Abstract

This thesis is presented in two parts. In the first part, we study a family of models
of random partial orders, called classical sequential growth models, introduced by
Rideout and Sorkin as possible models of discrete space-time. We analyse a particu-
lar model, called a random binary growth model, and show that the random partial
order produced by this model almost surely has infinite dimension. We also give
estimates on the size of the largest vertex incomparable to a particular element of
the partial order. We show that there is some positive probability that the random
partial order does not contain a particular subposet. This contrasts with other ex-
isting models of partial orders. We also study “continuum limits” of sequences of
classical sequential growth models. We prove results on the structure of these limits

when they exist, highlighting a deficiency of these models as models of space-time.

In the second part of the thesis, we prove some correlation inequalities for mappings
of rooted trees into complete trees. For T a rooted tree we can define the proportion
of the total number of embeddings of T into a complete binary tree that map the
root of T to the root of the complete binary tree. A theorem of Kubicki, Lehel and
Morayne states that, for two binary trees with one a subposet of the other, this
proportion is larger for the larger tree. They conjecture that the same is true for
two arbitrary trees with one a subposet of the other. We disprove this conjecture
by analysing the asymptotics of this proportion for large complete binary trees.
We show that the theorem of Kubicki, Lehel and Morayne can be thought of as a

correlation inequality which enables us to generalise their result in other directions.
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Summary

This thesis covers two areas in probabilistic combinatorics, specifically the com-
binatorics of partially ordered sets. Problems and areas of study in probabilistic
combinatorics broadly fall into one of two classes. The first class contains prob-
lems of a deterministic nature, which are particularly suited to some application of
probabilistic methods or techniques. The second class contains problems that are

themselves of a probabilistic nature. We cover problems from both classes.

In the first part of the thesis we investigate a family of random models of partial
orders, called classical sequential growth models. We study in detail the simplest
non-trivial model from the family and analyse the partial orders it produces. We
also study “continuum limits” of sequences of classical sequential growth models,
proving that particular sequences of these models do have continuum limits. We
also prove some results about the continuum limit of a general sequence of classical

sequential growth models, when it exists.

In the second part of the thesis we look at enumeration of embeddings of trees
into complete trees, which can be motivated by a partial-order variant of the best
secretary problem. We show that a monotone property of binary trees that was
conjectured to hold for arbitrary trees does not hold in general. We show that the
monotonicity on binary trees is an example of a correlation inequality on a certain

lattice, and using this we can prove generalisations in other directions.
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Part I

Classical sequential growth models
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In this part we study a family of models of random partial orders, called classical
sequential growth models, introduced by Rideout and Sorkin [24]. These models
were proposed as possible models for discrete space-time, since they are the only
models satisfying certain desirable physical-looking conditions. In particular, we
will analyse the simplest non-trivial model from the family, and we will also define

and study a particular limit of a sequence of classical sequential growth models.

In Chapter 1 we give a full description of the family of models and a brief
summary of the results in [24], explaining the physical-looking conditions imposed
by Rideout and Sorkin, and noting that a particular model from the family can be

specified by a sequence of non-negative constants.

In Chapter 2 we study in detail the particular model called a random binary
growth model, showing that a random poset produced by the model almost surely
has infinite (poset) dimension. This shows that, despite the simple description of the
model, the random poset it produces has a complex structure. We give estimates for
bounds on the size of an up-set of a particular element and show that every element
in the random infinite poset is incomparable to only finitely many others. We also
present a specific poset that, with some positive probability, is not contained in the
random poset produced by the model. This contrasts the model with other random
models of partial orders, for example the random graph order, which contains any

specific poset almost surely.

In Chapter 3 we study the continuum limits of sequences of classical sequential
growth models. Rideout and Sorkin [25] have provided computational evidence
suggesting that particular sequences of models have a continuum limit. We formalise
their results by defining what a continuum limit is, and we show that if a sequence
has a continuum limit then it must be an almost-semiorder. Using some results of
Pittel and Tungol [23] on random graph orders, we prove that the continuum limit
of a sequence of random graph orders, when it exists, is a random semiorder. We

also present some new results on classical sequential growth models. This chapter
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describes work carried out in conjunction with my supervisor, Professor Graham

Brightwell.
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Chapter 1

Introduction

We study a family of models of random partial orders, called classical sequential
growth models, introduced by Rideout and Sorkin [24]. Each model is defined on the
(labelled) vertex set N, which we will always take to include 0. Any model can be
restricted to [n] = {0, 1,2,...,n} and regarded as a model of random finite posets.
The model starts with a poset of one element (labelled 0), and grows in stages. At
stagen = 1,2,..., vertex n is added to the existing poset, P,_1, by placing n above
some choice of vertices of P, ;. The poset P, is defined on vertex set [n] by taking
the transitive closure of the existing and added relations. This is called a transition
from P,_; to B,, written P,,_; — P,. The models are random, so each transition
occurs with some probability. These transition probabilities are fixed and depend
on the particular model. Let P(P,_; — P,) denote the probability of transition

P,_; — P, occurring,.

Rideout and Sorkin then impose four conditions on the transition probabilities,
with the aim of giving the model physical meaning. They call these conditions:
internal temporality, discrete general covariance, Bell causality and Markov sum.
The first and last conditions are implicit in the mathematical approach to random
partial orders, namely that the labelling of a poset is natural (can be extended

to the < order on the natural numbers), and that the model is indeed “random”



CHAPTER 1. INTRODUCTION 16

(at each stage n and for any fixed P,_; the sum of probabilities over all possible
transitions P,,_; — P, must be equal to 1). Discrete general covariance states that
the probability of producing a particular poset should not depend on the labelling
of the poset, that is, given two different sequences of transitions, (P; — P,4;) and

(Q; — Qi+1) which produce the isomorphic posets P, and @, the products

n—1 n-1
[IP2 - Py) and []PQ - Qin)
i=0 i=0

must be equal. So, for example, discrete general covariance immediately implies
that any two transitions from F,_; to isomorphic posets P, and P, have the same
transition probability P(P,—; — P,) = P(P,-1 — P.). Bell causality is a condition
on ratios of transition probabilities. (Note that in [24] Rideout and Sorkin only
study “generic” models, meaning that all transition probabilities are non-zero, in
order to make sense of this condition.) Given a particular poset P, and any two
transitions P — P’, P — P” which add the new element n, let S be the set of all
elements which are incomparable with n in both P’ and P”. Let @ be the poset
formed from P by removing all the elements of S (and obsolete relations), and define
@' and Q" similarly. Then, Bell causality states that

P(P—P) _PQ-Q)
P(P—P") PQ— Q"

the idea being that, since the new element is not placed above any of the elements
of S in either transition, the presence of the set S should not affect the ratio of the

transition probabilities.

A particular model is specified by a sequence t = (tg,t1,...) of non-negative
constants. The random poset is defined as the transitive closure of a directed random
graph G; on N in which all arcs go from a lower numbered vertex to a higher. The
arcs are selected sequentially, considering each vertex n in turn and choosing the set
Dy, C [n — 1] of vertices sending an arc to n; the probability that D, is equal to a

set D being proportional to f|p|, so that

P(D, = D) = f‘:tLD("‘_)E
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A model defined according to this description is called a classical sequential
growth model. Rideout and Sorkin show that these models are the only generic
models satisfying their conditions. It is an easy exercise to check that these models
do indeed satisfy the four conditions; for example, Bell causality holds essentially
because the relative probability that element n selects a set D, defined as ¢|p|, is

independent of n.

Varadarajan and Rideout [31] and Dowker and Surya [12] have studied the sit-
uation where the transition probabilities are allowed to be zero. The Bell causality
condition becomes a condition on products of transition probabilities and the type
of models that satisfy the conditions are very similar to the generic models described

here.

The family of classical sequential growth models also contains models of random
graph orders. A random graph order P, , is defined as follows. The ground set of
P, is the set {0,1,...,n — 1}. For each pair of vertices i < j the relation (i, j)
is introduced with probability p. The poset P,, is then the transitive closure of
these relations. Random graph orders were introduced by Albert and Frieze {1] and
have been studied further by Bollobéds and Brightwell [7, 8, 9] and Simon, Crippa
and Collenberg [27]. The area is covered in the survey of random partial orders by
Brightwell [10]. A classical sequential growth model defined by sequence t where
t; =t for all 4, and t = p/(1 — p), will after stage n — 1 produce a random graph

order P, ,.

In the following chapter, we concentrate on the model where the sequence t is
(0,0,1,0,...), i.e., where all t; are zero except t,. This means that |D,| = 2 for each
vertex n. We say that n selects the two vertices in D,,. So, in this model each vertex
n selects two vertices chosen uniformly at random from the set [n — 1]. We assume
that we start with the vertices 0 and 1 incomparable with probability 1 and then
add vertices n = 2,3,... according to the model. (So, for example, D, = {0,1}

with probability 1.) We call this model a random binary growth model and call the
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random poset it produces a random binary order.

This is the simplest interesting model; the model defined by t with ¢; non-zero
and t; equal to zero for ¢ > 1 produces an infinite antichain (D,, = @ with probability
1, for all n), and the model defined by t with ¢y and ¢; non-zero and ¢; equal to zero
for ¢ > 2 produces a forest of infinitely many infinite trees, where each vertex is an
upper cover of exactly one other vertex and a lower cover of infinitely many other

vertices. These are called the “dust universe” and “forest universe”, respectively, in

[24].

