft \ o9o к Pk o^k 

= n j ^ ß ' k 4 2 Л 
a-ißH \}2^ßhr 

We show that this is also an upper bound on EX(a, ß,j,a', ß',^') for any-

ordering of the branching and connection points at,ß, 7 , a/,/3 ' ,7'. For any other 

ordering, where some of the ai+\ and 7г'_: fall into K2i, we can carry out a similar 

calculation, and obtain an expression of a similar form, namely 
к 

Ак\[(афЛг)Ь>{осШТ-
i=1 

For any framework, from the conditions (a)-(d) in the definition, every i-branching 

point (i Ф 1) must have one fewer path to it than from it (two fewer for i = 1), 

but bi depends only on this difference, so bi is independent of the ordering of the 

terms of a, ß, 7, a', ß7'. Similarly, Cj is independent of the ordering since, for any 

framework, each г-connection point (г Ф к) has one more path to it than from it 

(two more for г = к). So we have 

Ь = < 
2 x ( - 1 ) - 1 = - 3 for г ф 1, 2 x (+1) - 2 = 0 for г ф к, 

Ci= < 

2 x (—2) = - 4 for i = 1, 1̂ 2 x (+2) —2 = 2 for г = k, 

for any ordering. The constant factor, Ak, does depend on the ordering of the terms 

of a, /3,7, a', /3', 7 ' . In particular, it depends on the number of choices of end points 

(or pairs of end points) of paths that each branching (or connection) point can be 

above, respectively.- It remains to show that this number is smaller for any ordering 

(satisfying (2.28) and (2.29)) other than щ < ßi < 7* < < ß[ < < ai+u etc. 

Suppose we have an ordering where a- < % for some i. Then there is only 

a choice of four pairs of end points of paths for a- to be above, rather than the 



twelve pairs of end points in the case 7* < a[. So we need only consider orderings 

with 7i < ot\ for all i. This means events occurring below 7i are independent of 

events occurring above a;-. In particular we can consider the cases illustrated in 

Figures 2.4(b) and 2.4(c) separately (so the case in Figure 2.4(d) is a combination 

of the two). If we have an ordering with 7J'_1 > ft, then there is only one end point 

for ft to be above, rather than the two end points in the case < ft. If we have 

an ordering with a i + i < ft' then there is only one end point a i + i can be above, 

rather than the two end points in the case al+i > ft'. This only leaves the case that 

ai < but then there is only a choice of two end points for ctj to be above, rather 

than the three end points in the case a^ > 7г'_1. 

Therefore, 

q7q ak Pk Ik TT z ° 

Д^,:(2.28),(2.29) 

and summing first over a- < aj+i for г = 1 , . . . , к — 1 (and similarly for ß',Y) and 

then relaxing all other constraints gives 

Е
/2Д/2 /2 *L O11Q2 

q7q ak Pk Ik T T L 0 «Д. ^ Ш ^ Ш й 
к-1 27_rf_ f 2X132\ 

~ 35 г9 V r3 ) 
= (27/35)(21132)fe-1 n9 

r3fc+6' 

So, the probability that there exists a copy of P( l , 2; 3)(fc) in B2[r, n] is less than 

the probability that there exists a framework in B2[r,n], which is 0(n9/r3fe+6) by 

Markov's inequality. • 

We define the poset Q(k) as the poset P( l , 2; 3 ) ^ with an additional point 

incomparable to all others. Write B2[r, 00) for the random poset B2 restricted to 

the set of points greater than or equal to r. We have the following corollary of 

Theorems 2.14 and 2.15. 

Corollary 2.16. For к > 450, the probability that B2[r,oo) contains a copy of 



Q(k- 1) is 0(r"9 1 /9 0) . 

Proof. For there to be a copy of Q(k — 1) in B2[r, oo) there must exist a copy P of 

P( l , 2; 3)^_1) in B2[r, oo), and some point b in B2[r, oo) such that b is incomparable 

to all the points in P. Label the least point in P by m, and the greatest point 

by n, so that P is in B2[m,n], and b must be incomparable to m and n. So, the 

probability that there is a copy of Q(k — 1) in B2[r, oo) is less than the probability 

that there both exists some P in B2[m, n], and some b > r incomparable to m and 

n, for some m,n > r. If n = u(m150) then the probability that there exists some b 

incomparable to both m and n is 0(r - 9 1 /9 0 ) . Now taking к > 450, if n = 0(rn15°) 

then the probability there exists an P in B2[m, n] is 0(m~3) = 0(r~3) , since m>r. 

So for fixed к > 450 the probability that B2[r, oo) contains a copy of Q(k — 1) is 

0( r - 91 /90 ) _ D 

Since events in B2[r] are independent of events in B2[r, oo) we have the following 

corollary. 

Corollary 2.17. For к > 450, there is a positive probability that the random poset 

B2 does not contain a copy of Q(k). 

Proof. Fix к > 450. Fix r so that the probability that B2[r, oo) does not contain 

a copy of Q(k — 1) is at least 1/2. This is possible by Corollary 2.16. 

With some positive probability p, the points 2 , . . . , r in B2 form a chain. (For 

this to happen, each point j = 3 , . . . , r must select point j — 1, so p = П^=з(2/^) = 

2 r - 1 / r ! . ) Recall that points 0 and 1 are defined to be incomparable, and vertex 2 

selects 0 and 1 with probability 1, so all points in [r] are below r in B2[r). 

Now, we can calculate the probability that B2 contains a copy of Q(k) given that 

the first r elements are as above. Suppose such a B2 contains a copy Q of Q(k). 

Because of the structure of B2[r] there can be at most one point of Q in B2[r]. 

Either this is the incomparable element of Q, or one of the minimal points of the 



tower in Q. If the former, label this point b, and we have b < r and so b is below r 

in B2. The point b is incomparable with all points in Q, which implies that r is also 

incomparable with all points in Q. Since Q is a copy of Q(k), so is QU{r}\{6} , and 

there is a copy of Q(k) in B2[r, oo). If the latter, then Q contains a copy of Q(k — 1) 

with all points greater than r, that is, a copy of Q(k — 1) in B2[r, oo). If none of the 

points in Q are in B2[r], then Q, a copy of Q(k), is contained in B2[r, oo). 

So, B2 does not contain a copy of Q(k) if B2[r,oo) does not contain a copy of 

Q(k — 1). However, the probability of this is at least 1/2, and is independent of the 

events in B2[r\. Therefore the probability that B2 does not contain a copy of Q(k) 

is at least p/2 >0. • 

We have shown that there is a positive probability that B2 does not contain 

Q(k), that is, that Q(k) is not almost surely contained in B2. So, which posets are 

almost surely contained in B2! It seems ambitious to ask for a complete answer, 

but it may be possible to provide both families of posets almost surely contained 

in B2, and families of posets not almost surely contained in B2. We have already 

shown that Q(k), к > 450 (and so, also, any posets containing Q(k)) are not almost 

surely contained in B2. In fact, we can apply the argument used in Corollary 2.16 

to any poset in place of P(l,2;3)^fe-1\ if we can show that it is not contained in 

B2[r,r150] almost surely. This is one way to provide further examples of posets not 

almost surely contained in B2. 



Chapter 3 

Continuum limits of classical 

sequential growth models 

This chapter describes work carried out in conjunction with my supervisor, Professor 

Graham Brightwell, and was worked on in equal proportion by myself and Professor 

Brightwell. 

In [25], Rideout and Sorkin provide evidence for a "continuum limit of transitive 

percolation". Transitive percolation, a model of random partial orders, is specified 

by one parameter p, and produces partial orders sequentially, as follows. We start 

with a single element, labelled 0. At stage n = 1 ,2 , . . . , the element n is added to 

the partial order and placed above each existing element independently with prob-

ability p, and incomparable to it with probability 1 — p. The transitive closure of 

the added relations gives the partial order Pn+i,p at stage n. From this definition 

we can see that the poset PUtP is what is called a random graph order in the mathe-

matics literature. As mentioned in Chapter 1, these were introduced by Albert and 

Frieze [1] and have been studied further by Bollobäs and Brightwell [7, 8, 9], Pittel 

and Tungol [23], and Simon, Crippa and Collenberg [27]. 

In this chapter, we confirm the observation of Rideout and Sorkin, that certain 



sequences of random graph orders do have "continuum limits". We also show that, 

even in a broader class of models, these continuum limits are essentially the only 

ones that arise. 

We start by defining carefully what it means for a sequence (73n)5£U of probability 

spaces, whose elements are finite partial orders, to have an atomless partially ordered 

measure space as a continuum limit. Usually, the partial orders in Vn will have 

ground sets of size n. 

We use a definition of a partially ordered measure space similar to that in Bol-

lobäs and Brightwell [6]. 

Definition 3.1. A partially ordered measure space is a quadruple <) such 

that (X , J=", ц) is a measure space, (X , < ) is a partially ordered set, and U[x] = {y £ 

X : у > x} e J7, and D[x] = {у e X : у < x} G T for every x € X. 

A partially ordered measure space ( X , J7, /x, <) is atomless if /л({ж}) = 0 for all 

xeX. 

We now give formal definitions of the sampling from partially ordered measure 

spaces, and the probability of forming a particular labelled partial order Q. (In this 

context, the elements of Q will be labelled x\,... ,xk.) 

Definition 3.2. For P a partially ordered measure space with probability measure 

1Л, and к a natural number, define a random sample of к elements from P to be 

a sequence x\,...,xk of elements of P, obtained by selecting к elements xiy..., xk 

independently from P according to p, and conditioning on the event that xt,..., xk 

are distinct. A random sample can be thought of as a (random) finite partial order 

on the fixed ground-set {^ i , . . . ,xfc}, inheriting the partial order from P. 

For Q a finite partial order with ground-set labelled as { z i , . . . ,xk}, and P a 

partially ordered measure space with measure /i, let X(Q] P) be the probability that 

the partial order inherited from P on a random sample x\,..., xk of к elements is 

equal to Q. 



Note that, for P an atomless partially ordered measure space, the probability 

that the same element from P is selected twice is zero, and so conditioning on the 

elements of a random sample being distinct makes no difference. 

When we apply the above definitions to a finite partial order P = (X, <), we 

always take the probability measure ц to be uniform on X. With this convention, 

sampling |Q| elements from P, conditioned on the elements being different, is equiv-

alent to selecting |Q| elements from P without replacement. Therefore A(Q; P) is the 

proportion of labelled [Q [-element subsets of P that are equal to Q. To be precise, 

for Q, P finite labelled partial orders, if we select \Q\ elements without replacement 

from P, label them with xx,..., X\Q\ according to the order of selection, and take 

the induced order from P, then A(Q; P) is the probability that this random partial 

order is equal to Q. 

Note that for fixed P, we have A(Q; P) — \(Q'\ P) if the labelled posets Q and 

Q' are isomorphic. 

We are now in a position to define a continuum limit. Here, and in what follows, 

Pn denotes a random partial order from Vn-

Definition 3.3. A continuum limit of ( P n ) ^ , a sequence of probability spaces, 

whose elements are finite posets, is an atomless partially ordered measure space Poo 

such that, for all finite labelled partial orders Q, 

E A ( Q ; P N ) ^ A ( Q ; P O O ) . 

In [25], Rideout and Sorkin estimate A(Q;P„,p) for small partial orders Q, and 

present evidence suggesting that, for suitable sequences p = p(n), all the expec-

tations EA(<2; Pn,p) converge to limits. To be more precise, they choose sequences 

p(n) so that ЕА(Сг; Pn,p) converges, where C2 is the 2-element chain, and observe 

that, for such sequences pin), expectations EA(<5;Pn,p), for other small Q, appear 

to converge also. They offer this as evidence for the existence of a continuum limit. 
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We define a sequence (Vn)™=1 of discrete probability spaces to be compatible 

if (EA(Q; Pn))Z :1 is convergent for all finite labelled partial orders Q. From the 

definitions we have that, if has a continuum limit, then is compat-

ible. An interesting question (not answered here) is whether a compatible sequence 

necessarily has a continuum limit. In Section 3.1.2, we show not only that suitable 

sequences of random graph orders are compatible but also that they have continuum 

limits, confirming the conjecture of Rideout and Sorkin. 

Theorem 3.4. The sequence of models (Pn,p(n))%Li of random graph orders has a 

continuum limit if and only if one of the following holds: 

(i) limn_oo (p'1 log p^/n) = 0, 

(ii) lim^oo (p~l log p _ 1 /n ) = с for some 0 < с < 1, or 

(iii) lim inf^oo (р~г logp - 1 /n) > 1. 

In the first and third of the cases above, the continuum limit is very trivial, being 

a chain and an antichain respectively. In the second case, the continuum limit is a 

"random semiorder". 

A semiorder is a partial order that can be represented by a collection of equal-

length intervals on the real line, ordered by putting x < у if the interval representing 

x lies entirely to the left of the interval representing y. 

Loosely, a random semiorder is obtained by placing n unit intervals uniformly at 

random on an interval of given length, with the order as above. We give full details 

later. 

Semiorders have a very special and well-understood structure; an alternative 

definition is that a semiorder is a partial order not containing either of the two 

four-element partial orders H and L shown in Figure 3.1 as an induced suborder. 

See Fishburn [14] for a proof of this and much more information about semiorders. 



x3 

X\ • 

X4 

x2 

H 

X3 

X2 • X4 

Xi 

L 

Figure 3.1: Forbidden induced suborders 

As explained in Chapter 1, transitive percolation is a one-parameter family of 

models from the larger family of classical sequential growth models. Recall that a 

particular classical sequential growth model is specified by a sequence t = (to, h,...) 

of non-negative constants. We start with the partial order P0 with one element 

labelled 0. At stage n = 1 ,2 , . . . , the element n is added to Pn_ 1 and placed above 

all elements in Dn, where Dn is a random subset o f { 0 , l , . . . , n — 1}, the probability 

that Dn is equal to a set D being proportional to t\o\- The transitive closure is taken 

to form the partial order Pn. We write CSG(t) for the model specified by sequence t. 

These models are of particular interest as they are the only ones satisfying some 

natural-looking conditions for discrete models of space-time—recall the conditions 

of "discrete general covariance" and "Bell causality" explained in Chapter 1. 

It is natural to ask whether continuum limits exist for sequences of classical 

sequential growth models other than a sequence of transitive percolation models, and 

in particular whether one can obtain continuum limits that are radically different 

from random semiorders. In Section 3.2, we show that this is not possible. 

We say that a partially ordered measure space P is an almost-semiorder if the 

probability that a random sample of four elements from P is isomorphic to either 

H or L is zero. 

Theorem 3.5. If a sequence of classical sequential growth models (Vn)%L0 has a 



continuum, limit, then this limit is an almost-semiorder. 

It has been asked [24, 25] whether classical sequential growth models can be 

constructed to resemble a "sprinkling" from Minkowski space Md, for any dimension 

d > 2, i.e., a partial order obtained from Md by taking points according to a Poisson 

process with fixed density Л. Alternatively, can a classical sequential growth model 

have a continuum limit resembling Md? The results here demonstrate that this is 

not possible. Indeed, an interval [a, b] of Md is a long way from being a semiorder, 

so no classical sequential growth model can have a region of Md as a continuum 

limit. 

Before proving Theorems 3.4 and 3.5 we give a few observations about the prob-

abilities Л (Q]P). 

Lemma 3.6. For Q, P finite labelled partial orders with |Q| = j, and for к with 

3 < K < |P|, 

£ A ( Q ' ; P ) = A ( Q , P ) . 
\Q'\=k 

Q'\{x1 .,}=<? 

Proof . Fix Q with \Q\ — j. For any к with j < к < |P|, construct a random 

labelled partial order by taking a random sample Xi..., xk of к elements from P. 

The probability that the labelled subposet on x i , . . . , Xj is equal to Q is the sum of 

Л(Q', P) over all labelled partial orders Q' that, when restricted to { x i , . . . , Xj}, are 

equal to Q. But this probability must be equal to A(Q; P), as we are only looking 

at the structure of the first j elements sampled. • 

Corollary 3.7. If Q is a (labelled) subposet of Q' then Л(Q'\ P) < X(Q\P), for all 

P with |P| > \Q'\. 

Proof . This follows immediately from Lemma 3.6. • 

Write Ak for the ^-element labelled antichain and Ск for the fc-element labelled 

chain, {x\ < X2 < • • • < xk } . We have the following result which will allow us just 

to consider Л(С2; Pn) and Л(Л2; Pn). 



Proposition 3.8. 

(i) IfEX(A2,Pn) —> 0 as n —> oo, then ЕЛ(Q]Pn) —> 0 as n oo for all finite 

labelled partial orders Q that are not a chain, and ЕЛ (Ск]Рп) —> 1 /к\ asn 

oo for all к >2. 

(ii) If EA(C2; Pn) ~• 0 as n —» oo, then EA(Q; Pn) —• 0 as n —> oo /or aZZ finite 

labelled partial orders Q that are not an antichain, and EX(Ak-, Pn) -> 1 as 

7i oo /or aZZ к >2. 

Proof. We show part (i). Part (ii) can be proved in a similar way. 

Assume EA(A2; P„) —> 0 as n —> oo. Fix к > 2, and let Q be any labelled 

partial order of size k, but not equal to Ck. Define Q' as a relabelled copy of Q 

with the elements x\, x2 incomparable, which is possible since Q ф Ck- Note that 

A(Q'\ Pn) = X(Q] Pn). Since A2 is a subposet of Q', we can apply Corollary 3.7 giving 

A(Q; Pn) < X(A2; Pn). So, ЕА(Л2; Pn) -»• 0 as n oo implies that EA(Q; Pn) 0 as 

n —* oo for all Q of size к not equal to Ck• But Y^\Q\=k KQ'i Pn) = 1> and there are 

k\ labellings of the /с-element chain, so we have EA(Cfc; Pn) 1/kl as n —»• oo. • 

3.1 Random graph orders 

We recall the definition of a random graph order. 

Definition 3.9. Let Pn<p be a random partial order on [n - 1] = {0 ,1 , . . . ,n - 1}, 

formed by introducing the relation (i,j) with probability p, independently for each 

pair of elements i < j, and then taking the transitive closure. The partial order Рпф 

is called a random graph order. 

Note that the description of P„iP above is equivalent to that given earlier. In 

future, we will use the term random graph order, rather than transitive percolation, 

but the reader should be aware that the terms are essentially interchangeable. 



3.1.1 Some results on PN<9 

We include some results of Pittel and Tungol, from [23], which we will need in order 

to prove the existence of a continuum limit. Results of a similar type can be found 

in Bollobäs and Brightwell [8], and Simon, Crippa and Collenberg [27]. We change 

the notation slightly, for ease of use here. The following results apply to a random 

graph order PN,*, and we will apply them with particular values for N and 7r. Very 

crudely, these results can be interpreted as saying that, if i and j are elements of 

[ N - 1 ] , then 

(i) for a > 1, most pairs (г, j ) with j — i> аж'1 log n^1 are comparable in PN,*, 

(ii) for a < 1, few pairs (г, j ) with 0 < j — i < a:7r_1 log 7Г-1 are comparable in 

PN,*-

Theorem 3.10 (Pittel and Tungol, [23, Theorem 4.1(3)]). Let X be the number of 

comparable pairs i < j in PN,*- Let 7Г = a log N/N with a > 1. Then 

EX = (l + o ( l ) ) ^ i V ( l - ^ ) ) 2 " 

Define 7дг(0) to be the size of the up-set of 0 in PN,*-

Theorem 3.11 (Pittel and Tungol, [23, Theorem 2.3(1)]). Let тг = a log N/N. 

Suppose that а > 1. If M is such that 

f{M) = (m - N ( l - ^ ^ - log log N = О (log log N), 

then 

P(7&(0) > M) = (1 + o(l)) exp • 

Theorem 3.12 (Pittel and Tungol, [23, Corollary 2.4(3)]). Let тг = a log N/N. If 

a = a(N) < 1 and 

(1 - a) log iV - log log N > - 2 log log log N, 

then 

ВД(0)) = (1 + о(1))7У°. 



3.1.2 The continuum limits of РПФ 

We show that, for suitable functions p(n), the continuum limit is the semiorder 

defined below. 

Definition 3.13. For 0 < с < 1, let SC be the partially ordered measure space 

([0,1], B, ßL, -<), where В is the family of Borel sets on [0,1], the measure ß i is the 

Lebesgue measure on [0,1], and ~< is defined by x ~< у if and only if у — x > c. 

In particular, So is the partially ordered measure space ([0,1], B, ßL, ~<) with x -< 

у for all x <y, so that ([0,1], -<) is a chain, and Si is the partially ordered measure 

space ([0,1 ],B, ßb, -<) with x у for all x, y, so that ([0,1], -<) is an antichain. 

By associating the number у with an interval of length с with left-endpoint y, 

we see immediately that Sc is a semiorder. We now prove that, for certain p(n), the 

semiorder Sc is the continuum limit of our sequence of random graph orders. 

Theorem 3.14. The sequence of models (Рпф)^=1 of random graph orders has a 

continuum limit for p = p(n) when either 

(i) limn_K3o {p~l logр~г/п) = 0, 

(ii) lim^oo (p~l l ogp - 1 /n ) = с for some 0 < с < 1, or 

(in) liminfn_»oo (p - 1 log p - 1 / n ) > 1. 

The continuum limit in each case is 

(i) SQ, i.e., a chain, 

(ii) Sc, 

(iii) Si, i.e., an antichain. 

Proof. Suppose that limn_oo logp - 1 /n) = 0. We will show that the continuum 

limit is S0 = ([0,1], B, ML, -<) with x -< у for all x <y. Since Л(Q; S0) = 0 for all Q 



not a chain, and Л(Ck; S0) = 1/kl for all k, by Proposition 3.8, it is enough to show 

that EA(A2; Pn) 0 as n oo. 

Fix e with 0 < £ < 0.01, and let n0 be such that p > (1/e) logn/n for all n > n0. 

We can apply Theorem 3.10 with N = n, ж = (1/e) logN/N, so that a = 1/e. We 

have ЕА(Д>; Р Л > ) = 1 - E X / ( * ) which by Theorem 3.10 gives 

EA(A2; Pn>p) < EA(A2; Pn, (1/e) logn/n) = 1 - U + ° ( 1 ) Ш 1 " g ) )8 < 2 e + o ( 1 ) 

Ы 

So, EA(A2; PntP) —> 0 as required. 

Now, suppose that liminf^oo logp _ 1 /n) > 1. We will show that the con-

tinuum limit is Si = ([0,1], В, ць, -<) with x -fi у for all x, y. Since A(Q; Si) = 0 for 

all Q not an antichain, and A(Ak-, S\) = 1 for all k, by Proposition 3.8, it is enough 

to show that EA(C2; PN) —• 0 as N —> oo. 

Fix £ with 0 < e < 0.01. Choose щ such that p < (1 + e) log n/n for n > n0. 

We can apply Theorem 3.10 with N = n, n = (1 + £) log N/N, so that a = 1 + e. 

We have EA(C2; PN,*) = E X / ( ? ) which by Theorem 3.10 gives 

EA(C2; PN,P) < EA(C2; Pn , (1+£ ) l ogn /n) = V ( l + e)))2 < £2 + ^ 

So, EA(C2; Pn,p) —> 0 as required. 

Finally, suppose that l i m ^ ^ (p_1 l ogp _ 1 / n ) = c f o r s o m e 0 < с < 1. We will 

show that the continuum limit is SC = ([0,1],B, ßL, -<) with X -< У if and only if 

у — x > c. 

Fix £ with 0 < £ < min{c, 1 - c}. Since limn_>00p~1logp_1 /n = с we must also 

have limn^oop-1 log n/n = c, and since с < 1, we have p > log n/n, for sufficiently 

large n. Furthermore, since 

( 1 + £ / 2 c ) l 0 f ( c + g ) r a = (C-±^\ l 0 g ( c + £ ) n < (1 - 5 ) ^ 

v ' ' (c + e)n \ c + e J cn cn 

for some S > 0, we have p > (1 + e/2c) log (c + e)n/(c + e)n for sufficiently large 

n. Similarly, we have p < (1 - e/2c) log(c - e)n/(c - e)n for sufficiently large 



n. Let n0 be such that p > log n/n, (1 + e/2c) log (с + e)n/{c + e)n < p < (1 -

e/2c) log (c - e)n/(c - e)n, and n > 1/e for all n>n0. 