The random binary growth model also has potential applications in computer
science. Under the name of a random binary recursive circuit, the random binary
order has been studied by Mahmoud and Tsukiji [20, 21}, Tsukiji and Xhafa [30] and
Arya, Golin and Mehlhorn [4]. These papers typically focus on the “depth” of the
circuit or the number of “outputs” of the circuit. These are considered as important
parameters in a computer science setting; however, they correspond to the height
of the random binary order and the number of maximal elements of the random
binary order, which are not particularly interesting parameters of a partial order.
Here we will consider parameters that are more interesting from a combinatorial
viewpoint, but these will probably not have useful analogues in the recursive circuit

formulation.

The random binary growth model is essentially the same as any other model
with t3 = ¢4 = ... = 0 since for large n the number of 2-element subsets of [n — 1]
is significantly greater than the number of 1-element subsets and so the probability
of n selecting just one vertex (or no vertices) is very small in comparison to the
probability of n selecting two vertices. Therefore the results in the following chapter

will carry over easily to such models.
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Chapter 2

The random binary growth model

Recall that the random binary growth model is defined as follows. Start with el-
ements 0 and 1 incomparable; then each element n = 2,... selects two elements
uniformly at random from [n — 1], and we take the transitive closure. We will
denote the random binary growth model by By and the random binary order it pro-
duces by B;. We write Ba[n] for the restriction of B, to [n] and Bs[n;,ng] for the

restriction of B to [ny,ng) = {z € N:n; <1z < no}.

The random binary order B, is a sparse order; each vertex n has at most 2 lower
covers since z is a lower cover of n if and only if it is selected by n and is not below
the other vertex y selected by n. This means the Hasse diagram of Bs[n] has at
most 2n edges. Also, as we now show, the expected width (i.e., the expected size of

the largest antichain) of Bs[n] increases with n. A vertex z in B;[n] is maximal if

and only if all vertices y =z + 1,z 4+ 2,...,n do not select z, so
- 2 S oy—2  z(z-1)
1 1 1 = 1 — = =
P(z is maximal in Bs[n]) | | ( y) | | ” n(n—1)

y=x+1 y=z+1

and so the expected number of maximal elements is

n

1 1 n . n
n—(nTﬁZx(x— 1) = Y p— (;x —Zm)

= 1 n(n + 1);2=7i+ 1) n(n+1)
" n(n-1) ( 6 2

):(n+ 1)/3.



CHAPTER 2. THE RANDOM BINARY GROWTH MODEL 20

(In fact, this is shown in [20], where Mahmoud and Tsukiji also show that the number
of maximal elements of B;[n| tends in distribution to a normal random variable with
mean n/3 and variance 4n/45.) The maximal elements form an antichain, so the

expected width of B[n] is at least (n + 1)/3.

However, the number of minimal elements is always 2, since only 0 and 1 are
minimal. Moreover, the expected number of minimal elements of Bs[ny,ny|, for
n1 2 2, is bounded above by n; as my tends to infinity. Indeed, a vertex z in
Bj[ny, ngo) is minimal if and only if it selects both vertices from [n; — 1], and the
probability of this is (%)/(5) = ni(n1 — 1)/z(z — 1). Summing over z from n; to

ny gives the expected number of minimal elements equal to ny — ny(n; — 1)/ne.

In Section 2.1 we study the dimension of B,. The dimension of a poset P
on ground set X is the minimum number of linear orders on the set X whose
intersection is equal to P. In other words, the minimum number of linear orders L;
such that z < y in P if and only if z < y in L; for all i. An equivalent definition
is that the dimension of P is the smallest d such that P can be embedded into
R?, where R? is the d-dimensional Euclidean space with ordering (z1,...,%4) <
(Y1,...,94) in R? if 2; < y; in R, for all 4 = 1,...,d. (The equivalence can be
easily proven; the essential observation is that the linear orders on X correspond
to the coordinate-wise orderings of the embedded points in R%.) Since B is sparse,
one might suppose there to be a relatively simple structure to B,. However, we
show this is not the case in so much as showing that B; has infinite dimension,
almost surely. Using standard notation (see, e.g., [29]), we write P(1,2;m) for the
subposet of the subset lattice formed by the l-element and 2-element subsets of
the m-element set {1,...,m} ordered by inclusion. Spencer [28] proved that the
dimension of P(1,2;m) is greater than log, log, m, so we show that B, has infinite
dimension, almost surely, by showing it contains a copy of P(1,2;m) as a subposet,
for each m, almost surely. This is done by counting (and bounding the expected

number of) certain “paths” in B, (the “paths” in B, are exactly the paths in the
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directed random graph Gy).

In Section 2.2 we study the sizes of up-sets in By[n] and, related to this, the
number of elements in By incomparable with an arbitrary element. Although B, is
sparse, we show that for all r the number of elements incomparable with r is finite.
In particular, this implies that B, does not contain an infinite antichain, almost
surely. Moreover, for any classical sequential growth model defined by sequence t
where t; # 0 for some 7 > 2, the same result is true, that the random poset produced

does not contain an infinite antichain, almost surely.

We use the differential equation method of Wormald [32, 33] which specifies when
and how a discrete Markov process can be closely approximated by the solution to
a related differential equation. We prove a version of Wormald’s theorem which
makes explicit the errors in the approximation. We use this result to analyse the
growth of the up-set of an arbitrary point. For a fixed point r, write U for the set
of elements above r in the finite poset Bs[n]. We can think of “growing the poset”
by increasing n. Then |U,£n]|, which depends on n, can be considered as a Markov
process. Using this “differential equation method”, we give good estimates on |U,["]|
for particular values of n, and show that there exists an n = n(r) such that I, C [n].
Here, I, is the set of vertices greater than r which are incomparable with r. So, for
fixed r, there are no vertices greater than n incomparable to 7, and so the number

of vertices incomparable with r is finite. We provide two similar proofs, one giving

bounds for a typical r, and one giving bounds for all but finitely many r.

Is the fact that P(1,2,m) is almost surely contained in B, & special case of
something more general? Is it possible, as in the case of random graph orders, that
every finite poset is contained in By, almost surely? In Section 2.3 we show that this
is not the case. We use our result from Section 2.2, that there is an n = n(r) such
that for all but finitely many r, there are no vertices greater than n incomparable
with . So, we know that if two elements in B, have labels with a large enough

difference then they must be comparable. We construct a poset which if contained
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in By must have two elements whose labels have large difference. Combining these
two results, we provide an example of a poset not contained in B, (or rather, there

is a positive probability that B, does not contain the poset).

2.1 The dimension of B,

We write P(1,2;m) for the subposet of the subset lattice formed by the 1-element
and 2-element subsets of the set {1,...,m} ordered by inclusion. For a particular
vertex r, let U, be the set of all vertices above r in B, and let UT[t] be the set of all
vertices above 7 in Bs[t]. Denote by T} the hitting time of the event |U,| = k, i.e.,
the smallest t such that |Ur[t]] =k, and the waiting time between events |U,| = k—1
and |U,| = k by Wy, so that Ty,; = Ty + Wiy1. We include the point r in U, so
that 77 = r.

We now show that, for every m, there exists a copy of P(1,2;m) in Bs, almost
surely. This is enough to show that B, almost surely has infinite dimension, since

dim P(1,2;m) > log, log, m (see [28]).

In fact, we will prove a stronger result, that for each m there exists an 7y such
that the probability of there being a copy of P(1,2;m) in Bs[r, 2r7/%] is greater than

3/5 for all r > ry.
We use the following lemma to find a copy of P(1,2;m) in By[r, 2r"/%).

Lemma 2.1. For any m, and any n; < ng, if we have sets X = {x1,...,zm} C
m

[n1,ma], Y = {y1,...,ym} C [n1,n2], where M = (2), and the following conditions
hold

(1) the points in X are incomparable in Ba[ny,ny),

(i) for each pair of points x;,x; in X there is ewactly one yi in Y which is above

these points and no others in X (according to the order Ba[ni,ny]),
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then X UY is a copy of P(1,2;m) in Ba[ny,ne] where X is the set of minimal

elements and Y is the set of mazimal elements.

Proof. Let < be the order on B;[n1,n,]. To show that X UY is a copy of P(1,2;m)
we need to show that the only relations are those described by condition (ii). That

is, that there are no relations of the form z; < z;, yx < y; or yr < ;.

By condition (i) there are no relations of the form z; < z;. So, suppose there
exists some relation yx < ;. Since |Y| = M = (7), condition (ii) implies that there
exists a pair z;, z; with z;, z; < y5. But then z;,z; < y; contradicting condition (ii).
Suppose there exists some relation yx < x;. Then by condition (ii) there exists some

y; with 2; < y;. But then yx < y; which leads to a contradiction as above.

So, X UY is a copy of P(1,2;m) and X is the set of minimal elements and Y is

the set of maximal elements. a

Proposition 2.2. For every m, there exists an ro such that the probability of there

being a copy of P(1,2;m) in Ba[r,2r"/%] is greater than 3/5 for all v > r,.

Proof. We will prove the result as follows. Assume that m is fixed, ry is sufficiently
large and r > 7. First we find a set of points that satisfies condition (i) of Lemma 2.1
with some high constant probability. Because of the sparsity of By, it is easy to find
this set. Here we will take the points r,7+1,...,7+m — 1. These points will form
the minimal elements of a copy of P(1,2;m). We then grow the poset up to size 77/,
keeping track of the sizes of the up-sets of these chosen minimal points. The value
r7/5 is chosen so that the up-sets are large enough, but their pairwise intersection is
still an insignificant fraction of the whole up-set. This means that the set of points
above one and only one of the minimal points is reasonably large. The bulk of the
proof is in showing this. Finally, we grow the poset up to size 2r7/° to find the points
satisfying condition (ii) of Lemma 2.1. Indeed, we look for points in [r™/® + 1, 2r"/%]
selecting a pair of points from each pair of “exclusive up-sets”. Because the sizes of

the exclusive up-sets are known, we can show that the probability of finding these
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points is at least some constant probability. We then apply Lemma 2.1 to obtain

the result.

Following this scheme, where m is fixed, ro is sufficiently large and r > ry,
consider the points r,7+1,...,7+m — 1. We attempt to find a copy of P(1,2;m)

in which these are the minimal elements. We have,

m—1 r
P(r,r +1,...,7 +m — 1 are incomparable) = H (Sf_),b) > 9/10 for ry > 20m?.
i=1 2

Now grow the poset by adding points up to n = r”/3, We consider the growth

of the set U,. We calculate the expected waiting time EWj.,; as follows. Suppose
T, = t, then since Wi, always takes integer values greater than or equal to 1 we

have
t+l k

EWk+l_1+Z]P W1 > 4) ~1+ZH t+l

j=1 j=1l=1
and using the inequalities 1 —z < e™® and fb+1 flz)dz < Z LfH< fa  f(x)da

for f decreasing, we have

t+1)%12k -1

That is,
T +1
2k -1

E(Wk+1|Tk) S ]. +

So, we have

ET; +1 2k
ETiy1 = ETi + EWgyy < ET + (1 + ‘)L-k_ T Ay A (ETe +1), (2.1)
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which by induction on k gives

ETir1 < (2%/(%%))r + 2k. (2.2)

Using Stirling’s approximation we have

2k A /27r(2k)2k+1/26‘2k+1/(24k+1) 22k+1/2€1/(24k+1)
2 >
( k ) (V2rkk+1/2e=k+1/12k)2 = \/orkl/2¢1/6k

50 BTyy1 < /met/S=1/C%+0\/kr 4 9k, for k > 1. For k > 2, /mel/6-1/(24k+1) < o

for k > 1,

and using (2.2) we have ET, < 2r + 2, 50 ETj41 < 2rvk + 2k and so

ET}, < 2rVk + 2k. (2.3)

If we similarly define Uy, T, W for r+1i,i=1,...,m— 1 and write T." for

T}, then we have Tl(i) = r + ¢, giving equations

i 2k @G
ETy)) < 57— (BT +1), (2.4)
ETY, < (22 (%)) (r + ) + 2k, (2.5)
ETY < 2(r + i)Vk + 2k, (2.6)

corresponding to equations (2.1),(2.2) and (2.3).
For rq > m we have r +4 <7+ m < 2r, so (2.6) becomes

ET® <4rvk+2k, i=0,...,m— L

So, recalling that n = r7/5, we have
P|UM| < r3/%) = P(T,5/s > n) < ET,a/4/n
< (4rt/8 4 2r3/4) rT/5 < 6/r1/40 < 1/10m
for ro > (60m)*°, and similarly for |UZ,],i=1,...,m - 1.

Therefore, P(all [U™],..., |UT[:_]m_1| > r3/4) > 9/10.

We say a point z selects a pair of sets (X1, X2) if D, = {x1,2,} for some z; € X;

and - € X.. that is. if x selects a point from each set X; and X,. Using the lower
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bounds on Ur[’fr],- we can show that, with high probability, there exist points in B;[2n)]
selecting each pair (Ur[rfr]i, U,[Tf,_]j). We might hope for these to form the maximal points
of a copy of P(1,2;m), since for each pair of minimal points r + 4,7 + j we have a
point above both. However, it is possible for these potential maximal points to be
above more than 2 minimal points. We need to find points above exactly 2 of the
minimal points. To do this we need to look at a subset of U,,;, namely the set of

points above r + ¢ but not above any other r + j for j # 4.

For points z, y in Bs, write U, for the set of points above both = and y. Consider
the restricted poset Bz[n] and write UE} for the set of points in By[n] above both z
and y. We will show that |U", | is small in comparison to |UF| and |U,|. Call
a sequence of integers (’ij);=1 from [r,n] a path if i; selects %;_; in the poset, for
j=2,...,s. So a path is necessarily a strictly increasing sequence. We say a path
(ij)j.=1 is from 4, to is. Define a forked path with ends z,y, z and connection point
w to be three paths, one from z and one from y both to w, and a third from w to 2
(so z,y < w < 2), with w the only common point of the first two paths. Note that

we allow the possibility that w = 2, in which case the third path is the single point

w==z.

For each point u in U,[’;] ', there must be paths P, from r to v and P,y from
r+1 to u; if we set v = min{j : j is a common point of P, and P,;;} then by taking
the subpath (subsequence of consecutive terms of a path) from r to v (of P,), the
subpath from 7 + 1 to v (of P.4;) and the subpath from v to u (of either P, or
P.41) we have a forked path with ends r, 7 + 1 and u, and connection point v. This
forked path is not necessarily unique, since P, and P, are not necessarily unique.
Let FP(r,r +1,v) be the total number of forked paths with ends r and 7 + 1 and
connection point v all fixed, and with arbitrary third end u, with v <4 <n. Let

FP(r,r+1)=Y0_ .o FP(r,r+1,v). Then |Uprq1| < FP(r,r + 1).

Now, the probability that a strictly increasing sequence (’I:j);=1 is a path in Bs[n|

is P(ﬂjzz(ij selects ;1)) = [T;—5(2/%;), by independence.
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We can also calculate the probability that the points {ip,%1,...,%s},%0 < 41 <
++ - < is form two disjoint paths in By[n|, one from iy, the other from i;, as follows.
Start with two sequences A = (i) and B = (4;), then taking each point i;,j =
2,...,8 in turn make it the next term in either sequence A or sequence B. (So, the
resulting A and B are disjoint subsequences of (ij);zo). The probability that we
can make A and B paths is the probability that at each step i; selects one of the
current end terms of A or B. For step j this is at most 4/7; so by independence the
total probability is less than [[;_,(4/4;). We have inequality here because we are

over-counting the case where %; is above both of the current end terms of A and B.

The expected size of FP(r,r + 1,v) is the sum over all subsets I of [r,n],
with 7,7 + 1,v € I, of the probability that I forms a forked path with ends
r,7 + 1,max ] and connection point v. This is the probability that I., = {7 €
I : i < v} forms two disjoint paths from r and r + 1; and v selects the end of
both paths; and I, = {¢ € I : 4 > v} forms a path from v to maxI. So,
for I = {r,r + 1,42,...,85-1,V, %541, - - ., s4s} With 4; increasing and 7 + 1 < 1,

is—1 < U < is41 this probability is less than Hj;;(4/zj) x 1/(3) x H;I:l(Q/isJ,j).

So the sum over all such subsets I can be written as the following product, since
the individual terms of the expanded product correspond exactly to the required

probabilities for all subsets I,

EFP(r,r+1,v) < H (1+ ) H (1+ )

i=r+2 i=v+1
1
<exp{4z }v(v——l)eXp{2,Z Z}
i=r42 i=v+1
v—1 2 n\2

< —
- <r+1) v(v—1) ('v)

2n?
S o

using the inequalities 1 + z < €® and Zl_a f@@) < fa , f(z)dz for f decreasing, so

in particular 330__1/i < logb —log (a — 1).

Therefore. RFP(r.7 + 1) < 2n3/r* and since n = 7/, we have E|U£Ti].1| <
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EFP(r,r + 1) < 2r'/5. The same method gives the same upper bound on the
expected size of UL for all pairs (z,y) in [r, r+m—1]® so P(|U, ,+1| > (10m?)rl/%) <
1/5m?2 and P(all |UM| < (10m?)r'/%) > 9/10.

Let A" be the set of points above r but not above r+1,...,r+m—1in By[n],
then A" = P\ yr ol

rr+i’

Similarly define AL"], z € [r+ 1,7+ m —1]. Then,
for r > g > 400mS, we have (10m?)rl/® < r3/4/2m so with probability greater than

4/5 we have all |AT|, z € [r,r +m — 1] at least Lp3/4,

We grow the poset by adding a further n = /% points, to find our maximal
points: M = (7) points a;,...,an, so that each pair of sets (ALZ’],A;L"]), (z,y) €

[r,7 +m — 1]@ is selected by some a;.

Now,

el e S N

(7)) C2n+ip o e

P(n + i selects (Al A[:f']_l)) for i < n,

SO

r3/2
P(none of n + 1,.. ., 2n selects (AR, Aﬁl)) (1 - %)

_3/2
{2}

< exp(—r'/19/8),

which is less than 1/10M for 7y > (8log 10M)¥. The same calculations give the
same upper bound on the probability of failing to find a point in [n + 1,2n] which
selects (A, A"} for each (z,y) € [r,r +m — 1)@, so the probability of failing to

find points ay,...,ay in [n + 1,2n] as desired is less than 1/10.

So with probability at least 3/5 we have sets {r,» + 1,...,r + m — 1} and
{a1,as,...,ay} satisfying the conditions of Lemma 2.1. Therefore {r,r+1,...,7+

m~1,a1,a,,...,apn} is a copy of P(1,2;m) in Bs[r, 2n). O

Theorem 2.3. For every m there ezists a copy of P(1,2;m) in By, almost surely.

Proof. This follows from Proposition 2.2. Fix m. Let vy be given by Proposition 2.2.
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To find a copy of P(1,2;m) in B, we split B, into disjoint sets of the form Bs[n;, ny)

as follows.