We proceed as follows. For each n > nQ, take a random order Pn<p according 

to VN,P. Define an order -<n on [0,1], by dividing [0,1] into n intervals of length 

1/n, identifying [i/n, (i + 1 )/n) with i G [n - 1], and putting [i/тг, (i + 1 )/n) below 

[j/n, ( j + 1 )/n) if and only if г < j in Pn%v. Now for any sample of elements from 

[0,1] of fixed size k, we need that 

P(-<„ induces different partial order from -<) —> 0 

as n —» oo. This is enough to prove that EA(Q; Рпф) A(Q; Sc) a s n - » o o for all 

finite partial orders Q, as follows. Let PN be the atomless partially ordered measure 

space ( [ 0 , f i L , -<n), and suppose Q is any finite partial order with \Q\=k. By 

the definitions of A(Q',PN ,P) and \{Q]PN), the difference EA(Q; Pn,p) - EA(Q; PN) 

is non-zero only because of the positive probability that in a random sample of к 

elements from PN some of the elements are in the same interval [i/n, (i + l) /n), for 

some i. Since the measure of these intervals tends to zero as n —> oo, we have that 

EA(Q; PNTP)-E\(Q; PN) -»• 0 as n -* oo. So, it is enough to show that EA(<2; P„) 

A(Q-, Sc), which follows if induces different partial order from -<) —* 0 as n —> 

oo. Indeed, it is enough to consider two elements x, у chosen uniformly at random 

from [0,1] and show that 

P(^n induces different partial order from -< on {x,y}) —> 0 (3.1) 

as n —> oo, since for any sample S of к elements from [0,1], 

P(-<n induces different partial order from -< on S) < (tyq, 

where q = P(^„ induces different partial order from -<; on {ж, у}). 

Call a pair of intervals [i/n, (i + 1 )/n) and [j/n, (j + 1 ) /n ) good if either 

(i) ————- > с and г, j are comparable in Pn<p, or 



(nj < с and i , j are incomparable in 
ть 

and call a pair of intervals bad otherwise. 

We will show that the expected number of bad pairs of intervals is a small fraction 

of n2. This will prove (3.1), since -<n and -< will only induce different partial orders 

on {ж, у} if the intervals that contain x and у are a bad pair of intervals. 

We can be rather crude with our calculations, and can afford to assume that 

pairs of intervals that are "too close to call" are all bad. That is, we assume that all 

pairs (г, j) with с — e < \i — j\/n < с + e are bad. There are at most 2en2 of these. 

For all other pairs of intervals, either \i — j\/n > с + e or \i — j\/n < c — s, and we 

will show that almost all such pairs are good pairs. 

First consider г < j with (j — i)/n > с + e. Such a pair i,j is bad if г, j are 

incomparable in PUiP. So the number of bad pairs of this type is equal to the number 

of bad pairs of elements in Рпф\ 

I{(ж, у) G Pn,p : x, у incomparable, у — x > (c + £)n}|. 

Define an element x < (1 — с — e)n in Рпф to be an e-bad element if |U[x] D [x + 

(c + e)n]| < en/2, and an e-good element otherwise. We will show that the number 

of e-bad elements is small, and the number of pairs x, у with x an e-good element 

and у — x > (с + e)n is also small. 

We can calculate the expected number of e-bad elements as follows. Let ж = 

( l+e /2c ) log (c + e)n/(c+e)n. Since p > 7r, the expected number of e-good elements 

in Рпф is greater than the expected number of e-good elements in РП)7Г. So, working 

with РП)7Г, note also that the size \U[x] П [rc + (c+e)n]| is equivalent to 7(*c+£)n(0), i.e., 

the size of the up-set of 0 in where N = (c + e)n. We want to apply Theorem 

3.11 with N = (c + e)n, 7r = (1 + e/2c) log (c + e)n/(c + e)n, so a = 1 + e/2c. We 

set M = N( 1 - 1 /a), so that f{M) = — log log N is О (log logiV) as required and 



the theorem implies that 

«7,',«,„№) > M) = (1 +o(l))exp 

Since 

M = N(1 — 1/a) - (с + £)n ( l - = > en/2, 

we have Р(ж is e-bad in РП)7Г) < P(7*c+£)ra(0) < M). Therefore, the probability that 

x is an e-bad element in Pn>p is 0 ( l / l o g n ) + o(l). So, the expected number of e-bad 

elements is o(n) and assuming the worst case, that every pair of elements (ж, у) with 

у — x > (с + e)n, where x is e-bad, is a bad pair, this gives o(n2) bad pairs. 

We now need to count the number of bad pairs (x, y) with у — x > (c + e)n 

where x is £-good. So |U[x] П [x + (c + e)n]| > en/2, and the probability that (a;, y) 

is a bad pair is the probability that there are no edges between у and the elements 

in U[x] D [у]. But IU[x] П [у]I > IU[x] П [x + (c + e)n]| > en/2. Therefore, for 

у - x > (с + e)n, 

P((®, y) is bad I a; is e-good) < (1 - p)£n/2 < e~pen/2 < n~e/2 

Therefore the number of bad pairs (x, y) with у — x > (c + e)n where x is e-good is 

o(n2). 

Finally we need to count the number of pairs г < j with ( j —i)/n < c—e and i,j 

comparable in PUtP. Let 7Г = (1—e/2c) log(c—e)n/(c—e)n. Since p < ir the expected 

size IU[x] П [x+(с—e)n] | in Pn>p is less than the expected size |t/[x]fl[x+(c—e)n] | in 

P„i7r. So, working with Pn,w, note that |t/[x]n[x+(c-e)n]| is equivalent to 7*c_e)n(0), 

i.e., the size of the up-set of 0 in Рдг)5Г, where N = (c—e)n. So, the expected number 

of pairs (x, y) in Рпф with 0 < у - x < ( c - e)n is at most ^E7*c_e)n(0) which by 

Theorem 3.12 is n(l + o(l))((c - e)n)l~e!2c = o(n2). 

Therefore the total number of bad pairs of intervals is at most 2en2 + o(n2). 



Therefore, there exists щ > n0 such that 

P(-<„ induces different partial order from -< on {x, y}) < 5e 

for all n > n\. Since e is arbitrary we have the result. • 

To complete the proof of Theorem 3.4, we now show that, for all other p(n), the 

sequence (Pn,p)%Li does not have a continuum limit. We first make the following 

observations. 

The probability that two elements selected at random from Sc are incomparable 

is 

Л ( Л 2 ; 5 С ) = 1 - ( 1 - С ) 2 = 2 С - С 2 

which is monotonic in с for 0 < с < 1. So, we have 

Lemma 3.15. For 0 < cx ф c2 < 1, A(A2]SC1) ф A(A2;SC2). • 

The following Lemma is an obvious extension to Theorem 3.14 and is stated 

without proof. 

Lemma 3.16. If we have a subsequence (Pan,p)^i of random graph orders, with 

p = p(an) satisfying one of conditions (i),(ii) or (Hi) of Theorem З.Ц, then the 

subsequence has a continuum limit as described in Theorem З.Ц- • 

Theorem 3.17. If a sequence of models of random graph orders has a 

continuum limit, then p = p(n) satisfies one of conditions (i), (ii) or (Hi) of Theo-

rem З.Ц. 

Proof . Suppose {Vn<p)^Li is a sequence of models of random graph orders with 

p = p(n) not satisfying any of (i), (ii) or (iii). This means that 

liminfp"1 \ogp~l/n < 1, and liminfp*1 logp -1/ra < limsupp - 1 \ogp~l/n. 
n—*oо n—>oo n—*oo 

So, there exist subsequences (on), (bn) with l im^oop - 1 logp - 1 / a n = сг < 1, where 

p = p(an), and limn^ooP_1 l o g p - 1 / ^ = c2 > c b where p = p(bn). 



3 . 2 . POSSIBLE CONTINUUM LIMITS OF CLASSICAL SEQUENTIAL GROWTH 7 7 
MODELS 

So, by Lemma 3.16 the subsequence (Pan,p)n=I has continuum limit SCl and the 

subsequence (Рьп>р)п.Li either has continuum limit SC2 or Si depending on whether 

c2 < 1 or c2 > 1. In either case, by Lemma 3.15 we have limrt_>00EA(A2;Pan)P) ф 

limn_>00EA(A2;P6n!p). This implies that (ЕА(Л2; Pn,p))n=i does not converge, and 

therefore (Vn,P)n=i is not compatible and so has no continuum limit. • 

This establishes Theorem 3.4. 

3.2 Possible continuum limits of classical 

sequential growth models 

In Section 3.1.2 we showed that the random graph order Рпф has a continuum limit 

for suitable functions p = p(n) and, when it exists, the continuum limit must be the 

semiorder Sc, where 0 < с < 1 depends on p. As explained earlier, random graph 

orders are a particular class of models from the larger family of classical sequential 

growth models. In this section, we show that for any sequence of classical sequential 

growth models, if the sequence has a continuum limit, then this limit must be an 

almost-semiorder, as defined earlier. Unfortunately, we do not have a complete 

result, like that of Theorem 3.4 for random graph orders; we provide some necessary 

conditions for a sequence of classical sequential growth models to have a continuum 

limit. The question of whether our necessary conditions are also sufficient is similar 

to the question of whether compatibility is a sufficient condition, and as mentioned 

earlier, we do not answer these questions here. 

The results we give apply to all sequences t, but they are most interesting when 

the U tend to zero at least exponentially quickly but, in some sense, not much more 

quickly. By this we mean that the general case should mirror the situation in the 

case of random graph orders, so that the "interesting" continuum limits occur for 

sequences t that are delicately balanced. We do not wish to spend time making 



these statements rigorous, but to help the reader understand this point, we give 

the following rather loose argument. In the case where a classical sequential growth 

model is specified by a sequence where the tj do not tend to zero quickly enough, the 

growth model will produce a partial order typically denser than that produced by 

some random graph order, Рпф, satisfying condition (i) of Theorem 3.14. Therefore, 

we would expect the continuum limit of the growth model to be denser than the 

continuum limit of P„iP, which, by Theorem 3.14, is a chain. Hence, we expect the 

continuum limit of the growth model to be a chain. On the other hand, if a classical 

sequential growth model is specified by a sequence where the U tend to zero too 

quickly, the growth model will produce a partial order typically sparser than that 

produced by some random graph order satisfying condition (iii) of Theorem 3.14, 

and therefore we would expect the continuum limit of the growth model to be sparser 

than that of the random graph order, and hence an antichain. 

To give a specific example, we note that the continuum limit of a sequence of 

random binary growth models (or indeed, any models where U — 0 for all i greater 

than some constant independent of n) is an antichain. This can be seen by noting 

that for any r > en, the expected size of the up-set U[r] П [n] is bounded by a 

constant (dependent on e, but not n), which follows from a simple path-counting 

argument as in Lemma 2.13. This implies that, for any e > 0, the expected number 

of comparable pairs of elements is less than 2en2 for sufficiently large n and by 

Proposition 3.8 this is enough to show that the continuum limit is an antichain. 

Our task is to show that, for any continuum limit P^ of a sequence of classical 

sequential growth models, A(#; Poo) = A(L; P^) = 0. Informally, we need to show 

that, in any classical sequential growth model CSG(t), the number of copies of H 

and L as subposets of CSG(t) is small. To do this, we show that CSG(t) has a 

threshold "level" such that there are very few comparable pairs below the threshold, 

whereas above the threshold, where the number of comparable pairs may become 

significant, the model behaves very roughly like a random graph order, with every 



new element selecting a significant proportion of the existing elements. 

To this end, we present some lemmas describing some properties of classical 

sequential growth models. We believe these results to be important in their own 

right, since they give particularly qualitative descriptions of a model CSG(t) without 

referring to the sequence t that specifies the model. 

Recall that Dx is the set of elements selected by element x, and U[x] is the up-set 

of x. Note that Dx is not the same as D[x], the down-set of x. We begin with the 

following observation on the expected size of Dx. 

Lemma 3.18. For any classical sequential growth model, Е(|Дг|) is increasing in 

x. 

Proof . We show that for any x, we have the inequality E(| Дв|) < E(|£>x+i|). 

Suppose the classical sequential growth model is defined by the sequence t = 

(t0,ti,...). Note that 

j=o 2-<j=o \j) li 

depends only on t0,ti,... ,tx, and similarly 

jy*1 j (x+1)t • 

2^j=0 { j ri 

depends on to, t\,..., tx+i-

Note that, for fixed t0,tu...,tx the probability P(|Ac+il = ж + 1) is increasing 

in tx+1 and all other probabilities P(|ZWi| = j) are decreasing in tx+1. This means 

that Ed-Djj+il) is increasing in tx+1 and we have 

V1 i(x+1)t-
I) > ^ i n , - (3-2) 

Ljj=о I j ri 

Now, note that (:E+1) = i f fz j fJ ) s 0 the inequality (3.2) becomes 



and it remains to prove that 

S j=o S+bj ( j )Ь S j=o (j) ti 

which follows from Chebyshev's Sum Inequality (see, e.g., [16, Theorem 43]), since 

both j and l/(x + 1 — j) are increasing on {0 ,1 , . . . , x}. • 

For a fixed CSG(t), consider the process up to stage yo, which produces a partial 

order on the ground set [y0]. Informally, the following lemma says that, if the 

expected sizes E(|Dy\) are small (these depend only on t and not the partial order 

produced), then apart from the first en elements the expected sizes of the up-sets 

of the elements in [y0] are also small. 

Lemma 3.19. For 0 < e < 1, <5>0 and n e N , ifE(\Dyo\) < <51ogn for some 

y0< n-1 then E(\U[x] П [y0]|) < for ац x e [£Щ n _ 1]. 

Proof . Note that by Lemma 3.18 we have that E(|Dy|) < 51ogn for all у < y0. We 

use the fact that 

F(y selects x) = S I M < ^ (3.3) 
У У 

for all x < у < yo, and count E(\U[x] П [y0]|) by a path-counting method. 

Define a path from re to у to be a sequence of elements so < Si < • • • < Sk, with 

s0 = x,Sf- = y, such that Sj selects Sj_ 1 for all j = 1 , . . . , к. So, the probability that 

any given sequence s0 < Si < • • • < s^ is a path is exactly 

к 
JJP(sj selects Sj_i) 
3=2 

and the expected number of paths from x to some у with у < y0 is 

к 
' E P(si selects ж) JJP(s j selects Sj_i). 

si<s2<-<Sfce[a;+l,j/o] j=2 

Since every element in U[x] П [yo] must be an end point of such a path, this expected 
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number of paths is an upper bound on E(|f/[a:] П [y0]|). Using (3.3), we have 

E ( № ] n N i ) < £ 
S l < S 2 < " ' < ä / c j = l ^ S=X+1 ^ ' 

у о 
< eXP YJ 

Jlogn 
S s=x+l 

/ ryo I 
< exp I <51ogn J -ds 

< ^ У 0 . у Х о & П < ( 1 / е ) г 1 ° 8 п = n « b g ( l / e ) 

where the equality in the first line is seen by expanding out the product on the right 

hand side and noting that each term appears in the sum on the left hand side. The 

final inequality comes from the fact that yo < n and x > en. • 

Using Markov's inequality with the conclusion of Lemma 3.19 gives the following 

result. 

Lemma 3.20. For 0 < £ < 1, ö = (21og(l /e)) - 1 and sufficiently large n, if 

E(|Dj,0|) < <51ogn for some y0 < n - 1 then P(|C/[x] П [yQ]\ > en/2) < e for all 

x G [en, n — 1]. 

Proof. By Lemma 3.19 we have that Е(|£/[ж]П[у0]|) < nÄlog(1/e) for all x e [en,n-1]. 

So, Markov's inequality implies that P ( № ] П {yQ}\ > en/2) < 2n8lQ*№/en = 

(2/e)n-x /2 , which gives the result. • 

So, we have that for sufficiently large n, in order to get large up-sets, we require 

that the model CSG(t) is such that the expected size Е(|£)уо|) is at least <5 logn for 

some yo- The next lemma shows that if at any stage у the expected size E(|£>y|) is 

this large, then we do not have to continue the growth process much further before 

we find z > у having a small probability that the random variable \DZ\ is small. 

Lemma 3.21. For e > 0 and sufficiently large n, ifE(\Dy\) > tflogn for some 

у G [en, n - 1 - n/Vlog n] and 5 > 0, then < \/log n) < e/8. 



Proof. Fix s > 0. Suppose that Е(|Д,|) > <51ogn, for some constant S > 0. Since 

we have 

i = 0 ^ ' i=0 \ ' 

Let j = n/s/bgn and M — v'logn. We need to bound from above the proba-

bility 

We use the following upper and lower bounds for • We have, 

(yV) _ (y + j ) (y + j - i ) - - - ( y + j - < + i) > (y + j\_ Л I J V 

(Й y(y — 1) • • • (у — г + 1) - V V ) \ у ) 

But j = n/V'logn and у > en, so j/y < l/(e\/logn) so for any rj > 0 we have 

Li_Z > (1 _ v)eWv (3.6) 

for all г, for sufficiently large n. 

Also, 

m = (y+j)(y + i - i ) - (y+i -< + i) < /y+i-^ + iy <eij/(y_i+1) 
О у(у — 1) • • • (y — i + 1) ~ V y-i + l J -

So, for i < M = v'logn we have 

m (?) 
for sufficiently large n. 

< e2Mj/y (3.7) 

So, using the upper bound for (wtJ) / (yJ in the numerator in (3.5) and the lower 

bound in the denominator, we have 
ЛMj/ySpM fy\. 2Mj/y тру (y\f, 

n\Dy+j\<м)< ' ' < -
(1 - v) E S ' - (1 - V) ESLo e i j / yG)ti 

and using (3.4) we have 

e2 миу E ! l o i ( y ) t i 
F(\Dy+j\ <M)< 
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Finally, we use the fact that г/е{^у is maximised when i = y/j so that i/eij/y < 

е~1у/э-

So, we have 
p2Mj/y -1/ • 

which, after substituting j = n/Vlogn, M = y/logn and en < у <n, gives 

e2/e-l 

for sufficiently large n. Therefore 

n\Dy+n/v^\ < V ^ ) < e/8 

for sufficiently large n, as required. • 

Combining the previous two results, we can now define a threshold in a classical 

sequential growth model. Informally, the threshold has the property that, for suf-

ficiently large n, below the threshold we have very few comparable pairs, whereas 

just above the threshold, where we begin to get a significant number of compa-

rable pairs, a high proportion of elements select a significant number of existing 

elements. We shall see that, for example, this means that the expected proportion 

of triples X\ < x2 < хз with xx and x2 comparable and x\ and x3 incomparable is 

small. Importantly, the window between "below the threshold" and "just above the 

threshold" is small enough not to be a problem. 

Lemma 3.22. For any classical sequential growth model CSG(t), any e with 0 < 

e < 1 and any n G N, there exists a threshold yo = y0(t,e,n) defined as 

(i) ify<y0 then П [y]| > en/2) < e for all x G [en, n - 1], 

(ii) ifyo<y<n — l then Р(|£/[ж] П [y]| > en/2) > e for some x G [en,n - 1]. 

Furthermore, if n is sufficiently large, then 

(a) E(|D„|) > 6\ognfor all y0 < у < n - 1, where S = (2log (1/e))"1 , 
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(b) Р(|Д,| < y/\0gn) < e/8 for all y0 + en/4 <y<n- 1. 

Proof . Fix t,e, and n. Note that for fixed x £ [en, n- 1] the probability P(|C/[x] П 

[:У] I > en/2) is zero for у < x — 1 + en/2 and increasing in y, so we have a threshold 

as claimed. Specifically, y0 is the minimum over all x £ [en, n — 1] of the maximum 

у < n — 1 satisfying Р(|С/[ж] П [y}\ > en/2) < e. By the previous remark, this is well 

defined and gives the threshold as required. 

Now, suppose n is large enough so that we can apply Lemmas 3.20 and 3.21. 

To prove (a), we apply Lemma 3.20, which implies that E(]Z)y|) > <5logn for all 

Уо < У < n — 1, with 5 as claimed. To prove (b), we apply Lemma 3.21 for 

each у satisfying (a), which implies that P( lA / + „ / v / i^| < \/log n) < e/8 for all 

Уо < у <n — 1 — n/\/logn. For sufficiently large n, we have n /y l ogn < en/4, so 

that P(|D„| < \4ögn) < г/8 for all y0 + en/4 <y<n- 1. • 

For a particular partial order Pn arising from a growth process on [n — 1], and 

elements x, у £ [en, n — 1], we say that x is а у-good element (in Pn) if \U[x] П [y]\ < 

en/2, and a y-bad element (in Pn) otherwise. So yo as defined above is the maximum 

value у such that, for all elements x in [en, n — 1], the probability that x is y-bad is 

less than e. In particular, the expected number of yo-bad elements is at most en. 

For any subset AC [n — 1] define max A to be the largest element in A. We 

have the following lemma, which states that if a set is at least some (small) constant 

proportion of [n — 1], then the expected number of elements above the threshold yo 

not selecting elements in the set is at most some (small) constant fraction of n. 

Lemma 3.23. For any e with 0 < e < 1, and sufficiently large n, given any subset 

K [ n - 1 ] with \ A\ > en/2, and m = max{yo + en/4, max Л + 1}, we have 

E(number of elements in [m,n — 1] not selecting an element of A) < en/4, 

where y0 is the threshold defined in Lemma 3.22. 

Proof . By Lemma 3.22, for у £ [m,n - 1] we have P(|D„| < v^ögn) < e/8, 



for sufficiently large n. So, the expected number of у e [m,n — 1] with \Dy\ < 

\/log n is less than en/8, for sufficiently large n. For each у G [m, n — 1] with 

\Dy\ > y/togn the probability that у does not select an element in A is less than 

(1 _ £ / 2 ) V ^ < < £ ß for sufficientiy iarge n . So, in total the expected 

number of elements in [m, n — 1] not selecting an element in A is less than en/4, for 

sufficiently large n. • 

We also require a result of Chernoff, which bounds large deviations of a binomial 

random variable from its mean. For further details see, for example, [2, Appendix А]. 

Theorem 3.24 (Chernoff). If X ~ B(N, тг) and a> 0, then P(X < (1 - а)тгДГ) < 
e-a?nN/2_ • 

Using Lemmas 3.22 and 3.23 and Theorem 3.24, we now prove Theorem 3.5, 

which states that a continuum limit of a sequence (Vn)^=1 of classical sequential 

growth models is an almost-semiorder. 

Proof of Theorem 3.5. Suppose P^ is the continuum limit of (Pn)5£=i- Recall 

that Я and L are the four-element partial orders in Figure 3.1. We will show that 

both EА(Я; Pn) —• 0 and EA(L; Pn) —• 0 as n —• oo, where P„ is a random partial 

order taken from Pn , which implies that both А(Я; Poo) = 0 and A(L; P^) = 0. 

Claim 3.1. EA(#; Pn) -»• 0 as n -> oo. 

Proof of Claim 3.1. Call a quadruple X — ( ж ъ ^ ж з , ^ ) € [n — 1](4) an H -

quadruple if the partial order on X induced by the order on Pn is equal to the partial 

order H. Fix e > 0. We will show that, for sufficiently large n, the expected number 

of Я-quadruples is less than 5en4. This implies that EA(#; P„) < 6e for sufficiently 

large n. 

The number of Я-quadruples including an element below en is certainly at most 

2en4, so we may restrict attention to quadruples all of whose entries are in [en, n— 1]. 

We now fix any pair of elements (21,2:2) fr°m [£ n>n ~ 1] > and estimate the 



expected number of Я-quadruples with these elements as the first two entries, which 

is exactly 

E(№i]\tf[®2]|x \и[х2]\и[х1]\). 

This is certainly at most n times the expectation of the minimum of these two 

sizes. We claim that, for any choice of (xi,x2), the expected value of min{|{7[xi] \ 

£/[э?2] I, IU[x2] \ 17[a;i] I} is at most 3en; this will suffice to prove the claim. 

Recall the threshold yo = yo(t,e,n), as defined in Lemma 3.22, with: 

(i) if у < Уо, then P(x is a y-bad element) < e for all x G [en, n — 1], 

(ii) if yo < у < n — 1, then P(rr is a y-bad element) > e for some x G [en, n — 1]. 

We consider increasing у until one of the two sets U[x\] П [y] and U[x2] П [y] 

(without loss of generality the first) reaches size en/2. To be precise, define y\ such 

that, for all у < yi, both x\ and x2 are y-good, and for all у > y\, one of them 

(without loss of generality X\) is y-bad. 

One of the following events occurs. 

(a) уi = n — 1, as neither set ever reaches size en/2, 

(b) ух < Уо, 

(c) yo < Ух < п - 1. 

If event (a) occurs, then certainly \U[xi] \ U[x2]\ < en/2 < en. 

The probability of event (b) is at most 2e, by definition of yo and yx. 

We now consider the case where event (c) occurs, and condition on the event 

that yi takes some particular value in the range [yo,n — 2]; note that this event 

depends only on the sets selected by those elements up to and including y\ + 1; in 

what follows we will only consider the sets selected by elements beyond y\ + 1, so 

we can effectively ignore the conditioning. 
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By definition of yu we have №i]f ) [? / i+l]| = [en/2J+1 and \U[x2]C\[yi]\ < en/2. 

We now show that the expected size of U[x2] \ U[xi] is small. 

Since the set U[xi] П [y\ +1] has size greater than en/2, and yi > y0, Lemma 3.23 

implies that the expected number of elements in \yx + en/4, n - 1 ] not selecting an 

element from U[xi] П [yx + 1] is less than en/4, for sufficiently large n. So the 

expected number of elements in [yi + en/4, n - 1 ] not above хг is less than en/4, for 

sufficiently large n. 

So, conditioned on this value of yx, the expected size of U[x2] \ U[xi] is at most 

№ 2 ] П [yi]| + |foi + 1,2/1 + en/4]I + E\[yi + en/4,n - 1] \ U[Xl]\ 

< en/2 -I- en/4 + en/4 = en, 

for sufficiently large n. 