Fori=1,2,...,let r; = 21"1.7 / ? + 1. By Proposition 2.2 the probability of there
not being a copy of P(1,2;m) in By[r;,2r’"] is less than 2/5, for each i. The
probability of not finding a copy of P(1,2;m) in the infinite poset B, is less than
the probability of not finding a copy of P(1,2;m) in every poéet Bs[r;, 27“,-7 / °]. But
the sets Ba[r;, 27";{ / ®] are disjoint, so the events “not finding a copy of P(1,2;m) in
Bs[r;, 27',»7 / 5]” are independent. Therefore the probability of not finding a copy of

P(1,2;m) in the infinite poset B, is zero, as required. O

Corollary 2.4. By has infinite dimension, almost surely.

Proof. This is immediate, since dim P(1,2;m) > log, log, m. O

This tells us that, almost surely, there is no finite d such that B, can be embedded
into R¢, the d-dimensional Euclidean space with ordering (x,...,zq4) < (¥1,.--,¥q)
in R? if z; < 9; in R, for all 4 = 1,...,d, as defined earlier. What can be said for
embeddings into other partial orders? Since classical sequential growth models have
been proposed as possible models of discrete space-time it would be interesting to
know whether the partial orders they produce can be embedded into a d-dimensional

Minkowski space for some finite d.

The Minkowski space M? is defined as the partial order on R?% with ordering

(zo, .+ 1 Ta1) < (Yo,..-rYa—1) in M? if yo — 29 > \/Zf;ll(yi —z;)% in R. The

Minkowski dimension of a partial order P is the smallest d such that P can be

embedded into M¢9. It is known that a finite partial order P can be embedded into
M4+1 if and only if P can be represented as a d-sphere order. A d-sphere order is
a partial order on a ground set of spheres in R¢, with the ordering on the spheres
given by (geometric) containment. For example, the partial order P(1,2;m) can
always be represented as a 3-sphere order. This is a specific case of a result of

Scheinerman [26]. This means that the Minkowski dimension of P(1,2;m) is at
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most 4, for all m.

We believe that the random binary order B; has infinite Minkowski dimension.
A proof of this result could follow the proof strategy of Theorem 2.3; find a family
of partial orders with arbitrarily large Minkowski dimension that are almost surely
contained in B;. Unfortunately, the partial orders known to have large Minkowski
dimension are all significantly more complex than P(1,2;m). Given the complexity
of the proof of Proposition 2.2 it would be ambitious to attempt a proof using this

strategy. Instead, we make the following conjecture.

Conjecture 2.5. B, has infinite Minkowski dimension, almost surely.

We justify the conjecture as follows. If the poset B; has finite Minkowski dimen-
sion, then it can be embedded into M¢? for some d. Since the model B, produces the
poset Bj sequentially, this means that at each stage n the finite poset Bs[n| can be
embedded into M?. However, this seems unlikely since at each stage the element n
selects two existing elements at random, each pair of elements being equally likely
with no regard to the existing structure of the embedding of Bs[n — 1] in M%. It
seems more likely that the random nature of the model B, is such that, for large

enough 7, the poset By[n] produced at stage n cannot be embedded into M¢.

2.2 Up-sets of vertices in B

Brightwell [11] proved that, almost surely, each element of B, is comparable with
all but finitely many others. This result is contained within what we prove here;
we need a more refined version, providing an estimate of the number of elements
in By[n] that are incomparable with an element 7, and an estimate of the largest
element incomparable with r. Recall that " is the up-set of r in Bs[n] and that
= [r,n] \ UM is the set of points larger than r and incomparable with r. We

study the size |Ur[”]l and give good estimates of how IUr[n]| grows with n. We then
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use these estimates to provide estimates of the size ]Il"]|.

In [32, 33], Wormald presented a theorem which describes when and how a dis-
crete time Markov process can be approximated by the solution to a related differ-
ential equation. However the approximation is only in terms of asymptotic bounds;
here we state and prove a version of the theorem which gives explicit expressions for

the approximation.
We begin with some definitions.

Definition 2.6. A function f : R2 - R satisfies a Lipschitz condition on a con-

nected open set D C R? if there exists a constant L > 0 with the property

|f(z1,91) — f(z2,92) € L(|21 — 22| + |91 — %2) (2.7)
for all (z1,y1) and (z2,¥2) in D.

Deﬁnition 2.7. For Y a real variable of a discrete time random process Gg, G, . ..
which depends on a scale parameter n, we write Y (t) for Y (G;), and for a connected
set D C R? define the stopping time Tp = Tp(Y') to be the minimum ¢ such that
(t/n,Y(t)/n) & D.

Definition 2.8. A sequence of random variables Yy, Y1,... is a martingale with

respect to a sequence of g-algebras Fo C F; C ... if, for all 4,
(i) Y; is Fi-measurable,

(i) ElYi| < oo,

(iii) E(Y;4+1|F:) =Y; almost surely.

If, instead of (iii), we have:

e E(Yiy1 | F;) <Y, almost surely, then (Y;) is a supermartingale with respect to
(Fs),

o E(Yiy1 | F) > Y; almost surely, then (Y;) is a submartingale with respect to
(Fi)-
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The following lemma will be used in the theorem and is a simple extension of
a martingale inequality, known as Azuma’s inequality [5], to supermartingales. We
omit the proof, which can be obtained by an obvious modification to the proof of

Azuma’s inequality.

Lemma 2.9. Let Yy, Y1, ... be a supermartingale with respect to a sequence of o-
algebras Fo C Fy C ... with Fy trivial, and suppose Yo =0 and |Yiy1 — Yi| < c for

t 2 0 always. Then for all a > 0,

P(Y; > ac) < exp (—a?/2i).

We are now in a position to state and prove our version of the theorem.

Theorem 2.10. Let Y be a real-valued function of the components of a discrete time

Markov process {G;}t>0. Assume that D C R? is connected, closed and bounded and

contains the set
{(0,y) : P(Y(0) = yn) # 0 for some non-negative integer n}
and

(i) for some constant 3,

YE+1)-Y (@) <P

always fort < Tp,

(i) for some function f : R?* — R which is Lipschitz with constant L on some

bounded connected open set Dy containing D, and some constant A,
[E(Y (t +1) = Y(8)|G:) — f(t/n, Y ()/n)] < A/
fort <Tp,

(i5) f:R? — R is bounded on Dy, i.e., there is a constant y such that |f(z,y)| <
for all (z,y) € D.
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Let w = w(n) be a fived integer-valued function with w = o(n). Then the following

are true.

(a) For (0,9) € D the differential equation

=

Y = fz,y)

QU
&

has a unique solution y = y(z) in D passing through y(0) = 4, and which extends

for some positive  past some point, at which x = o say, ot the boundary of D;

(b) Writing io = min{ |Tp/w|, |on/w]} and k; = 1w, there exists some B > 0 such
that

foralli=0,1,...,%0— 1 and allt, k; <t < ki1, and for i =ig and k;; <t <
min {Tp,on}, where B; = ((1+ Lw/n) — 1)Bw/L, and y(z) and o are as in
(a) with § =Y (0)/n.

Proof. Following the proof in [32], we have part (a) from the theory of differential
equations. Let y(z) and o be as in part (a).

Let 0 <t < Tp— wand let 0 < k < w. This implies that ¢t + k < Tp and so
(t+k Y(t+k)) eD.

By (i), we have |[Y(t+ k + 1) = Y (¢t + k)| < B. Also, by (ii),

E(Y(t+k+1) - Y(t+k)|Gisx) <f(t+k Y(t: k)) n

Sf(z,@> +L(§+|Y(t+k)—Y(t)|)+é

n n n n
<f(t Y7(1t)> (w—i—ﬁw)-ﬁ—)\,

where the second inequality follows from (2.7). Writing g(n) for (L(w+ Bw)+ X)/n,

the inequality becomes

B (64 k1) =Y+ RIGus) < 1 (5,70 ) +glo).
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Therefore, conditional on G,,

Y(t+ k) - V() - kf(t Y“))—kg(n)

n

is a supermartingale in k with respect to the sequence of o-fields generated by

Gy, . .., Gipw. The differences of the supermartingale are, by (i) and (iii), at most

t Y(t
ﬁ+f( T(l)>+g(n)56+7+g(n)-
So, by Lemma, 2.9, for all a > 0,

P(Y(t+w) = Y (1) —wf (£ 22) —wg(n) > a(8+7+g(n))) < e, (28)

The same argument with
t Y(t
Y(t+k) - Y(t) - kf <—, ﬁ) + kg(n)
n o n
a submartingale gives

PY(t+w)-Y(t)—wf (:w Yr(f)) +wg(n) < —a(B8+7+g(n))) < e~ /2w (2.9)

Setting @ = 2w?/n and combining (2.8) and (2.9) gives

POY(t+w)-Y(t)—wf (%, Y—,(fl)| > 2(w?/n) (B+ 7+ g(n)) +wg(n)) < 2672/,
(2.10)

Now, define k; = iw, i = 0,1,...,49 where ig = min{|Tp/w]. lon/w]}. We

show by induction that for each such ¢,
P(|Y (k) — y(ki/m)n| 2 Bi) < 2ie™2"/™ (2.11)
where B; = ((1 + Lw/n)* — 1) Bw/L for some B > 0.

The induction begins by the fact that y(0) = Y (0)/n. (Take § = Y(0)/n and

use part (a).)
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So, assume (2.11) is true for 7. Write

Ay =Y (k) — y(ki/n)n
Ay =Y (ki) =Y (k)
Az = y(ki/n)n — y(kiy1/n)n

The inductive hypothesis (2.11) gives |A;] < B; with probability at least 1 —
2ie2w*/"* By (2.10) we have

|42 — wf(ki/n, Y (ki) /n)| < 2(w®/n) (B + 7 + g(n)) +wg(n)

—2uw3/n?

with probability at least 1 — 2e

Since f satisfies the Lipschitz condition and (k;y1/n,Y (kiy1)/n) € D (because

ki1, < Tp), we also have

|As +wy'(ki/n)| = ly(ki/n)n — y(kirr/n)n + wy' (k;/n))|
= |[—wy'(k/n) + wy'(ki/n)| for some k, k; < k < kipq
= w|f(k/n, y(k/n))“‘f(ki/n, y(kz/n))l since y is solution to (a)

< wL[w/n+ |y(k/n) = y(ki/n)|] by (2.7)

<wLw/n+ (w/n)|f (K /n,y(k'/n))|] for some k', k; <K < k
< wLlw/n+ (w/n)y] by (iii)
= L(1+ y)w?/n

where we have used the Mean Value Theorem (twice, to get lines 2 and 5). So,

|y (ki/n) = f(ki/n, Y (ki) /)| = [f(ki/n, y(ki/n)) — f(ki/n, Y (k:)/m)| < L|Ay|/n
and so assuming |A;| < B;, we have

L(1+ 2 2
s = (-uf e, Y ) < LI Ty LAt T
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So, we have

Y (kir1) ~ ylkiyr/r)n| = | A1 + 4z + A3
< B; +2(w*/n) (B + v + g(n)) + wg(n) + L(1 + y)w?/n + B;Lw/n

= 2(w?/n) (B + 7 + g(n)) + wg(n) + L(1 + v)w?/n] + Bi(1 + Lw/n) (2.12)
with probability at least 1 — 2(i + 1)e=2#*/%,
There exists B > 0 with
2(w?/n) (B + v+ g(n)) + wg(n) + L(1 + )w’/n < Bw?/n (2.13)

for all n, so the term on the right hand side of inequality (2.12) can be replaced

with B;(1 + Lw/n) + Bw?/n, which is exactly B;.;. So we have (2.11) for i + 1.

Finally, k;;1 — ki = w and the variation in Y'(¢) when ¢ changes by at most w is
at most Sw, by (i), and as before |y(t,/n)n —y(t2/n)n| is less than w|f(t/n,y(t/n))|

for some t, t; <t < t; and this is less than yw. So
P(|Y (¢) — ny(t/n)] > B; + (B + 7)w) < 2ie~ 2/

for all ¢ = O,l,...,io—l and all t, k'z <t<L ki+1, and for ¢ :’1:0 and kio <i<L

min {Tp, on}. O

We can apply Theorem 2.10 to ]U,["]| as follows. We take as the Markov process
the random binary growth model, and as the real-valued function the size of the
up-set of a fixed vertex r. We then find sets D and Dy, a function f, and constants
B, X and v satisfying the assﬁmptions of the theorem. We obtain the following
corollary, which shows fairly precisely how | U,[m][ grows as m goes from some initial
n to (o + 1)n, where o is a large constant. Over this range, |U™|/n grows from a

small value to a value near to 1.

Corollary 2.11. For fited r and anyn > r, if IU,["]| = c¢(n)n for c¢(n) an arbitrary

function of n, then
P |U7{‘n(a+1)]| _ o+ 1
n(c+1) o+1/¢(n)

10e*17 + 2.1\ 1 . 3
/3—6 —2n
2 ( o+1 ) nifss | S 2om e
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for any constants 0 < § < 1/3, 0 > 0.

Proof. Fix a vertex r in B,[n). Let the Markov process {G:}:>0 be the random
binary growth model but starting at stage n, so that G, corresponds to Bs[n + ¢|.
Let Y (t) be the size of the up-set of r in By[n + t], i.e., Y(t) = IUr[""Lt]]. For any
constant o, define D as the region {(z,y): 0 <z < 0,0 <y < z+1}. The region
D contains the interval {(0,y) : 0 < y < 1}, and since ]U,["]! = c¢(n)n, we must
have ¢(n) < 1 for all n. So, D satisfies the assumption in Theorem 2.10, since it
contains all points (0,¢(n)) for n = 1,2,.... We now find a set Dy, a function f,

and constants 3, A and + satisfying assumptions (i)-(iii).

Since Y (t) = UM < n+t we have Y(£)/n < t/n+1, and so (t/n,Y(t)/n) € D

as long as t/n < o. This implies Tp = |on] + 1.

Let 8 = 1, then (i) holds since |Y (t+1) = Y (£)| = |Uf"H+| — IU,,["+t]| < 1 always

for t < on.

Let f(x,y) = 2y/(z+1) —y?/(z+ 1)%. Let L = 2.1 and -y = 1.1. The function f
is bounded on D by 1 (attained when y = x+1) and is continuous over the boundary
of D, so there exists an open set D’ containing D on which f is bounded by v = 1.1.
Also, ||V ||, the length of the gradient vector of f (Vf = (¥, %5)), is bounded on
D by 2 and is continuous over the boundary of D, so there exists an open set D"

containing D on which ||V f|| is bounded by L = 2.1. But then
|f(w) = f(v)| < Llu—v| (2.14)

for all u,v € D", so f is Lipschitz with constant L on D" (this follows by applying

the triangle inequality to the right hand side of (2.14)). Let Dy be the intersection
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of the two sets D', D”. So, (iii) holds, and (ii) holds with A = 1, since

E(Y(t+1) = Y(¥)|G:) = 0x P(Y(t+1) = Y (2)|G:) + 1 x P(Y(t+1) = Y(2) + 1|Gy)
=1— (n+t+12—Y(t))/(n+;+l)
(n+t+1=-Y@)(n+t-Y(t)
(n+t+1)(n+t)
_2Y(M)(n+t+ 1) =Y (@)Y () +1)
- (n+t+1)(n+t) ’

=1-

which differs from f(¢/n,Y (t)/n) by at most 1/n for t < on.

Now Tp = [on| + 1 and so Tp > on. So Theorem 2.10 gives the result (b) for

t =1y, t = on, namely that, for some B > 0,
P(|Y (on) — ny(0)| > Bj, + 2.1w) < 2ige22"/", (2.15)

Here y(z) is the solution to the differential equation

2
4y _ o5 Y y

de x+1 (z+1)

with initial condition y(0) = ¢(n). This is a homogeneous equation with solution

(x4 1)°

y(z) = Tt 1)

Also, iy < on/w, so B;, = ((1+ Lw/n)® — 1) Bw/L < Bwe*? /L, and (2.15) be-

7

for some B > 0.

comes

2
IU,["“"]] — n—M > Bwel? /L + 2.1w> < 2(on/w)e 2/,

o+ 1/c(n)

Choose § with 0 < 6 < 1/3 and set the arbitrary function w(n) to n?3+%. Then
w(n) = o(n) and so using the particular values for L, 3, and A, we can satisfy

equation (2.13) with B = 21 and this gives the required result. a

In the proof of Proposition 2.2 we bounded the expectation of the hitting time
of the event |U.| = k. We use this bound to show that U, contains all but finitely

many points of Bs, almost surely. In terms of I, we have the following theorem.
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Theorem 2.12. For any constants e,n with0 < e < 1/4 and 0 < n < 1 there exists
ro such that for all v > ry both |I,| < r?*% and I, C [r,r*+®] hold with probability

at least 1 — 1.

Proof. Assume that r is sufficiently large. As before, let T} be the hitting time of
event |U,| = k, in terms of the growth model, i.e., the smallest ¢ such that |U| = .
As in (2.3), we have ET}, < 2rvk+2k. So ET,. < 4r? and Markov’s inequality gives

P(|UID7) < ) = P(T2 > (16/n)r?) < n/4 (2.16)

so that with suitably high probability the size of the up-set, [UJ'%/ ")r2]|, is at least
fraction 7/16 of the size of the poset, (16/n)r2.

Set ng = (16/n)r?. We can rewrite equation (2.16) as

P(|UM!| fng > 1/16) > 1 — n/4. (2.17)

Assume we have ]UT["O]I /no > n/16. Let € be an arbitrary constant with 0 < ¢ <
1/4. We will use Corollary 2.11 to show that as the size of the poset, n, increases
from ng to (¢ + 1)ng, for some constant o, the ratio IUT["]| /n also increases, to a

value that is at least 1 — /2.
. LUl
Claim 2.1. There ezists a constant oy (dependent on € and n) such that if —— >

| T[(60+1)no] |

(00 + 1)ng

1/4

n/16 then > 1 — /2 with probability at least 20gny’ e~ .

Proof of Claim 2.1. Suppose |UT["°]| /e > n/16. Applying Corollary 2.11 with
n = nyg, c(ng) = /16 and § = 1/12 we have

10e2 + 2.1\ 1
' ( z ( N ) nl/4> < 2ong'e™™"  (2.18)
0

o+1
for any o > 0. Set oy so that

|U1[-n0(a+l)]| o+ 1
no(o + 1) o +16/n

Uo+1

BT /s 2.1
oot 16/ 17 (2.19)
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10e?o0 + 2.1 1
> < ¢/4. Combining this

oo + 1 né/ 4
inequality with (2.18) and (2.19) and setting o = 0q gives the result. a

and then for sufficiently large r, (

Let M = (16/n)(oo + 1), so that (oo + 1)ng = Mr?. We have shown that, with
suitably high probability, IU}"]I /n>1—¢/2 for n = Mr? We now show that
|U™| /. remains close to 1 for all larger n. That is, that |UM|/n > 1 — ¢ for all

n > Mr?.