Considering all the possible cases (a)-(c), we now have that the expected value 

of min{|{7[xi] \ C[x2]|, \U[x2] \ U[xi]|} is at most en + nP((b) occurs) < 3en, for 

sufficiently large n. This completes the proof. • 

Claim 3.2. EA(L; Pn) 0 as n ^ 00. 

Proof of Claim 3.2. Call a quadruple X = (х1,х2,хз,х^) G [n - 1](4) an L-

quadruple if the partial order on X induced by the order on Pn is equal to the 

partial order L. Fix e > 0. We will show that, for sufficiently large n, the expected 

number of L-quadruples is less than 6en4. This implies that EA(L;Pn) < 7e for 

sufficiently large n. 

Generate a partial order Pn on [n— 1] according to the classical sequential growth 

process defined by t, and consider any quadruple (xi,x2 ,x3 ,x4) of elements from 

[ n - 1 ] , with en < xi < x2 < x3 (in [n - 1]). Set yi = yi(Pn ,^i) to be the largest 

element such that xx is a yi-good element. One of the following is true. 

(a) 2/1 < yo, 
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(b) x2 < yx + en/4, 

(c) X2 — en/4 < X 4 < X2, 

(d) yi > yo, x2> yx + en/4 and x4 > x2, 

(e) 2/i > Уо, x2 > Ух + en/4 and x4< x2- en/4. 

We show that the expected number of L-quadruples satisfying each of the above 

sets of conditions is at most en4. This gives the expected number of L-quadruples 

to be at most 6en4, including those with X\ < en. The above claim is immediate in 

case (c). For case (a), the condition implies that x\ is t/o-bad, and we know that the 

expected number of yo-bad elements is at most en. The bound for case (b) follows 

immediately from the definition of y\. the condition implies that x2 lies in one of 

the small sets U[xi] П [yi] or [yx + 1 ,уг -f en/4]. 

For case (d), it suffices to prove that, for fixed x\,x2 with x2 > m = max{z/0 + 

en/4, yx + 2}, conditioned on the growth process up to m, the expected number 

of elements ж4 £ [x2,n — 1] with not above x\ is less than en/4. We apply 

Lemma 3.23 to the set U[xx) П [y\ + 1], which is of size [en/2J + 1 by definition of 

yx- Since max(U[xx] П [yx + 1]) = yx + 1, we have that the expectation 

E(number of elements in [m, n - 1 ] not selecting an element of U[x i] П [y\ + 1]) 

is less than or equal to en/4, which implies the desired result. 

Turning finally to case (e), we fix x2 with x2 > yo + en/4, and with £4 < 

x2 — en/4, and condition on the growth process up to £4. It suffices to show that 

E\U[x2}\U[xA}\ < en. 

Since x2 > y0 + en/4, we have E(|£>z|) > <51ogn for all z £[x2— en/4,X2 — 1], 

where <5 = ßlogCl/e))"1 . So, 

F ( , selects x4) = « > ^ , 
г n 



which means that the probability that fewer than e<51ogn/8 of the elements in 

[x2 — en/4, x2 — 1] select £4 is less than 

P(X < eö log n/8) 

where X has the binomial distribution В (en/4,5 log n/n). Using Theorem 3.24 with 

a = 1/2, N = en/4 and 7r = S log n/n gives 

P(X < e<Hogn/8) < e~e6]o*n/32 < e/8 

for sufficiently large n. Let Z = U[x4] П [x2 — en/4, x2 — 1]. With probability at 

least 1 — e/8 we have \Z\ > log n/8. We next show that, if this is the case, 

then, conditioned on the growth process up to x2, with high probability either 

I I < en/2, or U[x^\ П [y] reaches size en/2 before U[x2] П [y] does. 

Recall that a path in a poset P arising from a growth process is a sequence 

a\, a2,. • •, ak of elements such that each element selects the previous one; we say the 

path has start point ax and endpoint ak. For z < x2 <y, define P| to be the set of 

all elements in [y] that are an endpoint of some path with start point equal to г and 

all other elements in the path in [x2 + l ,y\. The starting point for this definition is 

that Pf2 = {z} for each z < x2. 

Note that PJ' С U[z] П [y], with equality ii z — x2. We claim also that the pro-

cesses (Pf \ {z})yl l2 are identically distributed, independent of the growth process 

up to x2, for all z E ZU {x2}. To see this, note that Pf2 \ {z} = 0 for each z < x2, 

and that, for each у > x2, у enters Р / if and only if it selects an element of P f - 1 , 

an event whose probability depends only on 

Now consider all the identically distributed size processes (|Pzl)y=X2, for z G 

Z U {x2}. The probability that |P|2| reaches size en/2 before any of the other 

processes is, by symmetry, at most 1/{\Z\ + 1) < 8/(e5logn) < e/8, for sufficiently 

large n. So, with total probability at least 1 — e/4, we have either (i) |P"2_1| < en/2, 

or (ii) there exists some z G Z and some у >x2 with |Pf| > en/2 and \P%2\ < en/2. 
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If (i) occurs, then \U[x2]\ = |P"2-1| < en/2. We will prove that, if (ii) occurs, 

then, conditioned on the growth process up to y, the expected size of U[x2] \ U[x4] is 

less than Зеп/4. This will imply that the expected size of U[x2] \ U[x4], conditioned 

only on the assumptions in (e), is less than en, as we require. 

Suppose then that (ii) occurs, when we have |?7[x4] П [y]| > \P%\ > en/2 and 

\U[x2]n[y]\ = \P%2\ < en/2. Applying Lemma 3.23 to the set U[x4]n[y] implies that, 

conditioned on the process up to y, the expected number of elements in [y + l,n— 1] 

not above X4 is less than en/4, so the expected size of U[x2] \ U[x^ is indeed less 

than en/2 + en/4 = Ъеп/4. 

This completes the proof. • 

Combining the claims, we have that the continuum limit Poo satisfies A(#; Р » ) = 

0 and A(L; Poo) = 0 so that Рто is an almost-semiorder. • 



Part II 

Maps of rooted trees into 

complete trees 



This part is concerned with counting embeddings of trees into complete trees. 

In [17], Kubicki, Lehel and Morayne proved that for binary trees T\ and T2 with Tx 

a subtree of T2, the proportion of the embeddings of Tx into a complete binary tree 

that map to the root is no more than the proportion of the embeddings of T2 into the 

complete binary tree that map to the root. They conjectured that this inequality 

holds even for Tx, T2 not binary. Here, we show that the conjecture is false and look 

at different generalisations of their result. 

In Chapter 4 we give some background and motivation for this work, and intro-

duce our notation. 

In Chapter 5 we provide an algorithm for calculating the number of embeddings 

of a tree into a complete binary tree and the number that map to the root of the 

complete binary tree. Using this algorithm for a particular pair of trees we provide 

a counterexample to the conjecture of Kubicki, Lehel and Morayne. 

In Chapter 6 we investigate the asymptotic behaviour of the number of embed-

dings as the height of the complete binary tree tends to infinity. Using this behaviour 

we are able to give conditions on when a pair of trees will be a counterexample for 

all large enough complete binary trees. Using this we construct a family of pairs of 

trees which are such "asymptotic counterexamples". 

In Chapter 7 we show that the results in Chapters 5 and 6 can be reformulated 

for embeddings of trees into a complete p-ary tree and we state and prove some of 

these more general results. 

In Chapter 8 we generalise the result of Kubicki, Lehel and Morayne to em-

beddings of binary trees into a complete p-ary (rather than into a complete binary 

tree). Our proof employs the FKG-inequality, a powerful result which gives corre-

lation inequalities for events on distributive lattices. Therefore, we can view the 

Kubicki, Lehel and Morayne result as one of many possible correlation inequalities 

for embeddings of binary trees into complete p-ary trees. In this light we see that 



the case of binary trees is special; we cannot use this distributive lattice method 

when we generalise to embeddings of arbitrary trees. We give an example where a 

correlation inequality for embeddings of binary trees does not hold if we generalise 

to embeddings of arbitrary trees. 

However, we show that we can generalise to arbitrary trees, if we instead look at 

order-preserving maps from trees to complete trees. In other words, the conjectured 

inequality is true, if we count order-preserving maps rather than embeddings. In 

this case, we are able to apply the FKG-inequality to get correlation inequalities 

for order-preserving maps of arbitrary trees into complete trees. This is true for 

both strict and weak order-preserving maps. (Formal definitions can be found in 

Chapter 8, but the main difference between strict and weak order-preserving maps 

is that a strict order-preserving map cannot map two comparable elements to the 

same element, whereas a weak order-preserving map can.) We finish the chapter 

with some related open problems. 

In Chapter 9 we look at some lemmas for product lattices, which give alternative 

sufficient conditions for applying the FKG-inequality. We show that some of the 

conditions can be weakened if we have other extra conditions holding. 



Chapter 4 

Preliminaries 

4.1 Basic definitions 

A tree poset is a partial order with a maximum element, called the root, such that 

every element that is not the root has exactly one upper cover. The minimal elements 

of the partial order are called the leaves. The Hasse diagram of a tree poset is a tree 

in the graph-theoretic sense; here we use the word tree as a synonym for tree poset. 

For p > 2, a p-ary tree is a tree where every element has at most p lower covers. 

We will use binary and ternary as synonyms for 2-ary and 3-ary, respectively. A 

complete p-ary tree is a p-ary tree such that all maximal chains are of equal length 

and every element that is not a leaf has exactly p lower covers. The height of a 

complete p-ary tree fully determines the partial order, for example the complete 

p-ary tree of height n, denoted by T™, has (pn - l ) / (p - 1 ) elements and p n - 1 leaves. 

For T a tree, we write IT for the root of T, and write l n for the root of Г™. An 

embedding ф of a tree T into the complete tree T™ is a map from T to such that 

ф(х) > ф(у) in Tp if and only if x > у in T. Define A^ (n) to be the number of 

embeddings ф of T into with ф(1т) = ф( l n ) and define c!f\n) to be the total 

number of embeddings of T into T". 



4.2 Background 

This work is motivated by results from previous papers by Kubicki, Lehel and 

Morayne. In [22], Morayne looked at a partial order analogue to the secretary 

problem. For a detailed history and discussion of the secretary problem see [13]. As 

explained there, the classical secretary problem is to find the optimal strategy given 

the following set-up. 

1. There is one secretarial position available. 

2. The number N of applicants is known. 

3. The applicants are interviewed sequentially in random order, each order being 

equally likely. 

4. It is assumed there is a ranking of the applicants from best to worst without ties. 

The decision to accept or reject an applicant must be based only on the relative 

ranks of those applicants interviewed so far. 

5. An applicant once rejected cannot later be recalled. 

6. Your payoff is 1 if you choose the best of the N applicants and 0 otherwise. 

It turns out that the optimal strategy is to reject the first M = M(N) applicants 

and then accept the next applicant who is the best out of those already interviewed. 

There is an explicit expression for M in terms of N, and M/N —> 1/e as N —>• oo. 

Furthermore, the probability of success by following this strategy tends to 1/e as 

N —• oo. See, for example, [15] for both exact and asymptotic results. 

The above conditions can all be modified to give different variants of the problem, 

for example where the interviewer has к offers in which to get the best secretary, 

or where it is possible to recall a rejected candidate (with some cost). Morayne 

considers the situation where condition 4 is modified so that the applicants are 



ordered as a complete binary tree, and at each stage the interviewer knows the partial 

order formed by the applicants interviewed so far. There is still a best applicant 

and the problem is to find the optimal strategy that maximises the probability of 

choosing the best applicant. The number of applicants N is equal to 2n — 1 for some 

n, the height of the complete binary tree 

In [22], Morayne proves that the following strategy is optimal. If the partial order 

of the interviewed candidates is not a chain, and the current applicant is best-so-far 

then we accept him. If the partial order is a chain, then we only accept a best-so-far 

applicant if the height of the chain is greater than n/2, half the height of T2n. In 

other words, the strategy is to take the first applicant that is best-so-far, with the 

caveat that if the first к applicants are totally ordered (for к < n/2), then we should 

not take the best-so-far. This caveat for the chain case is necessary, as can be seen 

in the following example. Suppose that n is large so that the number of applicants 

N = 2n — 1 is large in comparison to n, and suppose that after three interviews the 

partial order of the applicants is a chain, with the third applicant the best-so-far. 

It is highly unlikely that the third applicant is the best; this probability is of the 

order n _ 1 and tends to 0 as n tends to infinity. In contrast, if after three interviews 

we have that the third applicant is best-so-far, and the first two are incomparable, 

then the probability that the third applicant is the best is greater than 1/2, for 

any n> 2. 

In this set-up, where the applicants are ordered as a complete binary tree, let us 

look at the probability that the current applicant is the best applicant. As is the 

case for the classical secretary problem, if the current applicant is not the best-so-

far then they cannot be the best applicant. So, consider the case when the current 

applicant is the best-so-far. Therefore, the partial order seen by the interviewer is 

a tree with the maximum element of the tree being the current applicant. Denote 

this tree by T. The fact that the interviewer knows the ordering of the interviewed 

applicants after each interview means we can consider T to be a labelled tree. Sup-



pose we have interviewed к applicants, so that T is a fc-element tree labelled with 

the numbers 1 to k, and the root is labelled with k. To calculate the probability 

that the current applicant is the best, given the tree T, we need to count the number 

of orderings of the elements of Tg so that the first к form an isomorphic copy of T, 

and count the proportion of those that have the fc-th element as the root of T2n. Put 

another way, we count the number of labellings of (with the numbers 1 . . . , N) 

for which the elements labelled 1 , . . . , к form an isomorphic copy of T, and count 

the proportion of those which have the root of T2n labelled k. But this is exactly the 

proportion of embeddings of T into T2n that map the root of T to the root of T2n. 

Therefore, the probability that the current applicant is the best applicant, given 

that the interviewed applicants form the tree T, is the ratio 

Morayne shows that this probability is greater than 1/2 when either T is not a 

chain, or T is a chain with к > n/2. This means that any strategy which dictates 

that we should continue interviewing applicants, given such a T, is a worse strategy. 

Morayne also shows that to stop interviewing if Г is a chain with к < n/2 is not an 

optimal strategy, which essentially shows the strategy given above is optimal. 

Important to Morayne's proof is the fact that, for T a chain, A^\n)/C^\n) is 

increasing in the height of the chain. This leads naturally to the question: Is the 

ratio аР(П)/сР(П) "increasing in T" , for other trees Г? In other words, if Tu T2 

are trees with 7\ a subtree of T2 does the inequality 

hold? The intuition is that for the larger tree, we have more information about the 

current applicant—he is better than more applicants—so the probability that he is 

the best applicant should be greater. As mentioned above, in [22] Morayne proves 

the inequality when Ti,T2 are chains. In [17], Kubicki, Lehel and Morayne prove 

the inequality for binary trees Ti,T2, as below. 

Theorem 4.1 (Kubicki, Lehel and Morayne). For any n and any binary trees Ti, T2 

4]Лп) ^ A%(n) 
(4.1) 



with Ti a subposet of T2 we have 

4 V ) < 

They prove the result using lemmas which can be stated as follows. 

Lemma 4.2. For any binary tree T, and any x in T, we write С^\щх —> к) for 

the number of embeddings ofT into T2 that map x to an element in level к ofTg, 

and write 

Ат^ {ть\ cc —• к) for the number of those embeddings that also map the root 

ofT to the root ofT£. We have 

АР(щх^к) < x —> fc + 1) 
С(т\щ x -> к) ~ 42)(n; x ib + 1)' 

Lemma 4.3. For any binary tree T, in both cases 

(a) x a leaf ofT, 

(b) x the only lower cover of an element in T, 

we have 

where S = T\{x}. 

Both lemmas are proved by "brute force"; Kubicki, Lehel and Morayne calculate 

expressions for each term in the inequalities (4.2) and (4.3) in terms of sums of 

products of similar expressions for smaller trees, and then apply induction to get the 

result. They combine the two lemmas and results about log-concavity of sequences 

to prove Theorem 4.1. 

Informally, Lemma 4.2 states that, for any element x in T, if an embedding maps 

£ to a higher level (nearer to the root) of T2 then it is more likely that the embedding 

also maps the root of T to a higher level, e.g., to the root. Lemma 4.3 states that, 

in both of the two cases stated, there are proportionally more embeddings of the 

42 )(fc) < 4 2 ) ( f c + 1 ) 
Af(k)~ Af(k+iy 



larger tree T than of S = T \ {ж} when the root is mapped to a higher level of 

T£. Both the lemmas give the impression of being correlation inequalities (on some 

unspecified probability space). Indeed, we show in chapter 8 that the lemmas are 

examples of correlation inequalities on certain lattices. In this way we can generalise 

Theorem 4.1 to embeddings, and other mappings, into more general complete trees. 

We essentially follow the proof method of Kubicki, Lehel and Morayne in [17], but 

using the power of the FKG-inequality we can simplify (and therefore more easily 

generalise) Lemmas 4.2 and 4.3. 

In [17], Kubicki, Lehel and Morayne conjectured that the inequality (4.1) also 

holds for arbitrary trees, as follows. 

Conjecture 4.4 (Kubicki, Lehel and Morayne). For any n and any trees T\, T2 

with T\ a subtree of T2 we have 

4 ? и ~ 

In [19], Kubicki, Lehel and Morayne show that Conjecture 4.4 is true for stars 

rooted at their centre. Intuitively the conjecture seems highly plausible, especially 

given the interpretation of the inequality in terms of the secretary problem. Surpris-

ingly then, the conjecture is in fact false. Indeed, we will show that the conjecture 

is false even when we restrict 7\, T2 to being ternary. As mentioned in the introduc-

tion, we study the asymptotics of AO? (n) / C ^ (n) which helps direct our search for 

counterexamples to Conjecture 4.4 for arbitrarily large n. 

We begin with some recurrence relations for A^ (n) and C^\n). For ease of 

notation we write Tn for the complete binary tree T2n and write Ат(п),Ст(п) for 

the numbers C^\n). 



Chapter 5 

The expressions A^{n) and C^(n) 

5.1 Recurrence relations for Ат(п) and Ст(п) 

We can use the regular structure of Tn to find recurrence relations for Ат(п) and 

CT(n). Let ti,t2 be the 2 lower covers of ln in Tn. Write (Tn)i for the set of all 

elements that are lower than or equal to t\ in Tn, and similarly for (T")2. So, (Tn)i 

and (Tn)2 are both copies of Tn~l. For any embedding of a tree T into Tn the root 

1 j" of T is either mapped to 1„, or mapped into (Tn)i or (Tn)2. Counting these 

embeddings of T into Tn gives 

CT(n) - 2CT(n - 1) = AT(n). (5.1) 

So, once we have calculated Ат(п) we can solve a simple linear recurrence to find 

CV(n). 

We now show that Ат{п) also satisfies a linear recurrence relation. For any 

x e T we write D[x] for the set of all elements in T that are lower than or equal 

to x in T. Let T be a tree and suppose the root 1 т has r lower covers xi,... ,xr. 

For any subset L С [r] write TL for the tree formed by removing the subtrees D[xj] 

for all j e Lc. (Here, Lc = [r] \ L.) Notice that T{j} \ { 1 T } = D[xj], T[r] = T and 

П = { I T } . 



We will count the embeddings of T into Tn by considering the possible places 

to map the elements x±,... ,xr. In particular we are interested in the partition 

of {rci , . . . , жг} defined by which of the two subtrees (Tn)i, (Tn)2 an element Xi is 

mapped to. 

Write (n) for the number of embeddings of Ti into Tn that map the root It 

of TL to l n and map Xj into (Tn)i, for each j G L. By the symmetry of Tn this is 

the same as the number of embeddings of TL into Tn that map IT to 1„ and map 

Xj into (Tn)2, for each j € L. 

For a fixed set L С [r] we can count the number of embeddings ф of T into Tn 

with ф(хг) in (Tn)i for all г G L. and ф(х,) in (Tn)2 for all г G Lc. Since the two trees 

(Tn)i and (Tn)2 are below incomparable elements t\ and t2, we have that the number 

of such embeddings that also map 1 т to l n is exactly the product A^L(n)A^LC(n). 

For L = 0, we have Tg = {1T } and ATl (n) is equal to 1. For L a singleton, 

(n) is the number of embeddings of TL \ {IT} = D[xj] into (Tn)I, which itself 

is a copy of Tn~\ So A?l(n) = CD[xj](n - 1). Finally, for \L\ > 2, A^L{n) is the 

number of embeddings that map 1 т to ln and map xj to an element of (Tn)i for all 

j G L. Since |L| > 2 any such embedding ф cannot map any of the Xj to t\. So, for 

each embedding ф we can construct a new embedding ф of TL into Tn by defining 

ф(1т) = ti and ф(х) = ф(х) for all x G TL \ {IT}- NOW, ф is an embedding into 

(Tn)i which maps 1T to tu the root of (T n ) b Since (Tn)i is a copy of Tn~l the 

number of these embeddings ф is Ать(п — 1). Since each ф corresponds uniquely to 

а ф, and vice-versa, we must have A?L(N) = ATl(TI — 1). To summarise, 

So, 

(5.2) 
LC[r] 

1 L = 0 

1) L = { j } (5.3) 

АТь(п — 1) otherwise. 



It will also be useful to have another expression for (n) when L = { j } . We 

have that A?L (n) is the number of embeddings of TL into T™ that map 1T to l n 

and map Xj to an element in (Tn)i. By symmetry of Tn it is also the number of 

embeddings of TL into Tn that map 1T to l n and map Xj to an element in (Tn)2. 

Since, every embedding of TL into Tn that maps 1T to ln must map Xj to an element 

in either (Tn)i or (Tn)2 we have 2Л^(п) = АТь(п) or 

A-TL(U) = ^ M (5.4) 

for L = { j } . 

We can use equations (5.1)-(5.4) to find AT(n) and Ст(п) inductively. For T a 

tree, the number of leaves of T is denoted by l(T). 

Theorem 5.1. For any tree T, the number of embeddings of T into Tn is of the 

form 
ЦТ) 

j=о 

where each gj is a polynomial. 

For T the 1 -element tree, the number of these embeddings that map the root of 

T to 1„, Ат(п), is equal to 1. Otherwise, for T with |T| > 1, the number is of the 

form 
ЦТ) 

Ar(n) = $ > ( n ) 2 * 
j=o 

where each qj is a polynomial. 

The following lemma on recurrence relations will be useful. 

Lemma 5.2. Suppose I is some fixed positive integer. Then the solution to the 

equation 
i 

yn - 2YN_I = £ / » 2 * \ y\ = 0 , (5.5) 
3=0 

where each fj is a polynomial, is 
i 

Уп = 
j= о 



where each gj is a polynomial. Furthermore, for j ф 1, the polynomial gj is the 

unique polynomial satisfying the identity 

9j(n) - 2l-igj{n - 1) = fj{n), 

and gi satisfies the identity 

gi(n) -gi(n- 1) = / i (n), 

where the constant term of gx is given by 
i 

j=o 

Proof . By linearity, it is enough to find the complementary solution, and the 

particular solutions to yn—2yn_i = fj(n)2jn for each j. The complementary solution 

is the solution to yn — 2yn-\ = 0, which is just yn = K2n, for some constant K. For 

a fixed j, a particular solution to yn — 2yn_i = fj(n)2jn is of the form yn = hj(n)2jn, 

for some polynomial hj, by an elementary result on recurrence relations. For j Ф 1, 

the polynomial hj has the same degree as fj, and hi has degree one larger than 

Д. (Also, assume h\ has no constant term; this is covered by the complementary 

solution.) The general solution is yn = Y^lj=o9j(n)2jn, where gj(n) = hj(n) for all 

j ф 1 and g\(n) = hi(n) + K. So, the solution to (5.5) will be of the required form. 

Moreover, if yn = hj(n)2jn is the particular solution to yn — 2yn_i = fj(n)2jn, 

then we have hj(n) - 21~jhj(n — 1) = fj(n). So, for all j, the polynomial gj satisfies 

gj(n)-21-igj(n-l) = fj(n). 

For j ф 1, since gj and f j are polynomials of the same degree, this equation uniquely 

determines gj. Since the equation hx(n) — hi(n — 1) = / i (n) uniquely determines 

hi (as we assumed that hi has no constant term), the polynomial gx is determined 

except for the constant term K. We fix К with the initial condition of (5.5), y\ = 0. 

This gives the equation 
i 

E^d)2̂ 0 
j=0 



as claimed. О 

Proof of Theorem 5.1. We include the case of T being a 1-element set for 

completeness. In this case, we see immediately that there are 2" - 1 embeddings of 

T into Tn, which is exactly the number of elements in Tn. Also, only one of these 

embeddings maps the root of T to ln . So, AT(n) = 1 as claimed, and CT(n) = 2n - 1 

is of the required form. 

For |T| > 2, we simultaneously prove that AT(n) and CT(n) are of the required 

form by induction on the size of T. We shall make use of Lemma 5.2 to solve recur-

rence relations for AT(n) and CT{n). We use induction to show that the recurrence 

is of the form of equation (5.5), and since we will only be considering trees with 

\T\ > 2 we have the initial conditions AT( 1) = 0, CT( 1) = 0 as in (5.5). 