Let ny = Mr2, and n; = (14+¢/2)"'n; fori =2,3,....
Claim 2.2. If |UM™|/n; > 1 — /2 then
(a) |Ur[n]|/n >l—cforn=n;+1,n;+2,...,[ni1] and

(b) |U7[m+l]|/ni+1 > 1 —e/2 with probability at least 1 — sn:/4e‘2”3/4.

Proof of Claim 2.2. Suppose we have lUv["i]i/ni >1-—¢/2

For part (a) we use the fact that |Ur[”]| is increasing in n, so that

[n] [ni] [ns] _
n Ni+1 (1+€/2)n,- 1+€/2

foralln=n;+1,n;+2,..., [n41].

For part (b) we apply Corollary 2.11 with n =n;, 0 = ¢/2 and § = 1/12. We

have
[ni(e/2+1)] 2.1¢/2 1a
P |Ur ’ _ 8/2 +1 Z (106 + 21) 1 S En;.l/4e—2ni/
ni(e/2+1) €/2+1/c(n;) ef2+1 n/*
(2.20)
with ¢(n;) > 1 —€/2. So,
e/2+1 /2 +1
£/2+ 1/c(n;) ~ €/2+1/(1—¢/2)
and for sufficiently large r,
2.1e/2
e/2+1 _ [ 10e +2.1> 1 S1-e/2 (2.21)
e/2+1/(1—¢/2) ef2+1 i/t
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Then, (2.20) becomes ]P’([U["““]l/ner <1- 5/2) < en1/4 ~an}/* 0

Notice that, since n;4; > n;, if the inequality (2.21) is satisfied for ¢ = 1, then it
is automatically satisfied for all larger ¢. That is, if we have r sufficiently large to be
able to apply Claim 2.2 once, then we can apply it repeatedly to 'get the following.

Assuming ]Ur['”ll/nl > 1—¢/2, we have |U,["]|/n > 1—¢ for all integers n > ny =

Mr? with probability at least 1 — Y 52, en/te=2%""  for sufficiently large r.

Let r be sufficiently large so that 20ny e ~2ny/ +Z o1 eny/e—2m: <y /4. Then,
we have |U,~ ]I /n > 1—¢ for all integers n > Mr? with probability at least 1 —n/2.
Once |U,[n]| is always a large fraction of n, we can show that Uy "} becomes almost all
of the poset Bs[n] for n = r*+%, Rather, we now look at I; (" the set of points in

[r,n] incomparable with r in Ba[n.

For t > Mr?, set s, = |I,[.t]] /+/t, and consider the sequence (s;) as a stochastic

process.

We have that

St%" with probability 1 — (u};ll / (t ;1)

)
gjft%l with probability (|1§ ]l) /(H;)

so/i+ (¥ se/t 1
Espy1 = Vit t+1(1+ t(t‘l‘l))'

Now, provided s; < e/t (which will be the case unless |U,[t]| drops below (1 — ¢)t),

1 \"? € 1/2—¢
< - 14— < 1 —
Bsen < 5 <1 t+1) ( +t+1> 5t ( t+1 )

St41 =

Therefore

we have
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for all t > Mr2. So

% k
1/2—¢ 1
Espr2k < Spr2 I I <1 - ]\4/r2 +j> S Spr2 €Xp <_(1/2 —¢) Z Mr2? +j)
j=1

7=1
2 1/2—¢
< eViD? (J‘ﬂ_“_)

Mr?2 +k+1
<\/W Mr2 41 \Y%e
- 4 Mr24k+1 !

where we have used the fact that e < 1/4 to get the last line. So,

MT'2 1/2-6
Espatee < vV Mr? ( > < M1—€r~26+852'

pi+8e

Using Markov’s inequality, we have s,a+s < (4/n)M~5r=26+8* with probability at
least 1 — n/4.

Therefore |I£r4+ss]| < VI (4 /) Mi—er— 2487 — [fr2+2%+8¢% with probability
at least 1 — /4, where M = (4/m)M*—=.

Finally, let us consider the probability that all vertices with a label higher than
r4+8 are comparable with 7; in other words ¥ = ,[r“&] for s > r4*+8_ Given the

size |I,[r4+851|, this probability is exactly

0 e
H 1— g_g__
S 3
s=rd+8e (2)
which is at least
lIT[.,,.4+Se]|2 00 1 II,,(.T4+BE]I2 > M—/2
1- D) =1 rat8e = r4e—16¢2

gy )
Since & < 1/4 we have 4 — 16¢2 > 0 so that for sufficiently large 7, M?2/rie=16¢* <
n/4. Also, [IF"™]] < Mr2+2e+8 < p2+4 for sufficiently large r. So, combining all
the probabilities, we have |I,| = |L[T4+ss]| < 7?4 and I, C [r, r**%] with probability

at least 1 — 7, as required. O

This result is close to the best possible; as the following lemma shows, we have

that ]E]Ui"]l < n?/r? so for small € > 0, |I| > r*=¢ with high probability.

Lemma 2.13. For alin > r, E|UM| < n2/r2.
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Proof. Firstly, we make an observation similar to that in the proof of Proposition 2.2
on page 26, that for all u € U™ there must exist a path from r to u. Therefore,
it is enough to provide an upper bound on the expected number of paths in By[n]
with start point 7. As before, for r < 4; < i3 < -+ < 1i,, the probability that

{r,i1,%2,...,%s} is a path is

P(i; selects r) HIP(z'j selects 4;_1) = —2—

So, the expected number of paths in By[n] starting at r is bounded above by

> B(rjulisapan)= Y [[2-= H( )

IC[r+1,n) IC[r+1,n] i€l i=r+1
(n+1)(n+2)

= <

(r+1)(r+2) ~

n?
2 O

We have shown that for a typical r, the size |U7£"]| is a constant fraction of n for
n = O(r?), and that the set I, is contained in [r**%), with |I,| = O(r?*%). What

about for a worst case r? Can we say something about all but finitely many r7

Clearly, we cannot always expect |UT["]| to be a constant fraction of n for n =

O(r?). As we showed in Section 1,

rir=1)

P(r is maximal in By[n]) = n(n—1)

3/2

which is approximately r2/n2. Setting n = r3/2, we have that

| =

P(r is maximal in B,[r*?)) ~ -

which means there are infinitely many r with IUT[TS/Z]I = 1. When this is the case,

3/2

the growth process of U™ for n > r3/2 is identical to the growth process of Urlg}z

3/2]

for n > %2, since the sizes of U | and Ur[gjf] are the same. So, the expected size
of U™ can be found by substituting %2 for r in Lemma 2.13, which shows that
E|UM| < n?/(r3/2)® = n?/r3. So, for such an r the expected size of U™ is less than
r, and we need n = ©(r®) before the expected size of UM is a constant fraction of n.

We believe this is the worst case, that |U"| is a constant fraction of n for n = 9(r?),
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and then I, is contained in [r8+'), with |I,| = O(r®*¢). Heuristically, it appears that
the growth of |U,["]| is highly dependent on the values of the hitting times, T}, for
small k, which are not concentrated near the mean values; for example, the above
argument shows that T can be as large as r3/2, whereas the mean ET} is bounded
above by 2r + 2, using equation (2.2). Indeed, once IUT["]I /n is at least 1/n1/3 we can
apply Corollary 2.11, to closely approximate the growth. However, it appears rather
difficult to prove these statements in full, and we settle for the following polynomial

bounds on the size |I,| and the value of the largest s incomparable with r.

Theorem 2.14. For all but finitely many r, |I.| < r¥/5 and I, C [r'?].

The proof is naturally very similar to the proof of Theorem 2.12.

Proof. Fix r. As before, let Tj be the hitting time of event |U,| = k, in terms
of the growth model, i.e., the smallest ¢ such that |Ur[t]| = k. As (2.3), we have
ET}, < 2rvk + 2k. So ET,15/6 < 4r13/8. Markov’s inequality gives

P(|U7[r3+8/45]| < 7-13/6) — P(Trla/(i > 7.3+8/45) < 4/,,,91/90_ (222)

Set ng = r¥+8/45, Equation (2.22) becomes

P(|U) /ng > 1/ng/*) > 1 — 4/r°V/%0.

Assume we have |Ur["°] |/no 21/ ne/?2. We will use Corollary 2.11 to show that as
we increase the size of the poset by a factor of 2, the fraction |U7["]{ /n also increases
by a factor that is only slightly smaller than 2. We can use this method repeatedly

until |UM]/n is at least some constant fraction.
Let n; = 2ng for i = 1,2,... and let ¢(n) = |U,£”]|/n for all n > ny.

Claim 2.3. If1/n7/® < ¢(n;) < 1/300 then c(nis1) > (149/75)c(n;) with probability

/
at least 1 — 2/ Pe~m ®,
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Proof of Claim 2.3. Suppose 1/nl/® < ¢(n;) < 1/300. The upper bound on

¢(n;) implies
2 > (
141/¢(n)

and the lower bound implies

299/150)c(n;) (2.23)

10e*! +2.1\ 1 1
( 2 > 55 < (1/150);7/_22‘ < (1/150)c(n;). (2.24)
n, 0

So applying Corollary 2.11 with n =n,,d = 1/75,0 = 1, we have

P ’UP'M]' B 2 S 10e21 +2.1 1 < 2n§/256_2n1/25
Zni 1 + 1/6(7'1,1) - 2 nf/25 o ¢

which, using (2.23) and (2.24), gives the result. a

Using Claim 2.3 repeatedly we have that for k = 0,1,... either ¢(n;) > 1/300

for some Il < k, or
o(ne) > (149/75)%c(no) > (149/75)*/nf/®
with probability at least 1 — Ei:ol 2nf/256—2n,-”25.

log ((1/300)n/?

log (149/75)
1/2 —Zné/%
o € .