For \T\ = 2 the only tree is the 2-element chain, which has one leaf. Label the 

root 1 г and the leaf x\. Since I t has only one lower cover, r = 1 in equation (5.2) 

and the subtrees of interest are Т{ц = T and Тщ = {1т}- Using equations (5.2) and 

(5.3) we have 

AT(n) = Ат9(п)Ат{1]{п) + Ar{i}(n)A^(n) = 2C{xi}(n - 1) 

But we have shown earlier that C{Xl}(n) ~ 2n - 1. Therefore AT(n) = 2n -2 which 

is of the required form (where l(T) = 1, qo(n) = —2 and qi(n) = 1). 

In fact, we can see immediately that Ат(п) = 2n — 2, since this is exactly the 

number of places to embed in Tn (anywhere except at l n , where x is embedded). 

Using (5.1) and Lemma 5.2 we have that Ст(п) = (n — 2)2" + 2 which is of the 

required form (#i(n) = n — 2 and go(n) = 2). 

Suppose the result is true for all T with |T| < к and let T be any tree with 

|T| = k. There are two cases to consider, depending on whether the root of T has 

exactly one lower cover. If the root has exactly one lower cover, xi, equation (5.2) 



reduces, in a similar way to the base case, to 

AT(n) = 2C
D
[xi\{n - 1). 

Applying the inductive hypothesis to D[xi], a tree with l(D[xi}) = l(T) leaves, we 

have that 
ЦТ) 

CD[xi](n) = X>(n)2* 
i=о 

where gj axe polynomials. Therefore, 

ЦТ) ЦТ) 

Ат(п) = 2 j > ( n - 1)2^ = 
j=0 j=0 

where qj are polynomials. 

If the root of T has г > 1 lower covers x\,. . . ,xr then we can write equation 

(5.2) as 

Ат{п) = А^(п)А^[г]{п) + Ат[г]{п)А^(п)+ ^ АТь(п)А^Лп) 
LC[r] 

ЬФПА 

which can be rearranged to 

AT(n) - 2AT(n - 1) = Y , ATL(n)A^LC(n). (5.6) 
LC[r] 

ЬФЧЛ 

We use equations (5.3) and (5.4) in order to apply the inductive hypothesis. Terms 

in the sum where L is not a singleton or complement of a singleton are of the form 

Ать{п — \)Атьс(п — 1). Terms where L is a singleton but L° is not, are of the form 

Ать(п)Атьс(п — 1)/2; terms where L is not a singleton but Lc is, are of the form 

ATb(n — l)ATLc(n)/2 and terms where both L and Lc are singletons (this will only 

be for r = 2) are of the form ATL(n)ATLc{n)f4. 

By our inductive hypothesis we have Ать{п) = Qj(n)2jn for polynomials qj. 

This means that the right hand side of equation (5.6) is of the form о hj(n)2 jn 

for polynomials hj. That is, Лг(п) satisfies a recurrence relation and applying 

Lemma 5.2 gives the result for Ат{п). Finally, we use (5.1) and Lemma 5.2 which 

gives the result for Ст(п). • 



5 . 2 . COUNTEREXAMPLES TO A CONJECTURE OF KUBICKI, LEHEL AND 106 
MORAYNE 

5.2 Counterexamples to a conjecture of Kubicki, 

Lehel and Morayne 

Note that the proof of Theorem 5.1 actually shows how to find the polynomials qj 

and gj in the expressions for Ат(п) and Cr(n). However, for a particular tree T, 

in order to calculate Ат{п) and Ст(п) we need to calculate Ать(п) for all subtrees 

TL. For small trees the calculations are still relatively simple. We use the algorithm 

given in the proof of Theorem 5.1 to find explicit expressions for the two trees Ti, T2 

in Figure 5.1. 

Figure 5.1: Counterexample to Conjecture 4.4 

To find these expressions we need to also calculate As and Cs for subtrees S of 

Ti and T2. Define the subtrees Si = " , S2 = J, S3 = , S4 = /\ , Ss = J^ • 

In order to find Атг we need to calculate As1 ,Ag2 ,As3 ,As i , and to find Agj we need 

to calculate CS2. For AT2 we also need to calculate Asb and to find this we need to 

calculate Cs4. Table 5.1 lists the expressions As(n),Cs(n) needed. 

Solving the recurrence relations for and T2, using the expressions in Table 5.1, 

gives 

ATl (n) = (n - 14/3)8n + ( - 3 n2 + 24n - 34)4" + (n3/3 - 8 n2 + 65n/3 + 44/3)2n + 24 

AT2(n) = (2n/3 - 20/9)8n + ( - n 3 + 8n2 - 30n + 58)4n 

+ (—2n3/3 + 2n2 - 40n/3 - 430/9)2n - 8 



s As(n) C*(n) 

I 2 " - 2 (ra - 2)2n + 2 

(n - 3)2" + 4 (n2/2 - 5n/2 + 4)2" - 4 

A 4n + ( - 2 n + l)2n - 2 2.4" + ( - n 2 - 4)2" + 2 

С (n - 4)4" + (—n2/2 + 9n/2)2" + 4 Not needed 

A 4" + ( - n 2 + 2 n - 5)2n + 4 Not needed 

Table 5.1: As(n),Cs(n) for small trees S 

and, using (5.1), we have 

CTl(n) = (4n/3 - 20/3)8" + ( -6n 2 + 60n - 134)4" 

+ (n4/12 - 5n3/2 + 83n2/12 + 145n/6 + 494/3)2" - 24 

Ct2(n) = (8n/9 - 88/27)8" + ( -2n 3 + 22n2 - HOn + 250)4" 

+ ( - n 4 / 6 + n3 /3 - 35n2/6 - 487n/9 - 6878/27)2" + 8 

So, AT l(4)/CT l(4) = 99/101 > 67/69 = Ar2(4)/CV2(4), a counterexample to the 

conjecture of Kubicki, Lehel and Morayne. We also have 

ATl{5) _ 2635 1783 = АГг(5) 
Стх (5) ~ 2837 > 1921 ~ CT2(5) 

but 
ATl(6) _ 44147 31055 __ ATz(6) 
CTl(6) ~ 49821 < 34897 ~ CT2(6)' 

So, for n = 4,5, these trees give a counterexample, but not for n = 6. In fact, 

for n = 6 , . . . ,11 the conjectured inequality holds, but for larger n it does not. 

Asymptotically, we have 

M ( n ) _ ( n - 1 4 / 3 ) 8 " + Q(n24") 3 1 , 5 2 2 

CTl(n) ~ (4n/3 - 20/3)8" + 0(n24") 4 ^ 4 ^ 4 ^ V ' 



and 

АтЛп) = (2n/3 — 20/9)8" + Q(n34n) _ 3 1 , 11 2 2 

CT2{n) (8n/9 — 88/27)8" + 0(n34n ) 4 + 4 + 12 + { h 

so ATi/CTX is asymptotically larger than AT2/CR2-

This asymptotic difference is very subtle. Here, the ratios ATJCT1} AT2/CT2 

differ only in the n~2 terms and terms of lower order. We will show, in Section 6.3, 

that for any 7\ С T2 which have ATL /СТ^ asymptotically larger than АТ2/С?2 the 

ratios differ only in the n~2 terms and terms of lower order. 

For small values of n there are two competing factors which determine whether 

the conjectured inequality holds. Since AT and CT are related by (5.1), we have 

Ат(п)/Ст(п) — 1 — 2Ст(п — 1 )/Ст(п). So, the conjectured inequality is equivalent 

to 
Стг(п — 1) < Ст2{п) 
C T l ( n - 1) - CTl{ny 

We can think of the ratio Стг(п)/C^in) as the expected number of embeddings of 

T2 into Tn that are an extension of a randomly chosen embedding of T\ into Tn. 

So, for n = 3, each embedding of T\ into T3 can only be extended one way (there 

is only one place in T 3 to which we can map the extra element of T2), therefore 

Cr2(3)/Cr2(3) = 1. For larger values of n, some embeddings of Ti into T n have no 

extensions to an embedding of T2 into Tn , others will have many extensions to an 

embedding of T2 into Tn. In this example, as n increases there will tend to be a 

larger fraction of embeddings of Ti into Tn with no extension to an embedding of 

T2 into Tn . However, those embeddings of Ti into Tn that do have extensions to 

embeddings of T2 into Tn will tend to have more of them, as n increases. These 

two competing effects determine whether the ratio Ст2{п)/СуДгг) will increase or 

decrease for an increase in n. In this example the two effects are quite equally 

balanced, making it difficult to see intuitively why the inequality holds for some 

values of n and fails for others. 

The following example better illustrates the failure of the conjectured inequality, 



To 

Figure 5.2: Counterexample to Conjecture 4.4 

as in this example one effect dominates the other. Let Ti and T2 be as shown in 

Figure 5.2, where к is some fixed integer. As we have explained, the conjecture 

claims that Ст2(п)/Стг(n) is increasing in n. However, we show that for these trees, 

the ratio is considerably larger for small n than it is for large ra, since for small 

n there is a higher proportion of embeddings of Ti that can be extended to an 

embedding of T2. 

For any n with n > к + 1, an embedding of T2 into Tn must map all the leaves 

Xi,..., x2k-i into the same half of Tn , and it must map all the leaves x2k-1+1,..., x2k 

into the same half of Tn. This is a restriction imposed by the elements yx and y2. 

Embeddings of Ti into Tn do not have this restriction, and any embedding of Ti 

into Tn , which does not partition the leaves in the same way cannot be extended to 

an embedding of T2. 

Now, for n = к +1, the tree Tk+l has 2k leaves, so all embeddings of Ti into Tk+1 

map the leaves of Ti to the leaves of Tk+1. Therefore, we know that half the leaves 

of Ti are mapped into one half of Tk+1 and the other half into the other half of Tk+1. 

So whether the embedding extends to an embedding of T2 depends only on which 

particular set of 2k~l leaves are mapped into one of the halves of Tk+1. Since there 

are (2fc_i) subsets of size and two of these yield an extendible embedding (when 

we choose {xi,... ,x2k-i} or {x2k-i+i,... ,x2k}), each with one possible extension, 

the ratio Ст2(к + l)/CTl(A; + 1) is equal to 2 / ( 2 t i ) . 



For n » к + 1, most mappings from 7i into Tn are embeddings, but only 

those which partition the leaves as described above can be extended. Moreover, 

most of the embeddings that can be extended map the leaves хг,..., x2k-i into one 

half of Tn, and the leaves x2k-1+1,... ,x2k into the other half of Tn (rather than 

the same half) and most of these extendible embeddings have only one possible 

extension. So of the total number of embeddings of 7\ into T" the fraction that are 

extendible is roughly 2~2k and most extendible embeddings have just one possible 

extension. Therefore, Ст2 (n)/Стг (n) is roughly l /22\ which is considerably smaller 

than CT2(fc + 1 )/CTl(k + 1) = 2/(211). 



Chapter 6 

Asymptotic behaviour of А^{п) 

and Ст(п) 

In this chapter we study the asymptotic behaviour of AT{n) and Ст(п) in order to 

provide counterexamples to Conjecture 4.4, for arbitrarily large n. This tells us that 

we cannot hope for a version of the conjecture that holds "for sufficiently large n". 

The calculations are similar in style to those in the previous chapter, but here we 

need to be more exact, as we will need to calculate the leading terms of Ar(n) and 

Ст(п). Also, using these expressions, we are able to describe a "typical" embedding 

of T into T " (for large n). 

6.1 Leading terms of Ат(п) 

We have shown that Ат{п) = S j = o 9j( r i)2 jn , where each qj is a polynomial. We 

wish to examine the asymptotic behaviour of Ат(п) and so we need to calculate 

the leading terms of the dominant polynomial qi(n). Throughout this chapter we 

use the symbol ~ to mean "asymptotically equivalent to"; we write f(n) ~ g(n) 

if f(n)/g(n) tends to 1 as n tends to infinity. We shall make use of the following 

lemma which gives the solutions to some particular recurrence relations. 



Lemma 6.1. The recurrence relation 

3=0 

where each fj is a polynomial, and the leading term of fi(n) is and, has solution 

a 
d+ 1 

nd+12n if 1 = 1 

Уп ~ (6.1) 

2i-i _ i a n d 2 l n l f l - 2" 

Furthermore, if d > 0 and the leading two terms of fi(n) are and + ßnd l, then the 

solution is 

if 1 = 1 

Уп ~ (6.2) 

Proof . We have, for example from Lemma 5.2, that the solution to the recurrence 

relation is 
i 

Vn = 
3=0 

where each gj is a polynomial satisfying 

ö j ( n ) - 2 1 - ^ ( n - l ) = / j (n) . (6.3) 

The dominant terms of the solution come from the polynomial gt. It is a simple 

exercise to check, using (6.3), that if the leading term of fi(n) is and, then the 

leading term of gi(n) is given by (6.1), and, for d > 0, if the leading two terms of 

fi(n) are and + ßnd~l, then the leading two terms of gi(n) are given by (6.2). • 

Theorem 6.2. The leading polynomial q^T)(n) in the expression 

1{T) 

7=0 



has degree d(T), where d(T) = | {x eT : x not the root or a leaf, D[x] is a chain} \. 

The coefficient OLT of nd^ satisfies the following equations. 

IfT is the 2-element chain, then ат — 1- Otherwise, if the root ofT has r lower 

covers, then 
/ 

®D[x i] 

OiT — < 

d(T) 

aD\xj) 
2«r)-i _ i 

ат{1}ат{2} 2^-2 
2*(Г)-1 - 1 

T a chain, r = 1 

T not a chain, r = 1 

r = 2 

(6.4) 

Erj=i^T{j}aT{j}c21^ 1 + Z2<\L\<r-2aTL(XTLc2 1 
R > 3 2»(T)-i _ i 

Moreover, if d(T) > 0 the coefficient ßx of nd^~x satisfies the following equa-

tions. 

If T is the 3-element chain, then ßr = —3. Otherwise, if the root of T has r 

lower covers, then 

ßp[Xl] d{T)aT 

d(T) - 1 2 

ßDM ~ d(T) OTW-1 

2«(r)-i _ 1 

ßT = (<XT{1}ßr{2} + <XT{2}ßT{1})2г(г)'2 - d{T)gT 
2m-1 _ i 

T a chain, г = 1 

T not a chain, г = 1 

r = 2 

-1 
s;=i(erwflrw- + OTwßгш - d(TUy)aT{j}aT{j}c)21^ 

2'(r)-i _ i 

E2<|Li<r-2(a7iALc + <XTLCßrL ~ d(T)ocTL(*TLc )2-1 - rf(r)gT 
+ да-1 - 1 

R > 3 

(6.5) 

where ßs = 0 for any subtree S CT with d(S) = 0. 

Proof . We proceed by induction on |T|. We first show that the degree of qi(r) is 



d(T) and that aT is as claimed. For |T| = 2 we have already shown that T is the 

2-element chain and AT(n) = 2 " -2 . For this tree d(T) = 0, l(T) = 1, so g ; (T)(n) = 1 

a polynomial of degree 0, with leading coefficient equal to 1. That is, ат = 1 as 

claimed. 

Suppose the result is true for all T with \T\ < к and let T be any tree with 

|T| = k. As in the proof of Theorem 5.1, there are different cases to consider, 

depending on whether the root of T has exactly one lower cover. If the root has 

exactly one lower cover, we have equation AT(n) = 2Со\Х1](п — 1). But by 

Theorem 5.1, and our inductive hypothesis, we know that 

AD[xi](n) ~ aDlxi]n«DMWDM*. 

If T is a chain, then l(T) = l(D[xi}) = 1 and d(T) = d(D[xi])+l since the element X\ 

contributes to d(T) but not d(D[xi]). So, Со[Х1}(п) satisfies the recurrence relation 

(5.1), which is of the form in Lemma 6.1 with a = ап\Х1}, d = d(D[xi]) and I = 

l(D[Xl]) = 1. So, by (6.1), 

Cn, ,(n) ~ a D [ x i ] n<№i])+i2n = aD[xi]nd(T)2n 

So 

AT(n) = 2CD [ x i ] (n - 1) ~ - = ^ ( n - 1 ) ^ 2 » . 

Therefore q^r) is of degree d(T) and aT = ao[xl]/d(T), as claimed. If T is not a 

chain, then l(T) = l(D[xi]) > 1 and d(T) = d(D[xi]) since the element x\ does 

not contribute to either d(T) or d(D[x1}). As above, Сх>[Х1] (n) satisfies a recurrence 

relation of the form in Lemma 6.1 with a = ав[хг\, d = d(T) and I = l(T) > 1. So, 

by (6.1), 
Ol(T)~\ 

So 
o«(T)-i 

AT(n) = 2CD[xi](n - 1) - 2-mzr-JaD[xi](n - l)^)2m(n-i) 



Therefore QI(T) is of degree d(T) and АТ = CXD[Xi]/(2^-1 — 1), as claimed. 

If the root of T has two lower covers xXjx2 then equations (5.6) and (5.4) give 

AT(n) - 2AT(n - 1) = ЛТ{1} 0п)АТ{Л (n)/2. So, 

AT(n) - 2AT(n - 1) ~ aT{1}n^1> )2^1> )naT{2}nd(T^>)2 ; (T^>>72 

= aT{1}aT{2}nW 2«T)n/2 

since d(T{i}) + d(T{2}) = d(T) and l(T{1}) + l(T{2}) = l(T). So, AT(n) satisfies a 

recurrence relation of the form in Lemma 6.1 with a = ат{1}сит{2}/2, d = d(T), 

I = l(T) > 1. So, by (6.1), 

Мп) ~ 

so qi(r) has degree d(T) and ат is as claimed. 

Finally, if the root of T has r > 3 lower covers x\,..., xr we can write (5.6) as 

r 1 
AT{n) - 2AT(n - 1) = 2^2-AT{J}(n)AT{j}e(n - 1) 

j=l 

+ Y ATL{n-\)ATLC{n-l). 
2<\L\<r-2 

Terms in the first sum are of the form 

a T { . } n d ( - T ^ T m ) - a T { j } c ( n - X«"1) ~ ^ n ^ 2 « r > " , 

and terms in the second sum are of the form 

a T i ( n _ i)d(TL)2KTL)(n-i)aTLc{n_ 1 ) d ( r t c ) 2 K T t c ) ( n - i ) „ 

So, Ат(п) satisfies a recurrence relation of the form in Lemma 6.1 with 

j=1 2<\L\<r-2 

d = d(T) and I = 1(f) > 1. So, by (6.1), 

V=1 2<\L\<r-2 ) 

2'(T)-i _ i 1 • 



Therefore qur) is of degree d(T) and ат is as claimed. 

We now prove that ßr is as claimed. For |T| = 2, we must have T equal to the 

2-element chain and so d(T) — 0 and there is nothing to prove. For |T| = 3 the 

only T with d(T) > 0 is the 3-element chain. As calculated earlier (see Table 5.1), 

AT(n) — (n - 3)2n + 4 and so ßr = - 3 as claimed. 

We now prove the inductive step, following the exact method used for ат but we 

now also consider the coefficient of 2l(-T^n in the calculations, and use (6.2) 

when applying Lemma 6.1. 

Suppose that ßr is as claimed for all T with \T\ < k, that is, that ßr satisfies 

(6.5) when d{T) > 0. Let T be any tree with |T| = к and d(T) > 0. By our 

inductive hypothesis we have that for all S С T with d(S) > 0 the first two terms 

of qi(n) are asnd+ ß s n F o r some S CT we may have d(S) = 0. For these 

trees set ß$ = 0. Doing so means that, for all S С T the first two terms of qi(n) are 

asnd^+ßsnd^-\ 

We can now consider the different cases depending on the number of lower covers 

of the root of T. If the root has exactly one lower cover, we have equation 

Ат{п) = 2CD{xi\(n — 1). But by Theorem 5.1, and our inductive hypothesis, we 

know that 

AD[xi](n) ~ (a0[Bl]n^l) 2'^»". 

If Г is a chain, then l(T) = l(D[xJ) = 1 and d(T) = d(D[xi]) + l since the element x\ 

contributes to d(T) but not d(D[xi]). So, СщХ1](п) satisfies the recurrence relation 

(5.1), which is of the form in Lemma 6.1 with a = ar>[Xl], ß = ßD[Xl], d = d(D[xi]) 

and I = l(D[xi]) = 1. So, by (6.2), 

Cflw(n) U%])+i Чад) 2 у )l 
_ (ODfri]MT) , ( ßPlxi] , aP[xA d{T)~l\ 9n 

-U^r + — Г ) 
Note that, since T is a chain of at least four elements, we have d(T) > 1 so that we 



are not dividing by zero. So 

Ar(n) = 2CD[xi](n - 1) 

- 2 ( | t o L ( n - i ) « " + ( J b & L + ( „ - 2 -

- - ^N™*™ + ( ^ T + nd(Tbl) 
_ / d ( T ) / few aP[xA d(T)-Л 0П 
" W C T ) 2 / P -

Therefore, using (6.4), we have 

a _ fefri] Qpfci] _ fefo] d(T)aT 
PT d(T) - 1 2 d(T) - 1 2 ' 

as claimed. If T is not a chain, then l(T) = l(D[xi]) > 1 and d(T) = d(D[xi\) since 

the element X\ does not contribute to either d(T) or d(D[xi}). As above, СщХ1](п) 

satisfies a recurrence relation of the form in Lemma 6.1 with a — OD^], ß = PD[XI], 

d = d(T) and I = l(T) > 1. So, by (6.2), 

C b w M ~ ( « I W ^ + ( f e M ~ I f e f ) - d ( T b l ) 2 ' ( 3 > . 

So 

AT(n) = 2CD[xi](n-l) 

2 m 

aD[xi]nd^ - d{T)aD[xx]nd^-1 

2«(T)(n-i) 

1 
да)-1 - 1 

1 

2 г(г)п 

да)-1 _ i 

Therefore, using (6.4), we have 

2/(T)n 

№ ~ 2i(T)~i - 1 да-1 - 1 У ~ да)-1 - 1 да)"1-! ' 

as claimed. 

If the root of T has two lower covers хг,х2 then equations (5.6) and (5.4) give 



AT(n) - 2AT(n - 1) = AT{1](n)AT{2}(n)/2. So, 

AT(n) - 2AT{n - 1) ~ +/?T{i}nd(To})-i)2'(T{i>)" 

aZVi + «TV« Дг*1 

since d(T{1}) + d(T{2}) = d(T) and i(T {i }) + 1{T{2}) = l(T). So, AT(n) satis-

fies a recurrence relation of the form in Lemma 6.1 with a = аТ{1)ат{2}/2, ß = 

К 1 } / ? т { 2 } + aT{2}ßT{1})/2, d = d(T\ l = l(T) > 1. So, by (6.2), 
2l(T) -i 

да-1 - 1 
AT{n) 

So, using (6.4), we have 

аТ{1 }аТ{2) d(T) 

+ >г{1}^г{а} + аГ{а}^г{1} _ d(T)aT{1}aT{2}/2 . 

ßT = 
21(Т)-2 

«7m Ä w + а г < а Л т -

2КТ)-1 

d ( T )uT { 1 } a T { 2 } 

2l(T)r, 

2l(T)-l _ I Г 1 2г(Г) -1 

К 1 } # г { 2 } +аг { 2 }Дг { 1 } )2 '^ -2 _ d ( r ) a r 
2г(г)-1 _ ! 

as claimed. 

Finally, if the root of T has r > 3 lower covers xi,...,xr we can write (5.6) as 
г 1 

Лг(га) - 2AT(n ~ 1 ) = 2J2 2AT{i}(иМгШс(w ~ 
3=1 

2<|Ь|<т—2 
Terms in the first sum are of the form 

(аГ{ ,}Игш) + ßT{ .}ndV{j})-i)2i{T{j})n 

х (aT{j}C(n ~ l)d{T^c) + ßr{j}c(n ~ l)d<r«>0-i)2КтШс)(п-1) 

AT) 
2i(Tmc 

aT{jyaT{j}Cn 

_ + («T{3}/3T{J}C + uT{]}CßTU} ~ d(T{j}c)aT{j}aT{.}c^ 

and terms in the second sum are of the form 

(aTL(n - l)d™ + ßTL(n ~ 

x (аТьс(п - l)d{TLc] + ßrLC(n - i )^ ) - i ) 2 i ( r L c ) (n - i ) 

2l(T)r, 

21{T) \aTLaTbCnd^ + (aTLßTLC + aTbCßTb - d(T)aTLaTLC)ndCM] tfO, 



since l(T) = l(TL) + l(TLc) and d(T) = d(TL) + d(TLc). 

So, AT(n) satisfies a recurrence relation of the form in Lemma 6.1 with 

a: aTU)aTw , CtTL®Ti£ 

i = 1 2< |L |<r-2 

Й _ V^ а7щ/ЗгШс + аг ь , е /?гш - d ( r W . ) « r w 3 a 

+ E 
2<[L|<r-2 

2'(гШв) 

Q r A c + ~ d{T)aTjQ^^ 
2l(T) 

d = d(T) and I = Z(T) > 1. So, by (6.2), the coefficient ßT °f the term П 

the leading polynomial qi of AT{n) is 

d(T)~ 1 Ш 

2i(T)-l 
2'(r)-i - i 

2г(гь>с) j'=i 

2 KT) 
2<\L\<r~2 

\ 

+ £ 
|<r 

Kb 
2'CO-i - 1 \ 2 - J 2<Сгш°) 

2<|L|<r-2 7 
Therefore, using (6.4), we have 

Дг 

+ 

2»(T)-i _ i 

as claimed. • 

6.2 Typical embeddings of T into Tn 

We have that, for T a tree with \T\ > 1, AT(n) ~ aTnd{T)2l{T)n, for aT some 

constant that can be found. Let us give an informal description of a "typical" 

embedding of T into Tn, giving an alternative method of seeing at least the lower 

bound AT(n) = ft(nrf(r)2'(7>). For any tree T, call the elements counted by d(T) 

lower bead elements of T. So, a lower bead element of T is an element x such that 



D[x] is a chain, and x is not a leaf or the root. Call an element which has more 

than one lower cover a branching element of T. Call the remaining elements of T 

different from its leaves the upper bead elements of T. These are elements x which 

have only one lower cover, but D[x] is not a chain. Therefore, upper bead elements 

only occur on a chain above a branching element. Note that, depending on the tree 

T, the root can be either a branching element or an upper bead element. 

So, if T is a chain, then T has a root and one leaf, joined by a chain of d(T) lower 

bead elements. Otherwise, for l(T) > 1, the tree T has a root, the root and the 

branching elements are joined by (possibly empty) chains of upper bead elements, 

and some branching elements are joined by (possibly empty) chains of lower bead 

elements (of which there are d(T)) to the l(T) leaves. 

To see that A?(n) = first consider T a chain. We count the 

embeddings that map the root of T to ln and the leaf of T to some leaf of Tn. We 

have 271-1 choices for where to map the leaf. Once we have fixed the leaf of Tn, this 

defines a path from l n to the leaf of Tn. This gives a choice of n — 2 elements of 

Tn into which we can map the d(T) lower bead elements of T. So, asymptotically 

we have Q(nd^) choices for where to map the d(T) lower bead elements. Therefore 

AT(n) = 2n), and since l(T) = 1 we have that AT{n) = Q(n<TV>n) for T 

a chain. 

For T not a chain, so there exist branching elements of T, let ф be some embed-

ding which maps the root of T to ln , and maps the branching elements of T to as 

high a level of Tn as possible. Consider, for large n, the number of embeddings of T 

into Tn that agree with this fixed ф on the root, branching elements and upper bead 

elements. Let us only consider those embeddings which map the leaves of T to the 

leaves of Tn. If a leaf у is joined to a branching element a; by a chain of lower bead 

elements, then note that ф(х) is a fixed distance from the root of T", so that ф(х) is 

in level n — kxoiTn, where kx is a constant independent of n. So, given ф, the leaf у 

can be mapped to 2~kx2n~1 leaves in Tn. So, the total number of choices for all the 



leaves is asymptotically Q(2 l^n ) . (The over-counting due to the possibility that 

two leaves that are below the same branching point are mapped to the same leaf 

of Tn is negligible for large n.) It remains to choose where to map the lower bead 

elements. However, in a similar way to the case where Г is a chain, a lower bead 

element on the chain between the branching point x and the leaf у must be mapped 

to an element on the path between the images of x and y. Since x is mapped to level 

те — kx, and у to a leaf, the path has n — kx — 2 elements, with kx independent of n. 

Since there are d(T) lower bead elements, we have asymptotically Q(nd^) choices 

for where to map the lower bead elements. (Again, this is an over-count due to the 

possibility that two lower bead elements that are below the same branching element 

but above different leaves are mapped to the same element of Tn . However, this 

is negligible because typically the lower bead elements will not be mapped within 

0(1) of a branching element.) So, the number of embeddings that agree with ф is 

asymptotically 2 l ^ n ) , and we have AT(n) = 0(nd ( T )2' ( r ) n ) for T not a chain. 

By Lemma 6.1 we also have the asymptotic behaviour of Cx(n), given in the 

following corollary. 

Corollary 6.3. For any tree T with l(T) = 1 the number of embeddings ofT into 

Tn is asymptotically 

c m ~ 

and if d(T) > 0 then 

For any tree with l(T) > 1 the number of embeddings ofT into Tn is asymptoti-

cally 
o'CO-i 

and if d(T) > 0 then 

Crin) ~ ^ + ( * - 2 -



Proof. We have that AT(n) ~ aTnd^2l^n, and if d(T) > 0 then AT(n) ~ 

(aTnd^ + ßTnd^~l)2l^n. So CT{n) satisfies the recurrence relation (5.1) which is 

of the form in Lemma 6.1. Applying Lemma 6.1 with a — aT and ß = ßT gives the 

result. • 

This tells us that for a tree T not a chain, a typical embedding of T into Tn maps 

the leaves of T to the low levels of Tn, the branching points and upper bead elements 

of T to the high levels of Tn , and the lower bead elements of T will be mapped to 

elements spread roughly evenly along the paths in Tn defined by the images of 

branching elements and leaves of T, as explained earlier. There are Q{nd(-T^2l^n) 

of these embeddings. 

For T a chain, a typical embedding maps the leaf of Г to a low level of Tn, and 

the remaining elements of T are mapped to elements spread roughly evenly on the 

path from ln to image of the leaf in Tn. Here the root is not necessarily mapped to 

l n , and the root can be thought of as a lower bead element, so there are d(T) + 1 

elements to position on this path. So, we get e ( n ^ + 1 2 n ) of these embeddings. 

6.3 Asymptotics of the ratio Ат{п)/Ст{п) 

In [18], Kubicki, Lehel and Morayne proved that limn_00 ^ г щ — linin-*» в^(п)» 

where BT(n) is the number of embeddings ф of T into T n with ф(1т) Ф Ф{Ю, by 

showing that lim«-«, AT(n)/BT(n) = - 1 (Proposition 2.3 in [18]). Here, 

using Theorem 6.2 and Corollary 6.3 we have 

AT(n) _ 2lW~l - 1 
n™ CT(n) ~ да-1 

which is equivalent to Proposition 2.3 in [18], since BT(n) = CT(n) - AT{n). This 

tells us that for trees Ti,T2 with l(Tx) < l(T2) there exists some n0 such that 

ATl (n)/CVi (n) < At2 (n) /C t 2 {n) for all n > щ. Here, we show that there exist trees 

Ti С T2, with /(Ti) = l(T2), with the inequality the other way round. That is, there 



is an щ such that Ат^п)/CTl(n) > Ат2(п)/Ст2{п) for all n > n0. All such pairs 

T b T 2 are counterexamples to the conjecture, for all n > n0. 

Theorem 6.4. For any tree T with l(T) > 1 and d(T) > 0, we have 

AT 

Щп) 

where 

(n) 1 ( diT) ^ ) ^ 

ßT d(T) 

For any tree T with l(T) > 1 and d(T) = 0, we have 

Ц + (6.8) 

For any tree T with l(T) = 1, we have 

^ 1 + o{n-1). (6.9) AT{n) = d(T) + 1 , 
Ст{п) n 

Proof. Let Г be a tree with l(T) > 1 and d(T) > 0. By (5.1) it is sufficient 

to work with the ratio Ст(п - 1)/Cr(n). By Theorem 5.1 we have that Cr(n) = 

О Qj(n)2jn and by Corollary 6.3 we have that 

So, 

CT(n) = 2l^naT(nd^ + bTnd^~1 + сгИг)-2 + 0{nd^~2)) 

where 

2[(T)-1 t fa d(T) 
aT = TJmZi TaT, bT = 

and CT is an unspecified constant. Note that this equation is true for d > 2, and 



can be made true for d = 1 by setting c? to 0. We have 

C r ( n - l ) _ ^ " - V q n - l ) ^ ) + br (n - l ) d ( r ) ~i + c T (n- l ) d ( T )~ 2 + o(nd^'2)) 
Ст(п) ~ 2l(T)naT{nd(T) + brnW)-1 + cTndV)-2 + o(nd(T)~2)) 

1 (1 - 1 / n ) d ^ + - l / n ) ^ - 1 + Sfr(l - l /n)d<Tb2 + 0 (n-2 ) 
~~ 2'(T) 1 + Ьт/п + cT/n2 + o(n~2) 

2H-0 I n n2 n n2 n2 I 

V п п г п 2 

i / ад C'p) br , 

and, using (5.1), we have 

AT(RI) 

Щп) 

as required. 

1 да-i ^ n + n2 + n2 + 0 ( n 

Now, suppose l(T) > 1 and d(T) = 0. So, CT{n) = аг2г(т)" + E S " 1 Я » 2 ' " 

That is, CTin) = aT2l{T)n(l + 0(g(n)2'n)) for some polynomial g(n). So, it is 

certainly true that Cr(n) = a T 2 l ^ n ( l -f-o(n -1)) and 

Ст(п - 1) 1 
= 2ÜT)(1 + 0 ( n )) 

which by (5.1) gives the required result. 

If ЦТ) = 1, then AT(n) = 2naT(nd^+o(nd^)) and CT(n) = 2n^(nd^+1 + 

о ( И т ' + 1 ) ) . So, 

AT(n) 2 naT(nd^ + o(nd^)) d(T)_+l( 

Corollary 6.5. For any two trees Ti,T2, if either 

(i) l(T1)>l(T2), or 

(ii) 1{TX) = l(T2) and d(Ti) > d(T2), or 

(Hi) l(Ti) = l(T2), d(Ti) = d(T2) > 0 and arjßr, > otTJßT2, 



then there exists an integer щ such that 

Атг(п) AT2(n) 
Стг(п) Ст2(п) 

for all п>щ. 

Proof, (i) If l(Ti) > 1{T2) then we can just compare the limits of the ratios 

ATl(n)/CTIO1) a n d Ат2(п)/Ст2(п). By Theorem 6.4 (or from [18]) we have that 

= 1 

Ст(п) 2НЛ-1-

Note that this also holds for trees T with l(T) = 1. Since the limit is increasing in 

l(T) the result follows. 

(ii) If l(Ti) = Z(T2) and d(Tx) > d(T2) there are two cases to consider. If 

/(Ti) = 1{T2) = 1 then using equation (6.9) from Theorem 6.4 we have that 

СгДп) n Cr2(n) n 

and since d(jTi) > d(T2) there exists an щ such that ATl{п)/Стх(n) > Ат2(п)/Ст2(п) 

for all n> no-

li l{Ti) — l(T2) > 1 then using equation (6.6) from Theorem 6.4, and considering 

only terms up to n~l we have 

M i « ! г - Л - ^ + с К п - 1 ) 
CTl(n) 1 №)-! i1 n ) + 0 [ n h 

L_ Л _ <Ш) + 0(п-1) 
С т ^ п ) - 1 даы^1 n )' 

This is also true for d(T2) = 0 by equation (6.8). Since l(Tx) = l(T2) and d(Ti) > 

d(T2) there exists an n0 such that Атгin)/C^(n) > AT2{n)/CT2(n) for all n > n0. 

(iii) If Z(Ti) = 1{T2) and d(T\) = d(T2) > 0 and aTJßTl > a^/fa, we first note 

that /(Ti) cannot be equal to 1. (If 1(Тг) = l(T2) = 1 then d(T{) = d{T2) implies that 

T\ and T2 are the same tree, the (d+2)-element chain.) So we have l(Ti) = l(T2) > 1 

and using equation (6.6), we see that ATl(n)/Cy^n) and AT2{n)/CT2(n) differ only 
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in the n~2 term and in terms of lower order. Therefore, it is enough to show that 

bri < br2- But this follows immediately from the inequality a^ /ßr i > ocT2/ßr2 a n d 

(6.7). • 

6.4 A family of counterexamples to 

Conjecture 4.4 for arbitrarily large n 

Corollary 6.5 provides a simple method for comparing the asymptotics of the ratios 

ATl{n)ICTl(n) and Ат2(п)/Ст2{п). Firstly, we compare the number of leaves of the 

two trees, the tree with more leaves being the tree with the asymptotically larger 

ratio A/C. If the trees have the same number of leaves, then we compare the values 

of d(Ti) and d(T2)\ the tree with the larger d has the asymptotically larger ratio 

A/C. Both the number of leaves, l(T), and d(T) are very easily obtained from the 

Hasse diagram of the tree. If both of these are the same for the two trees, then 

we need to compare the ratios a^ /ßrx and ат2/ ßr2- The tree with the larger ratio 

a/ß has the asymptotically larger ratio A/C. This comparison involves rather more 

calculation, using the algorithm provided by Theorem 6.2. These calculations can 

be simplified if the two trees have a very similar structure, for example, as we will 

see later, if the trees are identical except for the addition of one element to one of 

the trees. 

Corollary 6.5 also guides our search for more counterexamples to the conjecture 

of Kubicki, Lehel and Morayne. The counterexample given in Section 5.2 has two 

important properties, namely that l(Ti) = l(T2) and d(Tx) = d(T2). That this is a 

necessary condition for a pair of trees to be an asymptotic counterexample follows 

from Corollary 6.5. Since we are only considering trees T\ С T2 we must have l(T{) < 

l(T2). But we are looking for trees Ti,T2 where the ratio A/C is asymptotically 

larger for Ti than for T2, so we need to look at trees with Z(7\) = l(T2). If Ti С T2 

and the trees have the same number of leaves we must have d(T\) < d(T2). (Each 
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element counted by d(Ti) must also be counted by d(T2) otherwise T2 would have 

more leaves than Tx.) So, to find our counterexamples we need to look at trees with 

d(T,) = d(T2). 

The following theorem gives an infinite family of pairs of trees which form coun-

terexamples. We do not claim, or believe, that this is the only way to construct 

counterexamples. However, the construction is relatively simple, which makes the 

calculations much more manageable. Also, there are many ternary tree pairs in this 

family, including the counterexample given in Section 5.2, which shows that the 

conjecture does not just fail for trees with high branching numbers. 

Theorem 6.6. Let T be a tree whose root x has three lower covers x\,x2,x%, and 

let T' be formed from T by adding a new element у below x and above x2 and £3 

(see Figure 6.1). If d(T) > 0 and d(D[y\) = 0, then there exists щ such that 

Ат(п)/Ст(п) > Ат'(п)/Ст'(п) for all n>n0. 

T V 

Figure 6.1: General counterexample for d(T) > 0, d(D[y\) = 0 

Proof. We have l(T) = l(T') and d(T) = d(T') > 0 so by Corollary 6.5 it is enough 

to show that aTßT' > атФт- We use equations (6.4) and (6.5) to express these a and 

ß in terms of some other as and ßs for common subtrees S of T and T'. As before, 

for L С [3] write TL for the subtree formed from T by removing the elements in D[xj] 

for each j G L°. Write Tn, for the subtree formed from V by removing elements in 
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D[y] and write Ty for the subtree formed by removing elements in D[x\}. We have 

that T{!} = and T{2,3} = D[y). By the assumption that d(D[y]) = 0 we have 

that d(T) = d(T') = d(T{ 1>2}) = d[T{i,3}) = d(T{ 1 }), and we denote this common 

value by d. We also have that d(T{2}) = d(T {3 }) = d(T{y}) = d(D[y\) = 0. For ease 

of notation, we write I for the common value l(T) = l(T'), write l\ for 1{Т{ц), lx2 

for 1{T{i)2}), etc., and we use a similar notation for a and ß. For example, writing 

Q!i for Q!T{1}-

Using equation (6.5) to find ßr and ßr>, we have 

anfiiX1-1 + («2Ä3 - da2al3)2l*~l + (a3ß12 - da3au)^1 - daT ßr = 

ßr> = 

2 / _ 1 - 1 

etyßi2'~2 - dctT> 
21-1 - 1 

so 

OtTßT'-OtT'ßr = 2/-i _ I 
QTOyß^-2 - aT> (a23Ä2h-x + (a2ß13 - da2axз)^2"1) 

- ar(a3ßi2 - da3aX2)2h~l 

and using (6.4) to find ат and ат> we have 

aia232h~l + a2al32h~l + a3al22h~l 
ат — 

ат' -

2 1 ' 1 - 1 

axay2l~2 

2l~l - 1 • 

This gives 

f{a2ßl3 - da2a13)2h~1 X 

«1 
\ + (a3012 ~ da3au)2h-lJ 

= 2h~1a2(a13ßx - a\ß\3 + ctaia13) 

+ 2h~1a3(aX2ßl - axß12 + daxa 12). 

Finally, we have 

/W'13~2 - da13 axa32ll3~2 

= 2i13-i _ 1 a n d = 2^ -1 _ i 



6 . 4 . A FAMILY OF COUNTEREXAMPLES TO CONJECTURE 4 . 4 FOR 
ARBITRARILY LARGE N 

SO 

aX3ßi - aiß13 + daxa13 = —— -ßx - ац -г—-. h daxa13 2'i3-i _ 1 
da ia^ ' 1 3 " 1 

2'i3-i - 1 

2*13-1 _ i 

and similarly 

ai2ßi — a\ßi2 + daia\2 = 
daia i22h2~x 

2'i2-i - 1 ' 

Therefore 

aTßr' ~ атФт = _ "у av2l~2 

(2*
_1

 - l)
2 

ay (2 l - 2 ) 2 d a i 

(2*_1 - l)2 

daT> 2'"2 

2*-1 - 1 

2h3-i _ i 2*i2-i _ i 

a2a13 a3a i2 

2'i3-i _ i 2*12-! - 1 
Q!2«13 «3«12 

2*13-1 _ i 2*12 i _ i 

and since as > 0 for all trees S, we have aTßr' — &тФт > 0 as required. 



Chapter 7 

Results for the complete p-ary tree 

We can generalise the results of Chapters 5 and 6 to embeddings of trees into the 

complete p-ary tree. The aim of this chapter is to show that a most accommodating 

version of Conjecture 4.4 is still false, namely that even for embeddings into p-ary 

trees with p > 2, there exists a pair of ternary trees T\, T2 with T\ a subposet of T2 

such that 

C$(n) cg>(n) 

for all n > no, for some щ. This means that, even in this setting, the restriction on 

Ti, T2 being binary cannot be removed. 

We present some of the results in this chapter without proof, since they are the 

exact analogues of the results for the particular case p = 2. 

7.1 Recurrence relations for Aj\n) and C^\n) 

Let ti,..., tp be the p lower covers of the root of T™, and let T^ be the elements of 

Tp below or equal to U, for i = 1 . . . ,p. The subtrees Т"г- axe copies of T™-1. 

So, the recurrence relation corresponding to (5.1) is 

C^(n) -pCf (n — 1) = A^(n). (7.1) 



Let T be a tree and suppose its root 1 т has r lower covers x\,. . . ,xr. We are 

now interested in the partition of {x\, . . . , жг} defined by which of the p subtrees 

T™!,..., T"p an element ж* is mapped to. For L С [r] write for the number 

of embeddings of Tl into Г™ that map the root It of TL to ln and map Xj into 

for each j £ L. As for the complete binary tree, this number is the same as the 

number of embeddings of Tl into T™ that map It to 1„ and map Xj into for 

each j € L, for any г = 1 , . . . ,p. 

Write (L i , . . . , Lp) h [r] to mean that the sets Li,..., Lp form a partition of [r], 

so that t X i Li = [r], Li П Lj = 0 for all i ф j. We have 

L Lp: i=l 
(Li,...,Lp)\-[r1 

corresponding to equation (5.2), 

1 if L = 0 

< ' " ( " ) = ! < , ( « - 1 ) if £ = Ш (7-3> 

(n — 1) otherwise 

for all г = 1 corresponding to equation (5.3), and 

л£>-(п) = ̂ aM (7.4) 

for L — { j } , corresponding to equation (5.4). 

We have the following result for embeddings into Tp, analogous to the complete 

binary tree case. 

Theorem 7.1. Let p be an integer with p > 2. For any tree T, the number of 

embeddings ofT into Tp is of the form 

l(T) 

i=o 

where each gj is a polynomial. 



For T the 1-element tree, the number of these embeddings that map the root of 

T to l n , A$\n), is equal to 1. Otherwise, forT with \T\ > 1, the number is of the 

form 

l(T) 

3=0 where each qj is a polynomial. 

To prove this, we again use some results on recurrence relations; here we need 

the following generalisation of Lemma 5.2. 

Lemma 7.2. Let p be an integer with p > 2, and suppose I is some fixed positive 

integer. Then the solution to the equation 

i 
Уп ~ РУп-1 = E fi(п)^П> »1 = °> (7-5) 

j=o 

where each fj is a polynomial, is 

i 
Уп = ^ 9 3 W n 

3=0 

where each gj is a polynomial. Furthermore, for j ф 1, the polynomial gj is the 

unique polynomial satisfying the identity 

gj{n) - p14gj(n - V) = fj(n), 

and gi satisfies the identity 

9i(n) -9i(n-l) = /i(n), 

where the constant term of g\ is given by 

i 
I>(iy = 0 
3=0 

Proof. The proof method exactly follows that of Lemma 5.2, with 2 replaced 

by p. • 



Proof of Theorem 7.1. The proof follows the same method as for Theorem 5.1, 

but with slight modifications because of the difference between equations (5.2) and 

(7.2). 

We include the case of T being a 1-element set for completeness. In this case, 

we see immediately that there are (pn — l ) / (p — 1) embeddings of T into which 

is exactly the number of elements in T™. Also, only one of these embeddings maps 

the root of T to ln . So, A$\n) = 1 as claimed, and С$°(п) = (Pn ~ *) / (? ~ 1) i s o f 

the required form. 

For \T\ > 2, we simultaneously prove that A^\n) and C^\n) are of the required 

form by induction on the size of T. We shall make use of Lemma 7.2 to solve 

recurrence relations for A^\n) and C^(n). We use induction to show that the 

recurrence is of the form of equation ( 7 . 5 ) , and since we will only be considering 

trees with |T| > 2 we have the initial conditions 1) = 0, 1) = 0 as in (7.5). 

For \T\ = 2 the only tree is the 2-element chain, which has one leaf. Since the 

root ly has only one lower cover Xi, say, we have r = 1 in (7.2). The only partitions 

of the set [1] = {1} are those with Li = {1 } for exactly one г, and Lj = 0 for all 

j ф i, a total of p different partitions. Using (7.3) with Li = {1} or Li = 0, equation 

(7.2) becomes 

AP(n)=pC<*Ji}(n-l). 

(Compare this with the binary case, where p — 2.) We have shown earlier that 

C g } ( n ) = (pn - 1 ) / (p - 1). Therefore A^\n) = {pn - p) / {p - 1) which is of the 

required form, since l(T) = 1, qo{n) = -p/(p - 1) and <?i(n) = l/(p - 1). Using 

(7.1) and Lemma 7.2 we have that 

of in)=rtfe-1: 

which is of the required form, since l(T) = 1, go(n) = p/(p - l)2 and gi(n) = 

((p-l)n-p)/{p-lf. 

Suppose the result is true for all T with \T\ < к and let T be any tree with 



|T| = k. As before, there are two cases, depending on whether the root of T has 

exactly one lower cover. If the root has exactly one lower cover, x%, equation (7.2) 

reduces, in a similar way to the base case, to 

A$\n)=pC%lxi](n-l). 

Applying the inductive hypothesis to D[xi], a tree with l(D[xi\) = l(T) leaves, gives 

KT) 

j=0 

where gj are polynomials. Therefore, 

l(T) l(T) 

A$\n) = р ^ ( п - 1У^-1) = (пУ» 
j=0 j=0 

where qj are polynomials. 

If the root of T has r > 1 lower covers x\,..., xr, then [r] has exactly p partitions 

with Li = [r] for some i, and Lj = 0 for all j Ф i. All other partitions have Li ф [r] 

for all i = 1,. . . ,p. So equation (7.2) becomes 

аР(П)=p4\n-1) + E П 4 ! > ) > 

(Lu...,Lp)\-[r], 
иф[г] 

or, equivalently, 

Af{n)-p4\n-i)= E (7-6) 
Li,...,Lp: i = l 

(Ll,...,Lp)l-[r], 
biT̂ H 

It remains to show that this equation is a recurrence relation of the form of equation 

(7.5), as follows. 

Each term A^~(n) is either 1, A ^ ( n ) / p for some Li a singleton, or A ^ ( n - 1 ) 

for some Li not a singleton. Since all trees TLi have fewer elements than T (by 

the condition that Li ф [г]) we can apply our inductive hypothesis and we have 

A^l (n) = E S ' ' яАп)^П f o r polynomials qj. This means each term А^~(п) is 



1//T1 \ 

either 1, or of the form о ъ(п)р>п for polynomials r,-, for some Li Ф 0, [rj. 

Therefore each term appearing in the sum in equation (7.6) is of the form 
P mi 

П £ / * ( " ) р * п 
i=l ji=Q 

for polynomials where Ylim i = l(T) and some rrii can be 0. So the right hand 

side of equation (7.6) is of the form Qj for polynomials qj. This means 

we have the required recurrence relation for Aft (n) and applying Lemma 7.2 gives 

the result for Aft(n). Finally, we use (7.1) and Lemma 7.2 which gives the result 

for Cft{n). • 

7.2 The leading terms of A$\n) 

We now generalise the results of Chapter 6, giving the leading terms of Aft(n), 

and therefore the asymptotics of Aft(n)/Cft(n). We will require the following 

generalisation of Lemma 6.1. 