So, there exists a k < ) such that |Ur[""]| /n > 1/300 with

probability at least 1 — (logng)n

We have

7/2

g, < 2108 (ng 2/300)/10g(149/75)n0 _ (ng/m /300)1o82/ log (149/75) 1, (2.25)
Using ng = r38/% we get ny, < r?/%/317.

Assume we have [Ur["kll /ng > 1/300. We will apply Corollary 2.11 once more to

increase the fraction |Ur["] |/n to a constant close to 1.

{n]
Claim 2.4. |U; |

> T7/78 with probability at least 1 — 105ni/ 46‘2”11/4, where n =

46345n,, < 150r2/5,

Proof of Claim 2.4. We have |U™|/n;, > 1 /300. Applying Corollary 2.11, with

n =mng and § = 1/12 we have

IU[nk(U‘H)]' o+1
P : -
n(c+1) o+ 1/c(ng)

oc+1

106217 4 2.1\ 1 ot
s ( ) n1/4) < 20m/*e™™ (2.26)
k



2.2. UP-SETS OF VERTICES IN B, 46

for any o > 0. Set 0 = 46344 so that

oc+1 46345
= > 1 2
o ¥ 1/c(ng) ~ 46344 + Ljo(ng) = 100/156; (2.27)

which is possible, since c¢(nx) > 1/300. Then for sufficiently large r,
10e?1 +2.1 1

< .
PR RN 1/156
Combining with (2.26) and (2.27) and setting o = 46344 gives the result. O
1%

By a similar method we can show that — > 77/78 for all t > n with proba-
bility at least 1 — 3150 ¢1/4g=2"/*,

As before, for t > n, set s, = [I}|/v%, and consider the sequence (st) as a

stochastic process. Again, we have

_sA (Y L sevi—1
E8t+1 - m = 8¢ t—'—l <1 + t—(t:—l-)—> .

Now, provided s, < v/%/78 (which will be the case unless [UY| drops below (77/78)t),

we have

1 1/2 1 1/2— 1/78
E3t+1 <8 (1 n 1) <1+ 78(t 1)) St < (t 1) >

which gives

k k
19 1
E <s l—-——=) <stexp| —(19/39 _—

j=1
19/39
L (L)

- T8 \t+k+1

So, for example, Es,z0/r < 1/(78617/42), and for t = r2'/5 this gives Es12 < 1/r17/10

By Markov’s inequality, we have s,12 < 1/r¥5 with probability at least 1 — 1/r'1/10.
Therefore ILlrm] | < Vri2/r3/5 = r%/5 with probability at least 1 — 1/r'/10.

Finally, let us consider the probability that all vertices with a label higher than
2 are comparable with r; in other words I} = I for s > r12. Given the size
|I,[ru]|, this probability is exactly

o0 )
(", )

V-5

s=ri24}
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which is at least

r12 12
l—II"L ]|2 3 —1-=1—|I'[ ]|2>1———1—-.
2 7.0 S

So, combining all the probabilities, we have |I.| = |Ir[’"m]| < r27/5 and I = 1

for s > r'? with probability at least

1— 4/7.91/90 — (log no)n(l)ﬂe—zn(‘,/25 _ 105n,lc/4e'2”'lc/4 _ Z f/a—2tV4 1/1,11/10 _ 1/,’,,6/5.

t=n

Since

oo o0
Z<4r—91/90 +(log no)ncl)/z 6_2n},/25 +1O5n,1c/4e“2”11=/4 +Ztl/4 g2 11710 +,r,—6/5>

r=1 t=n

is finite, the first Borel-Cantelli Lemma. gives us the required result. O

Notice that in this proof we use Markov’s inequality twice, each time introducing
a factor of r, which is why our bound is (essentially) || < 75*¢ and not |I,| < r3t+¢

as we believe.

Note that Theorem 2.14 implies that, almost surely, |I,.| is finite for all r, as
follows. Suppose for a contradiction that the event that there exists some z with
|I;| infinite has positive probability. Since the probability that r selects x is equal
to 2/r for r > z, we have that z is selected infinitely often, almost surely. So there
are an infinite number of elements comparable to  and any such element r must be
incomparable with the elements in I, \ [r], meaning that |I,] > |, \ [r]|. Therefore,
conditioned on z having |I,| infinite, we have an infinite number of elements r with

|I,] infinite, almost surely, which contradicts Theorem 2.14.

2.3 A poset not contained in B,

In Section 2.1 we have shown that B; contains P(1,2;m) almost surely. It is natural

to ask whether this is typical: which posets are contained in By? For any poset P,
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{1,2} {1,3} {2,3}

{1t {2} {3}

Figure 2.1: P(1,2;3)

Figure 2.2: P(1,2;3)®

P(B; D P) is positive, as P is a subposet of some possible binary order. So, is
every finite poset contained, almost surely? This has been shown for random graph

orders; here we show that it is not true for B;.

Recall that we write P(1,2;3) for the poset consisting of the 1-element and 2-
element subsets of {1,2,3} ordered by inclusion (Figure 2.1). Write P(1,2;3)® for
a “tower” of k copies of P(1,2;3) with the maximal elements of copy 7 identified

with the minimal elements of copy i + 1, for i =1,...,k — 1 (Figure 2.2).

The result from Proposition 2.2, for the case m = 3, is that a copy of P(1,2;3)
with minimal points ,7 + 1,7 + 2 is contained in Bs[r,n], where n = 2r"/5, with
probability at least 3/5. The method used certainly requires k> = |U,|> > n =
2rvk + 2k, ie, n = r%3. We now consider the probability that there exists any
copy of P(1,2;3)® in By[r,n], and show this is very small for n = o(r*+2/3). (So
for k = 1 this is a trivial result but, interestingly, if we restrict to only copies of

P(1,2;3)® with minimal points 7,7 + 1,7 + 2 then the result becomes that the
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probability that there exists such a copy in Bz[r,n] is very small for n = o(r¥/3+1),
This gives a certain justification to the method used to construct such a P(1,2;3).)
Using this result with Theorem 2.14 we provide an example of a poset that, with

positive probability, is not contained in B;.

Theorem 2.15. The probability that there exists a P(1,2;3)® as a subposet of

By[r,n] is O(n®/r3+6).

Proof. The proof strategy is as follows. We first define a framework which is a
subset of By|r, n| satisfying certain properties. The definition of a framework implies
that if Bs[r, n] contains no frameworks then it contains no copies of P(1,2;3)®. We
then calculate the expected number of frameworks in Bs[r,n] by a path counting
method similar to that in the proof of Proposition 2.2. This method provides an
upper bound on the expected number of frameworks. The bulk of the proof is in
defining a framework in a way that makes the path counting possible. We start
with some observations of the structure of copies of P(1,2;3) and P(1,2;3)® in B,

motivating the precise definition of a framework.

Throughout we will write z is above (below) y to mean z is above (below) y
in By, and write z is greater (less) than y to mean z is greater (less) than y in N.

Usually, we will reserve <, <,> and > for the order on N.

Consider P(1,2;3) as a subposet of B; and take a minimal point, a. It is below
two maximal points, by, ba, so there is at least one path from a to b; and at least
one path from a to b;. Choosing one path to b; and one to bz, we can find the
greatest point common to both paths, call this a branching point. We can do this
for all three minimal points to obtain three branching points. The six chosen paths
can also be paired according to which maximal point they go to, and taking the
least point common to a pair of paths gives three connection points, one for each
maximal point. Note that the branching and connection points are not unique if

we had a choice of paths, but are distinct for any choice of paths. We label the
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(a) y <o (b) o/ <y

Figure 2.3: P(1,2;3) with branching and connection points

branching points «, 3,7 and the connection points o, 8,7/, so that a < # <~ and
o < ' < . Each path contains both a branching point and a connection point,
and since each connection point is contained in two paths, it must be greater than
(at least) two branching points. In particular, o/ must be greater than o and g.
Similarly, each branching point is less than (at least) two connection points, so -y
must be less than 3’ and 4'. So, we have the inequalities 8 < o/ and v < §/, which
gives the order @ < f < 7,0/ < ' < 4. It is not possible to order v and o/
An example of the branching and connection points for the two cases v < o/ and
o' < <y are shown in Figure 2.3. Note that in Fig. 2.3(a) o’ can be above any pair

of branching points, whereas in Fig. 2.3(b) ¢ has to be above o and S.

For a particular copy of P(1,2;3)® in B, we have k copies of P(1,2;3) so we can
find branching points and connection points for each copy. We label the branching

points in copy ¢ by o, 3;,7v: and the connection points by a;,5,v/. So, we have
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sequences «, 3, of branching points and sequences a’, @', of connection points,
where subscript ¢ denotes the points in copy . We have the order oy < 5; < 73,0} <
B; < ~; for each i, as before. Call the points s, 8;,7i, i-branching points, and the

points «;, 3;,7;, i-connection points.

Ideally, we would aim to separate the copies of P(1,2;3) to analyse them indi-
vidually (for example by assuming v/ < a;+1). Unfortunately this is not possible so

we have more cases to consider.