Lemma 7.3. The recurrence relation 
i 

yn - руп-1 = X) 
j=о 

where each fj is a polynomial, and the leading term of fi(n) is cnnd, has solution 

a 
d+1 n

d+1pn if 1 = 1 

Уп ~ (7.7) 

-Д -andpln if I >2. {pi-1 _ 1 

Furthermore, if d> 0 and the leading two terms of ft(n) are and + ßn^1, then the 

solution is 
* . / ru f ft r\\ Л 

if 1 = 1 

(7.8) Уп 

pi- Cl 



Theorem 7.4. The leading polynomial qцт) (n) in the expression 

l(T) 

j=0 

has degree d(T), where d(T) = |{x £ T : x not the mot or a leaf, D[x) a chain} |. 

The coefficient a^ of nd^ satisfies the following equations. 

IfT is the 2-element chain, then offi = l/(p — 1). Otherwise, if the root ofT 

has r lower covers, then 

(P) Qtrp = 

a Ip) 
D[x i] 

d(T) 

a (p) 
D[ n] 

P f{T)-l - 1 

T a chain, r = 1 

T not a chain, r = 1 
(7.9) 

E P 
(Li,...,Lp)h[r] 

П' (P) TLi 

Г > 1 pl(T)-1 _ I 

where p = Moreover, if d{T) > 0 the coefficient ß^ o/nd(r)-1 

satisfies the following equations. 

IfT is the 3-element chain, then ß^ = (—2 p + 1 )/(p — l)2. Otherwise, if the 

root of T has r lower covers, then 

' Рры d(T)aP 
d(T) - 1 2 

pKT)~ l _ i 

T a chain, r = 1 

T not a chain, r = 1 

E /> 
(Li,...,Lp)h[r] 

иф И 
E « П О - (П<) Е 

Ij-.L^Q i-.ифЪ 
гфз 

Г.Ьгф% V.\Li\>l 

Р №-1 _ 1 

d(T)a^ 
г > 1 

р1(Т)-1 _ 1 

where ßs = 0 for any subtree S CT with d(S) = 0. 

(7.10) 



Proof . Here we prove only that the degree of <ji(T) is d(T) and that a ^ is as 

claimed. The proof method is naturally very similar to the method used in the 

proof of Theorem 6.2, which covers the case p = 2. The proof that is as claimed 

can be obtained by considering the coefficient of nd^T>>~lpl^n in the calculations 

below, and using (7.8) when applying Lemma 7.3. 

We proceed by induction on \T\. For |T| = 2 we know that A^\n) = (pn -

p)/(p— 1) and for this tree d(T) = 0, l(T) = 1, so qi(T){n) — l / (p — 1) a polynomial 

of degree 0, with leading coefficient equal to l/(p — 1). That is, a^ = l / (p — 1) as 

claimed. 

Suppose the result is true for all T with \T\ < к and let T be any tree with 

\T\ = k. If T has one lower cover, x\, then A^\n) — pC^x^(n—l). By Theorem 7.1, 

and our inductive hypothesis, we know that 

If T is a chain, then l(T) = l{D[xx]) = 1 and d(T) = d(D[xi]) + 1, so C{^[xi](n) 

satisfies the recurrence (7.1), which is of the form in Lemma 7.3 with a = a ^ j ] , 

d = d(D[xi]) and I = l(D[xi}). So, by (7.7) 

(p) (p) 

+ p - d(T)n p-

So 

(p) (p) 
= pc%t](n -1) ~ - i ) « V - - 4 * V -

Therefore ®(T) has degree d(T) and = a{^[xi]/d{T), as claimed. If T is not a 

chain, then l(T) = l(D[xi]) > 1 and d(T) = d(D[xi\), so again Cff[xi](n) satisfies a 

recurrence of the form in Lemma 7.3 with a = Qß^p d = d(T) and I = l(T). So, 

by (7.7), 
l(T)—l 

ГW (n) -• P n(p)
 nd{T) l{T)n 



So 

ИТ)—l 

4 P V ) - p C g ^ f n - 1 ) - p - j P ^ - j a « ,,(„ - l y e y m c - . ) 

JP) 

Therefore ®(D has degree d(T) and = - 1), as claimed. 

If T has r > 1 lower covers, then Aft(n) satisfies the recurrence 

A{?(n) - PAft(n - 1) = £ Ц Aft'{n). 
Li,...,Lp: i = l 

(Lb...,Lp)H[r], 
ii/W 

Since (n) is equal to 1 when Li = 0, the equation above becomes 

Aft(n)~pAft(n-l)= £ n ) . 

Ьгт^И 

For ^ ф 0, the term Aft (n) is either Aft (n)/p or Aft (n — 1), depending on 

whether Li is a singleton or not. By our inductive hypothesis the leading term of 

Aft (n) is aft nd^pl^i)n, so we have 

l[Aft-(n)= J] aftLnd^pl^>/p П o^ (n - lyWpWC"-« 
J.T . / rk .'.If v.Li i:|Li|=l t:|£i|>l 

П a, ,(p) nd(T)pi(T)n 

Д Т ) - 1 П • , (p) nd(T)pl(T)n 

where p — 1 Therefore Aft satisfies a recurrence of the form in 

Lemma 7.3, with 

E 
(Li,...,Lp)h[r], 

ЬгФ\г) 
P ,l(T)~ 1 П' 

г-Мфг 

,(p) TL, 



d = d(T), l = l(T) > 1. So by (7.7), 

(.Li ЬрЖ, 
bi^H 
E 5WT П < "dm»4T) 

E /> П < 
(Z/i,...,Lp)l-[r], 

,nd(T) KT) 
pi(T)-1 _ ! 

Therefore has degree d(T) and a?! is as claimed. • 

Note that we can use equations (7.9) and (7.10) to explicitly calculate с ! » and 

ß{Tp) for a particular tree T, and particular p, but the calculations would be ex-

tremely cumbersome. Even without expressions for a^ and ß P we can see that 

the dominant term accounts for most embeddings, as in the complete binary tree 

case. 

As in section 6.2 we describe a "typical" embedding of T into , which shows 

that the leading term given in the previous section gives the lower bound A^ (n) = 

Q(nd(T)pl(T)ny 

If T is a chain, we can count the embeddings that map the root of T to l n and 

the leaf of T to some leaf of Tpn. We have pn_1 choices for where to map the leaf. 

Once we have fixed the leaf of Tp , this defines a path from ln to the leaf of T™. This 

gives a choice of n - 2 elements of T™ into which we can map the d(T) lower bead 

elements of T. So, asymptotically we have 0 ( n d ^ ) choices for where to map the 

d(T) lower bead elements. Therefore Ap(n) = Q(nd(T)pn), and since 1{T) = 1 we 

have that AT(n) = Q(nd^pl{T)n) for T a chain. 

For T not a chain, so there exist branching elements of T, let ф be some embed-

ding which maps the root of T to ln> and maps the branching elements of T to as 

7.3 Typical embeddings T into Tpn 



high a level of T™ as possible. Consider, for large n, the number of embeddings of T 

into Tp that agree with this fixed ф on the root, branching elements and upper bead 

elements. Let us only consider those embeddings which map the leaves of T to the 

leaves of T™. If a leaf у is joined to a branching element ж by a chain of lower bead 

elements, then note that ф(х) is a fixed distance from the root of T™, so that ф(х) is 

in level n — kx of T™, where kx is a constant independent of n. So, given ф, the leaf у 

can be mapped to p~k*pn~l leaves in T™. So, the total number of choices for all the 

leaves is asymptotically в(У<т)п). (The over-counting due to the possibility that 

two leaves that are below the same branching point are mapped to the same leaf 

of Tp is negligible for large n.) It remains to choose where to map the lower bead 

elements. However, in a similar way to the case where T is a chain, a lower bead 

element on the chain between the branching point x and the leaf у must be mapped 

to an element on the path between the images of x and y. Since x is mapped to level 

n — kx, and у to a leaf, the path has n - kx — 2 elements, with kx independent of n. 

Since there are d(T) lower bead elements, we have asymptotically &(n d ^) choices 

for where to map the lower bead elements. (Again, this is an over-count due to the 

possibility that two lower bead elements that are below the same branching element 

but above different leaves are mapped to the same element of T™. However, this 

is negligible because typically the lower bead elements will not be mapped within 

O( l ) of a branching element.) So, the number of embeddings that agree with ф 

is asymptotically and we have Af(n) = ü(nd^pl^n) for T not a 

chain. 

By Lemma 7.3 we also have the asymptotic behaviour of C ^ ( n ) , given in the 

following corollary. 

Corollary 7.5. For any tree T with l(T) = 1 the number of embeddings ofT into 

Tp is asymptotically 
(p) 

C^fn) ~ ат ndm+V 
Ьт{п) d(T) + lU P 



and if d(T) > 0 then 

For any tree with l(T) > 1 the number of embeddings ofT into Tpn is asymptoti-

cally 
l(T)~ 1 

and if d(T) > 0 then 

This tells us that for a tree T not a chain, a typical embedding of T into maps 

the leaves of T to the low levels of T™, the branching points and upper bead elements 

of T to the high levels of T™, and the lower bead elements of T will be mapped to 

elements spread roughly evenly along the paths in defined by the images of 

branching elements and leaves of T, as explained earlier. There are G (n d ( T V^ n ) 

of these embeddings. 

For T a chain, a typical embedding maps the leaf of T to a low level of Г™, and 

the remaining elements of T are mapped to elements spread roughly evenly on the 

path from ln to image of the leaf in Tn. Here the root is not necessarily mapped to 

l n , and the root can be thought of as a lower bead element, so there are d(T) + 1 

elements to position on this path. So, we get Q(n d ^ + 1 p n ) of these embeddings. 

7.4 Asymptotics of Af(n)/C[p\n) 

We have the following extension to a result of Kubicki, Lehel, and Morayne, which 

follows immediately from the asymptotic expressions for AjP (n) and CjP (n) given 

by Theorem 7.4 and Corollary 7.5. 

Proposition 7.6. 
4 g ( n ) _ Г-СГЫ - 1 



This provides the following extension to the asymptotic inequality of Kubicki, 

Lehel and Morayne. 

Corollary 7.7. For any n andp and any trees Tx, T2 such that T2 contains a subposet 

isomorphic to T\, we have 

Aft(n) j№(n) , ч 
lim f y < Hm JY ' . 7.11 

Cft{n) ~ C$(n) 

Proof. This follows immediately from Proposition 7.6, since we have 1{T{) < l(T2). 

• 

We have the following asymptotic behaviour of Aft (n)/Cft (n), similar to the 

result for the binary complete tree. 

Theorem 7.8. For any tree T with l(T) > 1 and d(T) > 0, we have 

4\n) , 1 Л d(T) (d(P) bft\ , 
L = 1 - -frFTT 1 ~ + ^r- + + ° ( n ( 7 - 1 2 

Cft (n) P i (T)_1 V n n n J 

where 
w _ rf(T) 

^ H - 1 ' ( 7 л з ) 

For any tree T with l(T) > 1 and d(T) = 0, we have 

i g - L - ^ - M O . (7.14) 

For any tree T with l(T) = 1, we have 

' Ч о И . (7.15) 
Aft\n) _ d{T) + 1 
Cft[n) ~ n 

Corollary 7.9. For any two trees TX,T2, if either 

(i) l(T\) > l(T2), or 

(ii) l(Ti) = l(T2) and d(Tx) > d(T2), or 

(Hi) /(TO = 1{T2), d{Tx) = d(T2) > 0 and aft/ßft > aft/ß{ft, 

• 



then there exists an integer щ such that 

C%(n) cg>(n) 

foralln>no. • 

This implies that to find examples of trees T\, T2 with T2 containing a subposet 

isomorphic to T\ and satisfying 

C<?(n) C « ( n ) 

for all n greater than some no, we need only consider pairs with l(T\) = l(T2), 

d(Tx) = d(T2) > 0 and > a g / / ^ . 

We finish this chapter by showing that the pair of trees Ti,T2 in Figure 5.1 on 

page 106 are an example of such a pair. The following calculations are very similar to 

those in the proof of Theorem 6.6, but using the more complicated expressions (7.9) 

and (7.10) for ot? and Indeed, it would be possible to generalise Theorem 6.6 

to give a whole family of examples, however the calculations would be rather more 

involved. 

Theorem 7.10. Let TX,T2 be trees as depicted in Figure 5.1. There exists some щ 

such that 
A ^ W > A g ( n ) 
4 ? ( n ) 4 ? N 

for all n > щ. 

Proof . Note that l(T{) = l(T2) = 3 and d(7\) = d(T2) = 1. So, by Corollary 7.9, it 

is enough to show that 

4? 4f 
(p) о(p) Ap) a(P) As in the proof of Theorem 6.6, we will calculate a ^ ß f j — a ^ l a n d show that 

it is positive. 

Let the lower covers of the root of Ti be xi, x2, x3 and let у be the extra element 

of T2, so that Ti = T2 \ {y} . For each tree T = T b T 2 , we write and in 



T M T { 2 } = T {3 } T{ 1,2} = r { i ,3 } T { 2 , 3 } Т ы 

I Л A A 
Figure 7.1: Subtrees of 7\ and T2 

terms of a ^ and ß^ for the subtrees S defined in Figure 7.1. For ease of notation, 

we write for , a ^ for 2}, etc., and similarly for 

Also, note that d(T{y}) = o!(r{2i3}) = d(T{2}) = d(T{3}) = 0 and therefore ffl = 

ßw = ß2P) = ßiP) = 0» which will simplify the calculations. 

Using (7.10), we have 

ß(p) __ P- 1 ß ? ^ + /® °2 W - + - a ? > a « 

(P) 

a (p) 
TI 

P 2 - 1 ' 

(p)_ p(p -
ßr2 ~ p2- 1 P2- 1 

SO 

PT2 i2 PT\ - p2 _ I 

and using (7.9), we have 

(p) т2 

- ( /ФЧ 0 0 - <4P)«S + (p •- 2 ) / 3 { p ) 4 p ) a ? V g 

a « = [ a « a « + a « a « + a ? > a « + <p - 2 ) « ? ^ « ] , 

a (p) _ т2 — 
p(p -

p 2 - 1 



{*ftßft-*ftßft)(p>-iy 
aftp(p~ I)2 

This gives, 

+ - 2 ) a j % w a 3 w 

- а Э Д ^ - aft aft + (p - 2 ) ß f t a f t a f t ) 

= aft{ßftaft-aftßft + *ftaft) 

+ aft(ßftaft-aftßft + aftaft). 

Finally, we have 

{p) _ (p-l)ß[p)aft-aft (P) _ (P) (p) 
P13 — _ ^ ana a13 — a3 

so 

- «ftßft + = - a ^ - ^ f + (P)AP) a, a 
P 1 " 1 3 

and similarly 

_ 1 a l 13 

- <*?>/$> + aft aft = -^aftaft. p- 1 

Therefore 

(Р)Д(Р) (Р)/Э(Р) aftp(P ~ I ) 2 P ( (P) (P) (p) , (p) (p) (p)\ 
- = ( р З . ^ з p - i ^ i ' a a + a i a3 Q12) 

_ а ^ а ^ У ^ - 1) f (p) (p) (p) (p) 

— (jP _ 1)2 a13 a 3 a12 J 

which is positive, since a ^ is positive for all T. • Note that the above expression for aft ßft — aft ßft, with p = 2, corresponds 

exactly with the expression for aT1ßr2 ~ <̂ T2ßri found at the end of the proof of 

Theorem 6.6, for the specific trees T = Ti and T" = T2. In fact, the calculations 

throughout the two proofs are very similar; the main difference is that for p > 2, 

the set [3] can be partitioned into three sets {1} U {2} U {3} , which is not possible if 



p = 2. These partitions account for the terms with the prefactor of (p — 2) (which 

vanish for p = 2), and we note that these terms apparently cancel when calculating 
„Mab) _ Jp)[p) aTi Рт2 ат2 Ptx • 

As mentioned earlier, this hints at a possible generalisation to Theorem 6.6 which 

would give a family of pairs of trees T CT" with 

Aj) (n) A$)(n) 
C$\n) > C$\n) 

for sufficiently large n. However, more important than finding many of these pairs is 

the fact that there is at least one such pair of trees that are ternary. Theorem 7.10 

tells us that if we want to generalise Theorem 4.1 of Kubicki, Lehel, and Morayne, 

to embeddings of trees into the complete p-ary tree, we must keep the condition on 

the trees being binary. For example, we do not have, as might at first be hoped, that 

the result is true for embeddings of p-ary trees into the complete p-ary tree (nor even 

for embeddings of ternary trees into the complete p-ary tree). In the next chapter 

we show that the result is true for embeddings of binary trees into the complete 

p-ary tree. 



Chapter 8 

Generalisations of Theorem 4.1 

We have shown that Theorem 4.1, of Kubicki, Lehel and Morayne, stating that 

AT2{n) 
CTl(n) ~ CT2(n) 

for binary trees Ti, T2 such that T2 contains a subposet isomorphic to Ti, does not 

extend to arbitrary trees Ti С T2. Here, we look at generalisations of the result 

in other directions, for example by looking at embeddings of binary trees into the 

complete p-ary tree, for any p > 2. We will also generalise the result to order-

preserving maps of arbitrary trees into the complete p-ary tree. 

As explained in the previous chapter, we cannot generalise Theorem 4.1 to em-

beddings of arbitrary trees into the complete p-ary tree. In this regard, we have the 

best possible result, that Theorem 4.1 generalises to embeddings of binary trees into 

the complete p-ary tree. 

8.1 Embeddings of binary trees into the complete 

p-ary tree 

Recall that Tp is the complete p-ary tree of height n, with root ln , and we write 



A^ (n) for the number of embeddings of T into Tpn that map the root IT of T to 1„ 

and Ст\п) for the total number of embeddings of T into We prove the result 

that 
A g N < A g ( n ) 
C%(n) ~ Cg {n) 

for binary trees Ti, T2 such that T2 contains a subposet isomorphic to We 

do so by defining an appropriate distributive lattice and then applying the FKG-

inequality. The FKG-inequality is a powerful corollary of the Four Functions The-

orem by Ahlswede and Daykin. See, for example, [3] for a background to the FKG-

inequality and examples of its use in probabilistic combinatorics. We state a form 

of the inequality that we will use repeatedly. 

Theorem 8.1 (Fortuin, Kasteleyn, Ginibre (1971)). If(F, <) is a finite distributive 

lattice and ifa,ß are both increasing (or both decreasing) non-negative functions on 

T and is a non-negative function on Г such that n(f)ß(g) < n(f Vy)/x(/Ap) for 

all f,g£T, then 

E M / w / ) E м / ш ) < E M) E M / M / W ) (s.i) 

fer /ея fef fer 

A function /J, on a lattice T is said to be log-supermodular if 
ß(f)Kg) < rtf V g)Kf A g) for all f,g e T. (8.2) 

The power of this result means the inequality A ^ ( n ) / C ^ ( n ) < A ^ ( n ) / C ^ ( n ) 

can be viewed as just one of many correlation inequalities for embeddings of binary 

trees into complete trees. We define an appropriate distributive lattice T and log-

supermodular function \i so that Е / е - я М / ) equals the number of embeddings into 

Tp . Then we have the FKG-inequality (8.1) for any pair of increasing functions a, ß. 

As we will see, the definition of the lattice T means that the indicator functions 

of events like "the root of T is mapped to l n " or "element ж £ T is mapped to a 

high level of will be increasing on T . The FKG-inequality then tells us that 

events like this are positively correlated, i.e., the probability that one event occurs 

increases if we condition on the other event occurring. 



We only need consider the case where Ti and T2 differ by one element, since we 

can reduce to this case by the following lemmas. Lemma 8.2 is obvious, and the 

proof of Lemma 8.3 can be found in [17]. 

Lemma 8.2. Given a binary tree, the following types of operation produce another 

binary tree with one element fewer. 

(a) Removing a leaf, 

(b) Removing the lower cover of an element that has exactly one lower cover. • 

Note that if an element has exactly one lower cover and the lower cover is also a 

leaf, removing this leaf can be considered as an operation of both types. Also, note 

that we can think of operation (b) as contracting the edge between the element and 

its lower cover, that is, identifying them in the new tree. 

Lemma 8.3. If Ti and T2 are binary trees and T2 contains a subposet isomorphic 

to Ti, then there is a sequence of operations of type (a) and (b) leading from T2 to 

an isomorphic copy of T\ through binary trees. • 

Theorem 8.4. If T\ and T2 are binary trees such that T2 contains a subposet iso-

morphic to T\, then 

Proof . Prom Lemma 8.3 it is enough to show (8.3) for the particular cases where Ti 

is isomorphic to the subposet produced from T2 by exactly one operation of either 

type (a) or (b). Let m be the element removed from Г2, and for ease of notation we 

identify Tx with the subposet T2 \ {m}. 

Firstly, we define a distributive lattice. Write [та] for the chain on the n-element 

set { 1 , 2 , . . . , n } with the natural ordering. For any binary tree T, write T ? — 

T{n\ T) for the lattice of strict order-preserving maps from T to [та]. So / € Яг 

is a function from T to [n] such that x > у in T implies f(x) > f[y) in [та]. The 



ordering on TT is / > g if and only if f(x) > g(x) for all x eT. The join, / V g, is 

the pointwise maximum of / and g, and the meet, / Л g, is the pointwise minimum 

of / and g. It is relatively simple to check that Тт is a distributive lattice. The 

easiest way to see this is to note that it is a sublattice of the distributive lattice 

[ n f l . 

We call a function in Тт a level function. If we have an embedding ф of T into 

Tp , we can construct a function / by setting f(x) equal to the level of ф(х) in T™. 

Since ф is an embedding, х > у in T implies that the level of ф(х) is greater than 

the level of ф(у), and so f(x) > f(y). Therefore, / is a level function and we say 

that ф corresponds to f. In fact, we can do this for any strict order-preserving 

map ф from T to Гр". For each level function f £ Тт we can count the number of 

embeddings from T to T™ that correspond to / . This defines a function ß from Тт 

to R+: ß(f) = ßi(f)ß2(f) where цi, (л2 are defined as 

x > y , a n e d g e i n T 

ует,-у has 2 lower covers, zi,z2 

Here, ßi(f) counts the number of strict order-preserving maps from T to that 

correspond to the level function / . However, a strict order-preserving map from 

T to Tp need not be an embedding of T into T™. The term /x2(/) is exactly the 

fraction of those strict order-preserving maps from T to corresponding to the 

level function / that are also embeddings of T into T". To see that fii(f) and ( / ) 

are as claimed, suppose we are constructing a strict order-preserving map ф that 

corresponds to / , by choosing the element ф(х) from level f(x), for each x from the 

root, IT, downwards. We have choices for ф(1т), and then for each edge 

x > у in Г, once we have chosen ф(х) we have choices for ф(у). This 

gives a total of ßi{f) strict order-preserving maps. Since we have ф(х) > ф(у) for 

all x > у in T, the map ф is an embedding if ф(гi) and ф(г2) are incomparable 

for all elements z2 with a common upper cover in T. Let у be some element 



of T which has two lower covers zx, z2 and, without loss of generality, suppose that 

}{z\) > }{z2). When constructing ф, once we have chosen ф(у) and ф(г2) (elements 

in the levels f(y) and f(z2) respectively), there are p/(s/)-/(*i) choices for ф(гi). 

One of these choices (the element on the path between ф(у) and ф{г2)) will give 

ф(гх) > ф(г2) in T™, meaning that ф is not an embedding. The other choices mean 

ф(гi) and ф(г2) are incomparable as required for ф to be an embedding. Because 

of the regularity of T™, these numbers are independent of the choice of ф(г2), so 

the fraction of choices which allow ф to be an embedding is 1 — p-(/(fW(2i)). So, 

taking the product over all such у gives the expression ß2(f) as the fraction of strict 

order-preserving maps (corresponding to / ) that are also embeddings. 

Claim 8.1. ц is log-supermodular on Тт-

Proof of Claim 8.1. Since 

( / A g)(x) + ( / V g){x) = min ( f {x ) , g(x)) + m a x { f ( x ) , g ( x ) ) = f(x) + g(x) 

for all x e T, we have that ßi{f)ß\{g) = ßi{f Л g)ßi(f V g). So, it is enough 

to prove (8.2) for ß2. For each у <E T with two lower covers, zx,z2, write a(f) = 

max(/(zi) , / (z2)) - f(y). Since ß2 is a product of terms indexed by such y, it is 

sufficient to prove that 

(1 - 1 - p a ( 9 ) ) < (1 - 1 _ f i fyg ) ) (8.4) 

for all у e T with two lower covers. 

Without loss of generality, we can assume that f(zx) > f(z2),g(z1),g(z2). So 

Л g) = max{min(/(zi), g(zx)), min(/(^2), g{z2))} - mm{f(y),g{y)} 

= max{p(2i), т т ( / ( г 2 ) , g(z2))} - m i n { f ( y ) , g ( y ) } 

and 

<?(/ v 9) = max{max(/(^i), g(zx)), max(f(z2),g(z2))} - m a x { f ( y ) , g{y)} 

= f(zx) -max{f(y),g(y)} 



which gives 

<r{f A g) + a(f Vg)= max{g(z1), min ( f ( z 2 ) ,g (z 2 ) ) } + / Ы - f(y) - g{y) 

< max{g(z i ) ,g (z 2 ) } + f(Zl) - f(y) - g(y) 

= *(/) + °(g) 

(with equality unless both g(z{) < g(z2) and f(z2) < g(z2)). Moreover, since 

cr(fVg) = f(zi) - max{f(y),g(y)}, if f(y) > g(y) then a(f V g) = a(f) and so 

с ( / M ) < and then (8.4) follows. Otherwise, f(y) < g(y). Set s = g(y)-f(y) > 

0. Then a(f V g) = f(Zl) - g(y) = a(f) - s and a(f Л g) < <j(g) + s. Also, 

ст(д) + в = max{g(Zl), g(z2)} - g(y) + s < f(zx) - f(y) = a(f). So, 

= 1 _ р<т(9)+з _ p<r(f)s p°(f)+a(9) 

> 1 _ p°(9) _ p°U) p°U)+°(9) 

= ( l - p ^ ) ) ( l - p ^ ) ) , 

where the second inequality holds since the function x '• x * Px is convex for all 

and a(g) < a(g) + s, a(f) - s < a(f) with s > 0. • 

So, we have that ß is log-supermodular on Тт, and therefore the restriction ß' 

of ß to any sublattice T' of Тт is log-supermodular on T'. 

We have that the number of embeddings of T into T™ is Е/еЯг M/) - Also, 

we can split a tree T at any point and perform similar sums on the two subtrees, 

as follows. Recall that for x e T, the set D[x] is the down-set of x in T. Write 

D(x) for the set D[x] \ {ж} of elements below x in T. Let x be an element of 

T and define subtrees Si = T \ D(x) and S2 = D[x] and consider two lattices 

Ti(k) = {/ e F(n\ Si) : f(x) = к} and T2{k) = {/ € T{k\S2) : f(x) = к}, where 

1 < к < п. Then M / ) i s the number of embeddings of Si into T£ that map 

ж to an element of T™ in level к, and E/ejr2(fc) М Л 1S the number of embeddings of 

S2 into Tp that map x to the root (the only element in level к of Tpfc). Consider any 

pair of embeddings (фи ф2) where is an embedding of Si into Tp that maps x to 



an element in level k, and ф2 is an embedding of S2 into T* that maps x to the root 

of Tpfc. We can construct an embedding ф of T into as follows. For any point 

у E define ф{у) to be фг{у). So, the point x E Si is mapped to ф(х) = ф\(х), an 

element in level k. So, ф\ specifies a unique copy of T£ in T™, namely the down-set 

of 0i (x) in Tp . So, for elements у e S2 define ф(у) to be the element corresponding 

to ф2(у) in this copy of Since the only element in Si П 52 is x and ф2(х) is by 

definition the root of we have a well defined function ф and this is certainly an 

embedding of T into T™ that maps x to an element in level k. Since any embedding 

of T into Tp that maps x to an element in level к can be split into two embeddings 

by reversing this process, we have that the number of embeddings of T into Tp that 

map a; to an element in level к is Yhf^^k) M / ) Ylg^2(k) M<?) and therefore the total 

number of embeddings of T into Tn is 

E E m E м - (8-5) 
fc=i /e^i(fc) деЫк) 

Note that this holds for any element ж in T. 

Recall that m is the point removed from T2 to obtain T\. Let I be the upper 

cover of m in T2. Write Tt for the subtree Тг \ D(l), and Tb for D[l] as a subtree of 

T\. Note that we have split T\ into two trees Tt and Tb as explained earlier. Write 

Tb+ for the tree D[l] as a subtree of T2, so that Tb+ = Tb U {m}. Therefore, we have 

split T2 into two trees Tt and Tb+. So, Tt is common to both trees Ti,T2 and Tb 

and Tb+ differ by only one element. Furthermore, since we have that Tx is obtained 

from T2 either by (a) removing a leaf, or (b) removing the lower cover of an element 

with exactly one lower cover, we know that either (a) Tb+ has the extra element m 

as a leaf, directly below the root I of Tb+, or (b) Tb+ has the extra element m as 

the only lower cover of I. (See Figure 8.1.) 

Let us look at the sublattice T' of T{n\ Tt) defined by P = { / € f(n\ Tt) : 

fil) = к or / ( / ) = к + 1}, for 1 < к < п. We have p defined on Я as described 

earlier, and p is log-supermodular. Define a(f) = / { / ( l T t ) = n } as the indicator 

function of the event / ( l T t ) = n and define ß(f) = I{f(l) = к + 1} as the indicator 



m 

(a) m is a leaf 

m 

(b) m is the only lower 

cover of I 

Figure 8.1: The two cases for Тъ+ 

of the event / ( / ) = к + 1. Both ot and ß are increasing functions, since the sets 

{ / : / ( l T t ) = n } and { / : / ( / ) = к + 1} are both up-sets of Я . 

For к = 1 , . . . , n, let ak be the number of embeddings of Tt into T£ that map I 

to an element in level к, and let bk be the number of embeddings of Tt into T£ that 

map I to an element in level к and map the root \rt to the root ln . Then, 

X M) = Як + flJH-i, 
f er' 

E = 
f€f 

E = ьк+1, 

and applying Theorem 8.1 to a,ß gives (bk + bk+i)ak+i < (ak + ak+i)bk+i or 

h < bk+1 
«fe _ CLk+1 

for all к, 1 < к < п. 

Now let us look at the trees % and Тъ+. Let ck be the number of embeddings of 

Ть into Tp that map I to lfc, and let dk be the number of embeddings of Tb-f into T* 

that map I to lfc, for к = 1 , . . . , n. First consider case (a), where m is a leaf of %+ . 

Each embedding of Tb+ with I mapped to lfc can be thought of as an extension 

of an embedding of Tb with I mapped to lfc. To extend an embedding of Ть with 



I mapped to lk to an embedding of Tb+ with I mapped to 1*. we just need to 

decide where in Tk to map m, being careful to make sure that the chosen element 

is incomparable with the image of the other lower cover of I. When this other lower 

cover is mapped to level к - 1 of T*, there are pk~l - 1 choices for m, and if it is 

mapped to any lower level, then there are more choices for m. Since the total number 

of elements below lk is equal to (рк — p)/(p - 1), we have that every embedding of 

Tb with I mapped to lk can be extended to at least pk~l — 1 distinct embeddings of 

Tb+ with I mapped to 1 ,̂ but to at most (pk — p)/(p - 1) distinct embeddings of 

Tb+ with I mapped to 1*.. Since p > 2, we have 

Ck P ~ 1 Ck+1 

We now show that dk/ck < <4+i/cfc+i also holds in case (b), again using Theorem 

8.1. Let T " be the sublattice of T{k + 1; Tb) defined as T " = { / e Т{к + 1 ;ТЬ) : 

f(l) = к or f(l) — к + 1}, for 1 < к < п. Take ц defined on this sublattice as 

before, so that fi is log-supermodular. Define a(f) = / { / ( / ) = к + 1} and define 

ß(f) ~ (pfmin —p)/(p— 1), where fmin = minxeTb f(x). We have that a is increasing 

on T", and fmin is increasing on T" therefore ß is also increasing on !F". Before 

applying Theorem 8.1 we show what each of the terms in (8.1) is. 

There are p elements in level к of Tpfe+1 whose down-set is a copy of Tk , so 

each of the ск embeddings of Tb into Tk that map / to lk corresponds to p distinct 

embeddings of Tb into Tk+l that map I to an element in level к. Therefore the sum 

Y^fe?" ßif)) which counts embeddings of Tb into Tk+1 that map I to an element in 

level к or к + 1, equals pck + ck+x. The sum A t ( / ) a ( / ) eQuals ck+i- The sum 

Yhjer" ß(f)ß(f) counts the number of embeddings of Tb+ into Tpfe+1 that map I to 

an element in level к or к + 1. To see this, fix / in T" and let ф be an embedding 

of Tb into Tk+1 that corresponds to / . By definition the lowest level mapped to by 

Ф is fmin, so ф maps the elements of Tb to elements of Tk+1 between levels fmin and 

f(l) inclusive. In fact, it maps Tb into a copy of 1 defined as the elements 

in the down-set of ф{1) that are in levels /m i n to / ( / ) of T fc+1, inclusive. Call this 



copy Tf. We can construct an embedding ф of Tb+ into T£+1 as follows. Choose 

some integer г between 1 and fmin — 1; this is the number of levels by which we will 

"push down" the embedding ф so as to "fit in" the element m. (So, if fmin = 1 this 

construction does not yield an embedding of Tb+, which agrees with ß(f)ß(f) = 0 

for fmin — 1-) Define ф{1) to be ф(1) and define ф(т) to be any element in level 

f(l) — i that is below ф(1). Once this choice is made ф is then determined. Consider 

the copy of that is the down-set of ф(т). By the choice of i, this has at least 

as many levels as Tf, so just considering the top f(l) — fmin + 1 levels, we have a 

copy of Tf. Then, for all x E Tb+ with x ф I, m, define ф(х) to be the element 

in this copy of Tf that corresponds to the element ф(х) in the original Tf. Since 

for each i we have a choice of p1 elements for ф{т), the total number of distinct 

embeddings this construction yields for a particular ф that corresponds to / is 

Since there are ß(f) distinct embeddings that correspond to f , this construction 

yields Yjfzf" ß(f)ß(f) distinct embeddings of Tb+ into T£+1 that map I to an 

element in level к or к + 1. 

Since each embedding of Tb+ into T£+1 that maps I to level к or к + 1 can be 

converted to an embedding of Tb into Tpfc+1 that maps I to level к or k+1 by reversing 

the above construction, we have that the total number of embeddings of Tb+ into 

Tp+1 that map I to an element in level к or к + 1 is exactly E /e^" ß(f)ß(f)-

Therefore, ß{f)ß(f) = pdk + 4 + i and ß(f)a(f)ß{f) = dk+1. So, 

applying Theorem 8.1 gives Ck+i(pdk + <4+i) < (pck + ck+x)dk+i which is equivalent 

to the inequality dk/ck < <4+i/cfc+i. 

So, we have two increasing sequences (Ьк/ак) and (dk/ck) for к = 1 , . . . ,n . We 

need to apply Theorem 8.1 once more to a very simple lattice, namely the n-element 

chain, [n]. A chain is obviously a distributive lattice, and moreover any function 

ц is log-supermodular, since {k,k'} = {к Л к', к V к'} for all к, к' G [п]. Define 

ß(k) = OfeCfc, define a(k) = bk/ak, and define ß(k) = dk/ck. Then a and ß are 



increasing on [n], and applying Theorem 8.1 gives 

n n n n 
Y, ЪкСк Y akdk < Y , E bbdk- (8.6) 
fe=i fc=i fc=i fc=i 

Note that this inequality is the weighted version of the elementary inequality known 

as Chebyshev's Sum Inequality (see, for example, [16, Theorem 43]). 

But Ylk=i ak°k is the total number of embeddings of Ti into Tp , as we split T\ 

into Tt and Tb. Similarly, Y2= I akdk is the total number of embeddings of T2 into 

Tp , as we split T2 into Tt and Tb+. Since bk only counts those embeddings counted 

by ak that also map the root of Tt to ln , we have that bkck is the number 

of embeddings of Tx into Tp that map the root of Tx to ln , and Y2k=i hdk is the 

number of embeddings of T2 into Tp that map the root of T2 to l n . 

Therefore equation (8.6) becomes 

Note that the proof is similar in its approach to the original proof by Kubicki, 

Lehel and Morayne; however in the set-up where we can apply the FKG-inequality 

we can view this result as one of many possible correlation inequalities on the lattice 

!F{n\T), for T some binary tree. Informally, in the proof of Theorem 8.4 we first 

show that the events "the root of Tt is mapped to a high level of Tp " and "the 

element I is mapped to a high level of T™" are positively correlated on the lattice 

T{n\Tt). We then show that in the lattice Я(/с;Tb) having "Z mapped to a high 

level of Tp" means "the number of ways to embed an extra element" increases. We 

combine these correlations to show that if the root of T\ is embedded "higher up" 

in Tp, then there are more embeddings of an extra element into Tp. 

We can use the lattice F(n; T) and the function ß and other pairs of increasing 

functions on T , to find other correlation inequalities. For example, we have the 

following result, which informally says that for any binary tree T and any two 

as required. • 



elements x, у in T, the events "x is mapped to a high level of T™" and uy is mapped 

to a high level of T™" are positively correlated. 

Theorem 8.5. For any binary tree T, and any elements x,y e T, and for any к 

and I with 1 < k,l < n, we have 

E(k + l,l) E{k + l,l +1) 
E(k,l) ~ E(k,l + 1) ' 

where E(i, j) is the number of embeddings of T into T™ that map x into level i, and 

у into level j. 

Proof . Consider the sublattice P of T[n\ T) defined by T ' = { / 6 T(n\ T) : 

f(x) = к, к +1 and f(y) = 1,1 +1}. We take ц, to be our log-supermodular function 

as described above, so that 53/ея M / ) is exactly 

E(k, I) + E(k + 1,0 + E(k, 1 + 1) + Е(к + 1,1 + 1). 

Define a(f) = I{f{x) = k +1} as the indicator of the event f(x) = k + l, and define 

/?(/) = I{f{y) = I + 1} as the indicator of the event f(y) = 1 + 1. Both a and ß 

are increasing on T ' and so we can apply Theorem 8.1. This gives the inequality 

[E(k + 1,0 + E(k + 1,1 + 1)] [E(k, 1 + 1) + Е{к + 1,1 + 1)] 

< [E(k, I) + E(k + 1,0 + E(k, 1 + 1) + Е(к+1,1 + 1)] E(k + 1, / + 1) 

which is equivalent to the required inequality. • 

This statement is not true if T is allowed to be arbitrary, as illustrated by the 

following example. Let T be a tree with 4 elements, the root x and its three lowers 

covers xux2,x3. Suppose we are embedding T into T4, the complete binary tree 

on 4 levels. We can calculate the different number of embeddings that map the 

elements x\ and x2 into particular levels. There are 12 embeddings that map X\ to 

level 3 and x2 to level 2, there are 32 embeddings that map Xi to level 3 and x2 to 

level 1, there are 76 embeddings that map xx to level 2 and x2 to level 2 and there 

are 184 embeddings that map xx to level 2 and x2 to level 1. So, if we consider a 



uniform probability distribution over all embeddings of T into Tn , we have that the 

conditional probability that an embedding maps x2 into level 2, given that it maps 

x2 into either level 1 or 2 and maps X\ into level 3, is 12/44 = 3/11. However, the 

conditional probability that an embedding maps x2 into level 2, given that it maps 

x2 into either level 1 or 2 and maps xx into level 2, is 76/260 = 19/65 which is 

greater than 3/11. In other words, it is more likely for x2 to be in the higher of the 

two levels 1 and 2, if x\ is in the lower of the two levels 2 and 3. This is still true 

for embeddings of T into T* for p > 2. This means that we are unable to use this 

approach even for embeddings of p-ary trees into the complete p-ary tree. 

8.2 Order-preserving maps of arbitrary trees 

into the complete p-ary tree 

We can consider the case of T being binary as special. For arbitrary T we cannot 

define a log-supermodular function p on T{n\ T) so that М Я 1S the num-

ber of embeddings of T into T™. However, we can look at other types of mapping 

from T into Tp, for example order-preserving maps. Recall that an order-preserving 

map preserves comparability of elements, but may introduce extra relations between 

elements. We look at both strict and weak order-preserving maps, the difference 

essentially being that a strict order-preserving map must map comparable elements 

to distinct elements, but a weak order-preserving map need not. We give formal 

definitions later. 

8.2.1 Strict order-preserving maps 

For strict order-preserving maps, the situation is very much simplified; as we have 

seen in the proof of Theorem 8.4 the function Ц\, which counts the number of strict 

order-preserving maps, is log-supermodular with equality on T . Moreover, if we 



allow T to be arbitrary, the function p\ still counts the number of strict order-

preserving maps. This is essentially because a strict order-preserving map only 

needs to preserve edges and not incomparability between elements. Therefore we can 

generalise the correlation inequalities for embeddings of binary trees to correlation 

inequalities for strict-order preserving maps of arbitrary trees. 

Recall that a strict order-preserving map is a map ф from T to Г™ such that 

x > у in T implies ф(х) > ф(у) in T". Define to be the number of strict 

order-preserving maps of T into that map the root of T to l n , and define C^\n) 

to be the total number of strict order-preserving maps of T into T™. We have the 

following result, corresponding to the inequality of Theorem 8.4. 

Theorem 8.6. If Ti and T2 are trees such that T2 contains a subposet isomorphic 

to T\, then 

C^in) ~ C%(n) 

Proof . We follow the proof method of Theorem 8.4, making the necessary changes 

for strict order-preserving maps of arbitrary trees. 

Firstly, note that we can define a distributive lattice of level functions T(n\ T) 

when T is an arbitrary tree. We take ßi defined, as before, as 

ßlif)=pn-mT) J } p /w - zw 
x > y , a n e d g e i n T 

which is a log-supermodular function. This satisfies log-supermodularity with equal-

ity (as noted in the proof of Theorem 8.4). Also, for any tree T, the sum 

E ш 

is the number of strict order-preserving maps of T into as explained earlier. 

As before, we can assume that T\ is isomorphic to the subposet T2 \ {m} of T2, 

where m is some element of T2. Let I be the upper cover of m in T2. We split T\ 

into Tt = 71 \ D(l) and Tb = D[l] as a subposet of Г ь and split T2 into Tt and 

Tb+ = Tb U {m} . 



Set Я = { / € F{n-,Tt) : f(l) = к or f(l) = к + 1} for 1 < к < n and let 

a ( f ) = Hfi^-Tt) = n} and ß(f) = I{f(l) = к 4-1}, which are both increasing on 

Г. 

For к = 1 , . . . , n, define йк to be the number of strict order-preserving maps of 

Tt into T£ that map I to an element of level k, and define bk to be the number of 

strict order-preserving maps of Tt into T£ that map I to an element of level к and 

map the root of Tt to the root ln. Here, we have 

E / x i ( / ) a ( / ) = h + bk+1, E = йк + ä*+i, 
/ ея / е я 

Е м/жл=äjb+i, Е MfMf)ß(f) = h+i, 
/ ея / е я 

and applying Theorem 8.1 we get 
f̂c < f̂c+i 

öfc — ak+\ 

in a similar way as in the proof of Theorem 8.4. 

Now we look at trees Ть and Tb+ and define ck to be the number of strict order-

preserving maps of Ть into Tp that map I to lfc, and define dk to be the number of 

strict order-preserving maps of Tb+ into Tp that map I to lfe. Whereas in the proof of 

Theorem 8.4 we had two cases to consider (from the two cases in Lemma 8.2), here, 

since the trees Ti, T2 are not necessarily binary, we cannot be so specific. However, 

we just need that m is the lower cover of I in Tb+, where I is the root of Ть+. 

Let Г = { / € F(k + 1 ]Tb) : f(l) = к or f(l) = к + 1} for 1 < A; < n and let 

a(f) = / { / ( / ) = fc+l}. Recall that D(m) is the set of elements below m in Tb+. We 

can consider D(m) as a subposet of either Tb or Tb+. Let ß{f) = (pfm,n-p)/(p-1), 

where /m i n = ттхе£>(то)и{г} f{x). We have that a and ß are increasing on T". As 

before, the sum £ / € Я ' / ^ ( Я equals рск + ск+г and the sum Mi( / ) a ( / ) equals 

Cfc+l-

We now show that Ylfer» Mi (f)ß(f) = P^k + 4+I and fii (f)ot(f)ß(f) = 

dk+1- Note that D[m], the subtree of Tb+ of elements below or equal to m in Tb+ 



is isomorphic to the subtree D(m) U { / } of Tb. In a similar way as in the proof 

of Theorem 8.4 we construct strict order-preserving maps from Tb+ to Tk+1 using 

strict order-preserving maps from Tb to Tk+1. Fix / in T" and let ф be a strict 

order-preserving map from Tb to Tk+l that corresponds to / . By definition of fmin, 

the map ф maps the elements of D(m) U { / } to elements of Tp + 1 between levels fmin 

and f(l) inclusive. So, it maps D(m) U { / } into a copy of т/(г)_/тгп+1 defined as the 

elements in the down set of ф(1) that are in levels fmin to f(l) of Tp + 1 , inclusive. 

Call this copy 7 / . We construct ф a strict order-preserving map from Tb+ to Tk+1 

as follows. For all x G Tb \ D(m) set ф(х) = ф(х). Choose some integer i between 

1 and fmin — I- Define ф(т) to be any element in level f(l) — г that is below ф{1). 

Since we are constructing an order-preserving map, it does not matter if we choose 

an element that is comparable, or even equal to ф(х) for some x e Tb\ (D(m) U {I}). 

So, we have a choice of рг elements. Once the choice is made ф is then determined. 

Consider the down-set of ф{т), which is a copy of By the choice of i, this 

has a least as many levels as Т/, so considering just the top f(l) — fmin + 1 levels 

we have a copy of Т/. Then, for all x € D(m), define ф(х) to be the element in this 

copy of Tf that corresponds to the element ф{х) in the original Т/. Each choice of 

г and choice of element ф(т) gives a distinct strict order-preserving map from Tb+ 

to Tp+l , so this construction yields 

/mm-1 fmin 

i=1 

distinct strict order-preserving maps for a particular ф that corresponds to / . There 

are ßi ( / ) distinct strict order-preserving maps that correspond to / , each yielding 

ß(f) distinct strict order-preserving maps, so we can construct a total of 

£ M ß ( f ) 
/еЯ' 

distinct strict order-preserving maps from Tb+. 

Since each strict order-preserving map from Tb+ to Tk+1 can be converted to a 

strict order-preserving map from Tb to Tpfc+1 by reversing the above construction, 



and the level that I is mapped to is unchanged in the construction, we have that 

Е/ея' ßi(f)ß(f) 1S the total number of strict order-preserving maps from Тъ+ to 

Tp+1 that map I to an element in level к or к + 1. Therefore, Yhje?" Mi ( / Ж / ) = 

pdk + 4 + i and E / e ^ " ßi(f)a(f)ß(f) - 4 + ь and applying Theorem 8.1 gives the 

required inequality <4/cfe < 4+i/ÖH-i-

Finally, as in the proof of Theorem 8.4, we have increasing sequences (bk/äk) 

and (4/cfe) and a final application of Theorem 8.1 gives 

n n n n 

E ЬкСк E 44 < E äk5k E 
k=1 fe=l k=1 fe=l 

which, by inspection of each sum, is identical to the inequality 

as required. • 

As with embeddings of binary trees, by applying the FKG-inequality to different 

increasing functions, versions of this proof can be used to establish other correlation 

inequalities for strict order-preserving maps of arbitrary trees into the complete 

p-ary tree. 

8.2.2 Weak order-preserving maps 

We have an analogous result for weak order-preserving maps from Г to Tpn. A 

weak order-preserving map is a map ф from T to Г™ such that x > у in T implies 

ф(х) > ф(у) in Тр. Note that a function which maps all of T to a single element of 

Tp is a weak order-preserving map. 

Define Ärp̂  (n) 

to be the number of weak order-preserving maps of T into T" that 

map 1 t to l n , and define Ö^\n) to be the total number of weak order-preserving 

maps of T into Tpn. 
We have the corresponding inequality as follows. 



Theorem 8.7. If T\ and T2 are trees such that T2 contains a subposet isomorphic 

to Ti, then 

Aftjn) ^ Äftjn) 

6ft in) - Cft in) 

Proof . The proof is naturally very similar to that for strict order-preserving maps. 

We follow that proof through, highlighting the differences for weak order-preserving 

maps. 

For any tree T, write Т{щ T) for the lattice of weak order preserving maps from 

a tree T to [N]. So, / G Т(п;Т) is a function from T to [n] such that x > у in 

T implies f(x) > f(y) in [n]. As for T(n\ T), the lattice of strict order-preserving 

maps from T to [n], the ordering on T) is / > g if and only if f(x) > g(x) for 

all x G T. Again, the join, / V g, is the pointwise maximum of / and g, and the 

meet, / Л g, is the pointwise minimum of / and g, and we have that F(n\T) is a 

distributive lattice. 

We call a function in T) a weak level function. Every weak order-preserving 

map ф from T to Tp corresponds to a weak level function / by setting f(x) equal 

to the level of ф(х) in T™. Moreover, if pi is defined on T) as 

x > у , a n e d g e i n T 

then YhfeF(n;T) Viif) is equal to Öft\n) the number of weak order-preserving maps 

from T to 

As before, the function pi is log-supermodular (with equality) on T(n\T). 

Assume Ti is isomorphic to T2 \ {m}, for some m G T2. As in the earlier proofs, 

we split Ti into Tt and Tb) and split T2 into Tt and Tb+. Let F = { / G Т{щ Tt) : 

f(l) = k or f(l) = k + l} and let <*(/) = / { / ( l T t ) = n} and ß(f) = I {/(I) = k + l} 

which are both increasing on P . 

We define ak to be the number of weak order-preserving maps of Tt into Tpn 

that map I to an element of level k, and define bk to be the number of weak order-



preserving maps of Tt into T£ that map I to an element of level к and map the root 

of Tt to the root 1„. Then, as in the proof of Theorem 8.6 we apply Theorem 8.1 to 

to get 

Now, define ck to be the number of weak order-preserving maps of Tb into T£ that 

map I to lfc, and define dk to be the number of weak order-preserving maps of Tb+ 

into Tpfc that map I to lk. Let P = { / G T[k + l;Tb) : f(l) = к or / ( / ) = к + 1} 

and let a(f) = / { / ( / ) = к + 1 and /?( /) = - 1 ) / (p - 1) where fmin = 

minx6D(m)u{j} f(x). 

Given a weak order-preserving map from Ть to +1 we use the same construction 

as described in the proof of Theorem 8.6 to construct weak order-preserving maps 

from Ть+ to Tp+1. However, note that a weak order-preserving map from Tb+ is 

allowed to map the elements I and m to the same element in T£+1. In order to also 

construct these maps we allow the choice for i to include 0, so that the level we pick 

for the element m can be the same as the level for I. Therefore, for a particular weak 

order-preserving map ф from Tb to T£+1 corresponding to some / , our construction 

yields 

distinct weak order-preserving maps from Tb+ to Tpfc+1. This means that 

£ | * i ( f ) ß ( f ) = pi + 4+1 and £ ßl(f)a(f)ß(f) = dk+1, 
feP' 

as in the proof of Theorem 8.6. 

So, we apply Theorem 8.1, giving 

Finally, as before, we can apply Theorem 8.1 a final time, to the sequences 



(h/ak) and {dk/ck) to get 
n n n n n n n 

Y; bkCk E ükdk < E ̂ k E bkdk• 
k = 1 fe=l fc=l k = 1 

which by inspection of each sum, is identical to the inequality 

Щ(п)С%{п) < С%(п)Щ(п) 

as required. • 

8.3 Related open problems 

We finish this chapter by stating some open problems. 

We have shown that Conjecture 4.4 does not hold for arbitrary trees, and we have 

the result of Theorem 4.1 for binary trees. Does the inequality hold for other trees? 

Our counterexamples in Section 6.4 show that we cannot allow arbitrary ternary 

trees. However, all our counterexamples have the property that l(T\) = l(T2) and 

d(Ti) = d(T2); recall that Corollary 6.5 implies that this is a necessary condition 

for the pair of trees to be an asymptotic counterexample. Could it be that if either 

(i) /(Ti) < l(T2), or (ii) Z(Ti) = 1{T2) and d(Ti) < d(T2), then the trees TUT2 satisfy 

the inequality? 

Question 8.8. Is it the case that, for any n and any trees Ti,T2 with T\ a subposet 

of T2 and either 

(i) l(Ti) < l(T2), or 

(ii) Z(Ti) = 1{T2) and d{Tx) < d{T2) 

we have 

< 

C?Hn) - C%(n)' 



Alternatively, we could restrict to the case where Ti is obtained from T2 by only 

removing leaves. Again, this would exclude all of the counterexamples presented 

earlier. Prom experience we believe that disallowing these pairs of trees, where the 

extra element of T2 is not a leaf, is enough to imply the inequality. Unfortunately, 

when we remove the restriction on T\ and T2 being binary, we are no longer able 

to apply the FKG-inequality and we are back to looking for a brute-force counting 

argument. We believe we have such an argument for ternary trees T b T2, but this 

method will not generalise to arbitrary trees. 

Conjecture 8.9. For any n and any trees Ti,T2 such that an isomorphic copy of 

Ti can be obtained by sequentially removing leaves from T2, we have 

Aftjn) < Aftjn) 

С ft in) ~ Cft{n) 



Chapter 9 

FKG-type inequalities for product 

lattices 

In Chapter 8 we used the FKG-inequality to prove correlation inequalities for certain 

maps of trees into complete trees. We were able to find a distributive lattice T with 

a log-supermodular function ß and increasing functions a and ß on T, so that the 

sums in the FKG-inequality (8.1) counted the specific mappings we were interested 

in. What if we have T, ß, a, ß so that the sums are of interest, but we do not have 

increasing functions a ,ß? In this chapter we show that it is sometimes possible to 

get a correlation inequality 

E " ( / м л E m w ) z E M E m / W / W ) (9.1) 

f€f fef f<£? fer 

like the FKG-inequality, even if one of the functions a or ß is not increasing. 

To be precise, we consider the case when Я is a product lattice T x U, and ß 

is not increasing, but "tiered" on T x U, meaning that for all t\ > t2 in T , the 

minimum value of ß on {£1} x U is greater than or equal to the maximum value 

on {t2} x U. This condition means that we can find closed intervals It of R for each 

t G T , such that: (a) ß(t, и) € It for all и € U, and (b) if t\ > t2 then the interval 

It l lies entirely to the right of the interval It2 in Ш (allowing touching end-points). 



The general idea is to "average out" the deviations within It of ß(t, и) over {t} x Ы 

for each t £ T to obtain an increasing function on T x U, and to then apply the 

FKG-inequality. We define ß(t, и) to be the weighted average 

EuewM*.«) 

which, by construction, is constant on {t} x U so that ß(t,u) = ß(t). Now, by 

(a), ß(t) is some real in the interval It and, by (b), we have ß{t\) > ß(t2) for all 

ti > t2 G T, so ß is increasing on T x U. 

So, if we also have the usual conditions that ц is log-supermodular o n T x W 

and a is increasing on T x W, then we can apply the FKG-inequality to the lattice 

T x U and functions /i, a and ß. By construction of the "average" function ß, 

we have that the sums Е / е ^ М / Ж / ) and a r e equal, and with the 

extra condition that a is constant on {£} x U, for all t € T, we have that the 

sums a n d Е / е . г М / Ж / Ж / ) 3X6 a l s o equal and we get the 

correlation inequality (9.1) for a and ß. 

In fact, we can give a more general result, where F is a sublattice of a product 

lattice T x W x V , and for each v £ V the function ß is tiered on T xU x {v} . 

In this situation, extra conditions are required to ensure that the method described 

above of "averaging out" ß still yields an increasing function ß. It should also be 

pointed out that the condition on a is crucial; we have no other way of ensuring 

that Е / е ^ М / И / Ж Л = Е / е я М / М / Ж Я - B e f o r e stating the result we give 

the following definition. 

Definition 9.1. For T a sublattice of T x U x V let = { « G W : (t, u, v) € 

for each t G T , v G V. 

Lemma 9.2. Suppose T is a sublattice of some product lattice T xU x V and 

/л, a, ß are non-negative functions defined on T, with ß log-supermodular on T and 

a increasing on T. If we have the further conditions, 



(1) for all ti>t2eT,veV with F\tuV Ф 0 and F\b,v ф 0, 

min ß(ti,u,v)> max ß(t2,u,v), 

(2) tfV1 = T\t,V2 for all t eT, vuv2eV with F\tm ф 0 and T\t,V2 ф 0, 

(3) if (t, и, vi) > (t, u, v2) G T then ß(t, u, UI) > ß(t, u, v2), 

(4) ß(t, и, v) = ßi(t, u)p2{t, v) for some ßi,fi2, 

(5) a is constant on {£} x F\tfV x {г>} for allt €.T,v G V, 

then the FKG-inequality holds. That is, 

£K/W/)5>(/w) < ЕмлЕ /̂м/ж/)-
fe? fer f<z? 

Let us informally discuss these conditions. As described earlier, the idea is to 

"average out" the deviations of ß over the ^-coordinate. Note that conditions (1) 

and (3) imply that ß is increasing in the T - and V-coordinates, so we just need to 

perform the average in a way that preserves this monotonicity. Condition (1) means 

that for each t G T, v G V with T\t,v non-empty we can find a closed interval It,v 

of R such that ß(t,u,v) G It,v FOR all и G F\tyV and the interval Itl,v is entirely to 

the right of the interval It2)V in R if <i > t2 in T. (Note that we assume nothing on 

the ordering of intervals ItuVl and It2tV2 for Vi Ф v2.) So, for each t €T,v G V with 

T\t,v non-empty, we can average ß over {t} x T\t,v x {г»} to obtain a new function 

ß defined as a weighted average 

ß{t,U,v) = Г77 ч 
Е и б я « , » ^ » " ^ ) 

and condition (1) ensures that this ß is increasing in the T-coordinate. By con-

struction, ß is constant on T\t,v for all £ G T, v G V, so we just need to ensure ß 

is increasing in the V-coordinate. One way of achieving this is to take the same 

weights Л for different v G V, that is, to assume A is just a function of t and u, and 



to assume conditions (2) and (3). Then the function 

я,. ч Е и е л * . - ^ ' 1 4 ) ^ ' " ' 1 7 ) ß(t,U,V) = w77\ 

will be increasing in the V-coordinate. Finally, we assume condition (4) on p so that 

we can find an appropriate weight A(t, и) that ensures that the sums ß(f)ß(f) 

and a r e eQual- (We will see that this weight Л(t,u) should be the 

factor pi(t,u).) We assume condition (5) which, with condition (4), ensures that 

the sums Е ^ М / М / Ж / ) and Е / е ^ М / М / Ж Я a r e equal. 

These conditions may seem rather arbitrary, and it is reasonable to ask whether 

we can find examples of lattices and functions satisfying them. We will show later 

in this chapter, that the lattice of level functions studied in the previous chapter, 

with some familiar functions, do satisfy the conditions of Lemma 9.2 and this will 

enable us to give an alternative proof of one of the cases of Theorem 8.4. 

Before proving Lemma 9.2, we state some corollaries, which are special cases 

of the lemma and follow immediately by interpreting conditions (l)-(5) for the 

particular case. If T is the whole lattice T x U x V, then we have the following, 

since T\t<v = U for alH e T, v G V. 

Corollary 9.3. Suppose J7 is a product lattice F = T xU xV and /i, a, ß are non-

negative functions defined on T, with p log-supermodular on T and a increasing on 

!F. If we have the further conditions, 

(1) for all t1>t2eT,v eV, 

miaß(ti,u,v) > maxß(t2,u,v), 
u&A u€W 

(2) if (t, и, VI) > (t, и, v2) G T then ß(t, u, VI) > ß(t, и, v2), 

(3) p(t, u, v) = pi(t, u)p2(t, v) for some pu p2, 

(4) a is constant on {t} xU x {г;} for allteT,ve V, 



then the FKG-inequality holds. That is, 

fe? f&T feF fef 

Also as a corollary to Lemma 9.2 is the case where V is a single element, so that 

T x W x V can be thought of as the product T xU. For T a sublattice of T x U, 

write T\t for the set {и e U : (t, и) e F}. 

Corollary 9.4. Suppose J7 is a sublattice of some product lattice T xU and ß, a,ß 

are non-negative functions defined on T, with ß log-supermodular on T and a in-

creasing on T. If we have the further conditions, 

(1) for all t1>t2eT with T\tl Ф 0 and T\t2 ф </), 

min ß{t\,u) > max ß(t2,u), 

( 2 ) a is constant on {£} х F\t for all t ET, 

then the FKG-inequality holds. That is, 

E ß(f)a(f) e ti№f) < E M) E м/м/ж/). • 
fef fe? /е^ 

Note that the case of F being the whole lattice TxU is the special case informally 

described at the beginning of the chapter. For completeness, we state the formal 

result here. 

Corollary 9.5. Suppose T is a product lattice T — T xU and ß,a,ß are non-

negative functions defined on T, with ß log-supermodular on T and a increasing on 

T. If we have the further conditions, 

(1) for all h > t2 € T, 

mmß(ti,u) > maxß(t2,u), 
и ей ueu 

( 2 ) a is constant on {£} x Ы for all t eT, 



then the FKG-inequality holds. That is, 

E m / W ) E MßU) < E M E ммтп. • 

fe? fer far fer 

We now give the proof of Lemma 9.2. 

Proof . Define 
ß(t,v)= E Pi(t,u)ß(t,u,v) / £ Mi[t,u) (9.2) 

«еЯ t,v 

for alI t e T,v e V with T\tjV Ф 0. We can think of ß as a function on F, by 

defining ß(t,u,v) = ß(t,v) for all (t,u,v) e T. We have that ß is increasing on T, 

as follows. For (tu u,v) > (t2,u,v) € T, so that T\tuV ф 0 and T\t2tV ф 0, we have 

ß(ti,v)~ E ßi(h,u)ß(h,u,v) / E Mi(*i,u) 

> min ß{t\,u,v)> max ß(t2,u,v) by (1) 
u^F It!,« uef\t2,v 

> E ßl(t2,u)ß{t2,U,v) / E = ß(t2,v). 

, V 

For (t, u, vi) > (t, u, v2) e T, so that T\t,Vl ф 0 and ф 0, we have Ям* = ^ k « 

by (2). So, 

жмо = E (*>«)£(*» E 
«еЯ«,«! 

= E mi(t,u)ß(t,u,vx) / E 

> E Ml(t,u)ß(t,u,v2) / E Mi(*,«) =ß(t,v2), 
иеЯ«,"2 "еЯм2 

where the inequality follows from (3). Since /3 is, by definition, independent of the 

Zi-coordinate, and increasing in the T- and V-coordinates it is increasing on T. 

So, a and ß are increasing on T and p, is log-supermodular and we can apply 

the FKG-inequality, giving 

Е^/илЕмш/) < E 
fzF fef fa? fer 



It just remains to show that the sums Y^fzr Kf)ß{f) and Ylfer Kf)a(f)ß(f) 

equal to the sums ] C / e F M / ) / ? ( / ) and E / e : r M / M / ) £ ( / ) . 

are 

We have 

£ Kt,u,v)ß(t,v) = £ £ pi(t,u)p2{t,v)ß{t,v) by (4) 
(t,u,v)€T (t,v)€T x V u€T\t „ 

= £ ß2(t,v) \ß(t,v) £ /Ml(t,u) 
(t,v)&T xV \ u6.F|t,« 

= £ / i 2 (M) YI Vi(t,u)ß(t,u,v) by (9.2) 
(t,v)er xV uerit,„ 

= £ ß(t,U,v)ß(t,U,v). 
(t,ti,v)€F 

By (5), we can view a as a function a(t,v) of just the T - and V-coordinates, so we 

have 

£ ß(t,u,v)a(t,v)ß{t,v) = £ £ /i!(t,«)/i2(t,v)a!(t,t7))9(t,v) 
(t,u,v)ef (t,v)<sr xv ue^lt,« 

= £ /*2(t,v)or(t,w) ( v) £ Hi(t,u) 
(t,v)eTxV \ u&Flt,» 

= £ ß2(t,v)a(t,v) £ «)/?(*, u,v) 
(t,ti)6Txv ue^it.v 

Я t,v#0 

= £ ß(t,u,v)a{t,v)ß(t,u,v) 
(t, u,v)eF 

which completes the proof. • 

We finish by using the above results to give an alternative proof to Theorem 8.4 

in the case where the trees 7\ and T2 differ by one element m, a leaf of T2, and the 

upper cover of m is not a leaf in Recall in the earlier proof, that in this case we 

did not use the FKG-inequality to show that the sequence dk/ck is increasing. 

Alternative proof of a case of Theorem 8.4. Let Ti and T2 be binary trees 



with T2 = 7\ \ { m } for some leaf m of T2. We will show that 

As in chapter 8 we work with a lattice of level functions. Let I be the upper 

cover of m and let mi be the lower cover of I that is different from m. Recall that 

D(mi) is the set of all elements in T\ that are below m\. We work with the lattice 

of level functions Я(п; T\ \ D(mx)). Let h be the height of D[mi] = D(mx) U {mi} , 

and let Я be the sublattice Я = { / € \ D(mi)) : / (m x ) > h}. As before, 

we have a log-supermodular function ß on Я defined as 

ß(f) = рП'/Ы Д pf(x)~f(y) Д (]_ _pmax{/(2l),/(z2)}-/(j/)) 
x>y, an edge y€T1\£)(m1), 
in Ti\D(mi) у has 2 lower covers, 21,22 

Let a ( / ) = / { / ( l T l ) = n} and let /?(/) = E ^ j J t f ~ 1)/(P ~ !)• 

Note that, since h is the height of D[mx], any embedding ф of Tx into must 

map mi into level h or higher. This means that the level function g corresponding 

to ф has g(m\) > h, so g restricted to the set T\ \ D{mx) is in Я'. That is, the 

restriction of any embedding of Ti into T™ to the set Ti\D(mi) yields an embedding 

of T\ \ D(mi) into Tp that corresponds to some level function in Я . 

Conversely, for each embedding ф of Ti \ D(m,i) into T™ that corresponds to 

/ £ Я', we can construct A = A^mi](f(mi)) embeddings фг for i = 1 , . . . , A of Ti 

into Tp , as follows. Write 0,, i = 1 , . . . , A for the distinct embeddings of D[mi] into 

T / ( m i ) that map mi to l/(mi). Since 0(mx) is an element in level / (mi ) of T£, the 

down-set of ф(т\) is a copy of T^miK So, for x £TX\ D{mx), define фг(х) = ф(х), 

and for x S D(mi) define ф^х) to be the element in this copy of Tp^ that 

corresponds the the element 9i(x). We have that фi is an embedding of Tx into T™, 

and the фi are all distinct. Since there are ß(f) embeddings of Tx \ D{m{) into T£ 

that correspond to / we have a total of ^( / )^[ T O 1 j ( / (mi) ) distinct embeddings of 

Tx into Tpn for each / € Я. Therefore, C ^ { n ) = 



Notice that, since { / , g } = { / Л g, f V g} for all f,g EJ7, we have 

A%l№m^ADlmi](9Ы) = 4PLJ((/ Л яХтОМ^«/ V g)(mi)) 

so that the function ß'(f) = M/ )^D[ m i ] ( / ( m i ) ) is also log-supermodular on F, and 

we have 

Cft in) = £>(/), Aft(n) = Y ß ' ( f M f ) . 
fef ft? 

We now show 

CftJ(n) = Aft(n) = £>'(/)<*(/)/?(/), 
fer fzT 

as follows. 

As before, the restriction of any embedding of T2 into Tpn to the set Tx \ D(mi) 

yields an embedding of Ti\D(mi) that corresponds to some level function in T . We 

show that for each / G F, we can construct /jf(f)ß(f) embeddings of T2 into T™. For 

each f € F we can construct / / ( / ) embeddings of Tx into T™ using the construction 

described above. Let ф be such an embedding. We construct an embedding ф of T2 

into Tp by setting ф(х) = ф(х) for all x E Т ь and choosing an element of for 

ф{т). We require ф(т) to be below ф(1) but incomparable with ф{т\) and since 

-ф(1) = ф(1) is in level f(l) of T™ and V( m i ) = Ф(т 1) is in level f(m 1) w e have 

a choice of E f i / ^ ) ^ _ l ) / (p - 1) = ß{f) elements for ф(т). Note that by the 

regularity of T™ the number of places only depends on the level function and not 

the exact positions of ф(1) and ф{т\). See Figure 9.1, for an example where p = 2, 

f(l) = 5 and f(mi) = 2. Clearly each choice defines a different embedding of T2 

into Tp, so the total number of embeddings of T2 into T™ is ß'(f)ß(f)-

Furthermore, if we have f EF with /(lri\D(mi)) = n , the construction yields an 

embedding that maps the root lr2 = lTi\D(mi) of T2 to the root l n of Tp. Therefore, 

we have = as claimed. 

It remains to show the inequality (9.1). We would like to apply the FKG-

inequality, but the function ß is not increasing. However, we see that the dominant 



/ К ) = 2 

г = 

m = 5 

Figure 9.1: The number of places to map m is ß(f) = )(Pl ~ l ) / (p — 1) 

term in the sum '^2{=Дт1)(Рг ~ 1)/(P — 1) is the last term; moreover, it is larger 

than the sum of all the previous terms. This means that if we have f,g G T' with 

f(l) > g(l) then ß(f) > ß(g) whatever the values of / (mi ) and g(mi). This appears 

very similar to condition (1) of Lemma 9.2 and we now show that we can apply the 

lemma. 

Suppose I is not the root of Let T x U x V be the product lattice [га] x [n] x 

Т(п] Ti \ D[l\). So an element (t,u,v) is a triple whose first two coordinates are 

elements in [n], and the third is a level function of Тг \ D[l}. Let к be the upper 

cover of I, and recall that h is the height of D[mi\. Consider the following sublattice 

{(t, u,v)eT xUxV: v(k) >t> u> h} o f T xUxV. For each element (t, u, v) 

in this sublattice we can define a function f :Ti\ D(rrii) —»• R as 

№ = 

v(x) for a; G Ti \ D[l], 

t for X = I, 

и for x = mi. 

and since v(k) > t > и > h we have f(k) > f{l) > /(mx) > h which means 

that / is in F ' . Conversely, for each level function / G T ' we can define a triple 



(;t,u,v)eT x W x V b y 

t = f{l), 

и = /(mi), 

v = fW^Dll], 

and since v(k) > t > и > h, by definition, we have that (t ,u,v) is in the sublattice 

{(t,u,v) ET xUxV: v(k) >t>u>h}. 

So, we can think of T' as a sublattice of product lattice TxUxV by considering 

/ as the triple ( / ( / ) , / (mi) , /|ri\D[z])- The functions / / , a and ß are non-negative 

functions of J7', and ß' is log-supermodular on J7', and a is increasing on Я , so we 

need to check that conditions (l)-(5) hold in order to apply Lemma 9.2. 

For t £ T and v 6 V, the set T'\Uv is non-empty when v(k) > t> h and in this 

case we have = {h, h+1,..., t - 1 } . We have ß(t, и, v) = - l ) / (p -1). 

Suppose tx > t2 £ [n], v € Я(n;7i \ £>ЭД) with > > h and г>(&) > t2 > h. 

Then, since t\ — l>t2 and p > 2, we have 
ti-i ti-i 

min V ( p ' - l ) / ( p - l ) = 

> ы2 - 1)/(р - 1 ) 2 

= E P V ( P - 1 ) > max Y y - l ) / ( p - l ) 
i=0 i=u 

which means that condition (1) holds. Suppose we have t £ [n], v\,v2 £ Я(п; Tx \ 

D[l}) with vx(k) >t>h and v2(k) >t> h. Then = {Л, . . . ,t - 1} = Я ^ , 

so condition (2) holds. Since ß(t,u,v) is not dependent on v we have condition (3). 

Using the definition of n(f) on J7', we have 

ß ^ = p n - f { iTl) YI р / (х)_/(г/) J ] ( ^ ^ { / ( ч Ш Н М ) . 
Е>г/, an edge J/€ri\£>(mi), 
in Ti\D(mi) у has 2 lower 

covers, 21,22 

Consider the contribution of the element mi in the above expression. There is a 

factor 0 f / W - / ( m i ) which appears in the first product because of the edge I > mi. 



There is no contribution to the second product since mi is not the lower cover of an 

element that has two lower covers (that is, I does not have two lower covers). So, 

we can write the above as 

=p№-f(rni)pn-f(lTl) JJ pf(x)-f(y) Д (1 _pmax{/(«i),/(«)}-/(»)) 
x>y, an edge y£Ti\D[mi], 
in Ti\D[mi] у has 2 lower 

covers, zi, Z2 

pf(l)pn-f( lrx) Д pf(x)-f(v) JJ (1 _3^nax{/(*i),/(4)}-/(v)) 
x>y, an edge y£Ti\D[mi], 
in Ti\D[mi] у has 2 lower 

covers, 21, 22 

Note the change in the subscript in the products to T\ \D[mi]. So, writing t = /(I), 

и = / ( M I ) , v = /|TI\D[*]) we have fj,(t,u,v) = p~uß2(t,v) since the term in square 

brackets depends only on t and v. Since fi'(t, u, v) = ß(t,u, we have 

fj/(t,u,v) = Hi(t,u)ß2{t,v), where ßi{t,u) = j(w) is a function just of u. 

Therefore condition (4) holds. Finally, we note that a(t,u,v) = I{v(lrx) = n} is 

not dependent on u, and so condition (5) holds, and applying Lemma 9.2 gives the 

result. 

Recall that we assumed that I was not the root of In the case where it 

is, then things simplify greatly, and the product lattice T x U x V reduces to 

the product T x U = [n] x [n\. The tree T\ \ D(mi) is simply the 2-element 

chain I > mx. We can think of the lattice of level functions P as the sublattice 

{(t,u) e T x U : t > и > h} of T x U = [n] x [n] by considering a function 

/ G P as the pair (f(l),f(mi)). We want to apply Corollary 9.4 so we need to 

check conditions (1) and (2) hold. Since P\t is equal to {h, h +1,..., t -1} if t > h 

and empty otherwise, and ß(t,u) = J^lZlil^ ~ l)/(P ~ !) we have that if ^ > ^ 

then ^ ^ 

min £ ( ^ _ l ) / ( p - l ) > max - l ) / ( p - 1 ) 
I—U I — i i 

exactly as before, so condition (1) holds. Also, the function a(t,u) = I{t = n} is 

independent of и so condition (2) holds, and we can apply Corollary 9.4 which gives 

the result. ^ 
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