Since P(1,2;3)(® is formed by identifying maximal points in copy i of P(1,2;3) to
minimal points in copy i+ 1, we have that each (i+1)-branching point a;1; < Giy1 <
¥:+1 is above (and therefore greater than) a distinct i-connection point ¢ < ] < ~}.
This immediately gives the inequalities 0441 > o] and ] < ~;41. Looking at G;41,
either it is above G; or v} which implies 5,11 > 3}, or it is above «} in which case a;;
is not above o] and so must be above 5] or 7. But this implies fit1 > @iy > G-

To summarise, we have

< Bi<yol<fBl <y, .fori=1,...k (2.28)

o1 >0 B >PF Y>> fori=1,...,k~1 (2.29)
which is all we can deduce about the order of branching and connection points.

Suppose we have a P(1,2;3)®) in By[r,n]. We partition [r,n] into sets of two
types (plus two ‘end’ sets). A set of Type Lis of the form [3;, 8;] and a set of Type II
of the form [5/+1, Bi+1—1]. The k sets of Type I and k—1 sets of Type Il and the ‘end’
sets [r, B — 1] and [B} + 1, n] form the partition of [r,n]. We investigate which parts
can contain the branching and connection points. Clearly, 3; and 3} are contained in
the Type I sets. From (2.28) we have that v;, o} € [8;, 8] (¢ = 1,..., k). Also, (2.28)
and (2.29) give the inequalities §;_; < o; < B; and ] < v; < B, which implies that
i € [Bic1, B-1]VIB1+1,8,—1] (i =2,..., k) and ] € [Bi+ 1, i1 — LU [Bita, Bi14]
(:=1,...,k—1). The end cases oy € [r, 3, — 1] and ; € [G; + 1,n] are obvious.

So, looking at a Type I set [3;, 8], it contains f;,i, o; and B; and possibly ;_, and
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Bi Bs

(a) Contains 8, v, &, 3 (b) Also contains 7;_;

Bi Bs

(c) Also contains a4 (d) Also contains 4/_; and a;1,

Figure 2.4: Points in [3;, 5] — 4 possible cases

a;+1. This gives four possibilities which are shown in Figure 2.4. Finally, we have
that the points in the Type II sets are determined by the points in the two adjacent
Type I sets. That is, [8; + 1, Biy1 — 1] may contain +; (but only if v} & [Bi+1, 8i41])
and o4y, (but only if a;1 & [Bi, B)).

Fix o, 3,7,a',3,v'. We call aset J C [r,n] an (e, 8,4, &/, B',7')-framework
in By[r,n] if J éontains all the points in the sequences o, 3,4, a’, 3,4’ and the

remaining points in J form disjoint paths so that:

(a) there are two paths from each branching point,



2.3. A POSET NOT CONTAINED IN B, 53

(b) there are two paths to each i-connection point, which are from two i-branching
points so that no two i-connection points have their paths from the same two

t-branching points, for i = 1,...,k,

(c) there is one path from each connection point (except for the k-connection

points),

(d) there is one path to each i-branching point, which is from a (i — 1)-connection

point, for i =2,...,k.

Note that these paths can just consist of start and end points, that is, it is possible for
the set that only contains the points in ¢, 8,7, &/, 8,4’ to be an (e, 8,7, &', B, v")-
framework. Indeed, for any set J C [r,n] containing all the points in «, 3, v, o’

)

B', ' there is a positive probability of J being an (a, 8,7, &', 3’,+')-framework.

For any copy of P(1,2;3)*) with branching points given by «, 3, v and connec-
tion points given by a’,3’,4’, we can construct an (e, 3,4, ', 3, ~')-framework
by taking the set of all the branching and connection points and the points of
the paths that defined them (but not including those paths below 1-branching
points, and those paths above the k-connection points). Calling a set J C [r,n]
a framework in Bs[r,n] if it is an (o, 8,4, a’, 3',4)-framework in By[r, n] for some
a,B,v,a’,3,, we have that if By[r,n| contains no frameworks then it also con-

tains no copies of P(1,2;3)®).

So, it is enough to show that the expected number of frameworks in Bs[r,n] is
small and we do this by showing that the expected number of (e, 3,4, a’,3',%')-
frameworks in Ba[r,n] is small for all sequences a;, 3,7, ', B, satisfying (2.28)

and (2.29).

For fixed «, 3, 7,' o', (3,4, we count the number of (e, 3, v, o', ', ¥')-frameworks
in By[r,n] by considering the event “J is an (a,f,7v,a’,8,')-framework” as
a sequence of events in the sets of the partition of [r,n]. That is, we split an

(e, B,7,a’,B',7")-framework into j-frameworks and [-frames, defined below, and
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we show that it is possible to count the expected number of (a, 8,4, o/, 8',v)-
frameworks by independently counting the number of I-frames in each part of the

partition.

Label the partition

Kl = [THBI - 1]7 K2k‘+1 = [/81,0 + l’n]
K2’L' = [/81’/81{]77' = 1""ak

Koiri =B +1,61—-1],i=1,...,k— 1.

We write max K; for the largest element of K;. In a definition similar to that
of an (a,B,v,a’,8',~')-framework, for j = 1,...,2k + 1, we call a set J C
[r,max K] a j-framework in Bs[r,max K;] if J contains all the points in the se-
quences a, 3,7, a’, 8,4’ that are in [r, max K] and the remaining points in J form

disjoint paths so that

(a) there are two paths from each branching point in J,

(b) there are two paths to each i-connection point in J, which are from two i-
branching points in J so that no two i-connection points in J have their paths

from the same two i-branching points in J, for i =1,...,k,

(¢) there is one path from each connection point in J (except for the k-connection

points),
(d) there is one path to each é-branching point in J, which is from a (¢—1)-connection
point in J, for ¢ =2,...,k.
Again, for any set J C [r, max K] containing all the points in e, 3,4, a’, 3,7’ that
are in [r, max K| there is a positive probability of J being a j-framework.

So, a (2k+1)-framework is the same as an (e, 8,7, @', 8’,4')-framework. Notice

that, whereas in a (2k+1)-framework all paths are between branching and connection
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points, in a j-framework, for j # 2k + 1, there can be paths from some branching
and connection points that do not end at a branching or connection point (the
paths from the branching and connection points that are not below any others in
J). Call the end points of these paths the end points of the j-framework. We shall
see that, although the end points of a j-framework can be different for different j-
frameworks, what is important for our calculations is that the number of end points

of a j-framework is the same for different j-frameworks, for fixed j.

Now, define an [-frame as follows:

o | =1 A l-frame is a set J; C K; which is a 1-framework in Bs[r, max K;].

o | # 1: Given that J is an (I — 1)-framework in Bs[r, max K;_,], an l-frame for

J is a set J; C K such that JU J; is an [-framework in Bs[r, max K.
So, for sets J; C K;, j =1,...,2k+ 1, we have

2k+1
P (U Jj an (o, B,7v,a’, B ,'y')-fra.mework) =

=1

2%
lP(Jl a 1-frame)]P’(J2 a 2-frame for J1) - P (J2k+1 a (2k + 1)-frame for U Jj) .

=1

(2.30)

Now, write X(x, 8,7, &', 3,v’) for the number of (a, 3, 7, &', 3, ~')-frameworks.
We have X (e, 8,7, a’,8',7') equal to the sum

2%+1
Z Z I (U Jj is an (a,,B,'y,a',,B’,7')-framework> , (2.31)

JICK1  J2p+1CKak+1 j=1

but Uj’:{l J; is an (a, 8,7, o, 3',v")-framework only if Uf'fl'l J; contains all the

points in o, 3,7, a’,B',7’. So, writing K;(BC) for the set of branching and con-

nection points that are in Kj, the sum (2.31) is equal to

2%k+1
Z Z I <U Jj is an (a,,@,%a',ﬁ','y')-framework) .

J1CKy: Jor+1EK2k41: Jj=1
K1(BC)C1  Kapy1(BC)CJak+1
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Taking expectations and using (2.30) gives
IEX(a’ ﬁ’ 7, a,, ﬂ,, 7,) =

2k
> Y P(J; aldrame) P (J2k+1 a (2k + 1)-frame for | | Jj)

J1CKy: Jo2k+1C Kok g j=1
K1(BC)CJ1  Kajet1(BC)C k41

(2.32)

But ]P’(Jl an [-frame for Ué;ll Jj) does not depend on Ji,..., Ji_;; this is the condi-
tional probability that Ulj=1 J; is an [-framework, given that U;;ll Jj is an (I — 1)-
framework. Since K;(BC) C Jj, this is the probability that the points in U;.=1 J;
form paths satisfying (a)—(d). But we know that U;_:ll J; is an (I — 1)-framework,
SO U;=1 J; is an I-framework provided the points in J; form paths that continue the
paths in Ui;ll J; in such a way that (a)—(d) are satisfied. That is, the points in J;
must either select other points in Jj, or one of the end points of the (I—1)-framework,
U;;ll J;. So the probability P(J; an I-frame for Ui—:ll J;) can only depend on the set
J; and the number of end points of U§—=11 J;. However, the number of end points

of a j-framework is determined by which branching and connection points are not

below any others in the j-framework and these are fixed for particular sequences

aaﬁv7aa”:3,a7/-

So, for j =2,...,2k+ 1 we write Py(J;) for IP’(Jl an [-frame for Ué;ll Jj), and we
write Py(J;) for P(J; a 1-frame). Equation (2.32) becomes

2k+1

EX(a,8,7,0,8,7)=] D. B
=1 JCK;:
Ki(BC)CJ

Writing X for the total number of frameworks and E,; for I Ki:Ki(BC)CJ, Pi(J1),

we have that the expected number of frameworks is

2k+1

EX = Z H E,.

B, , =1
al ’ﬁl’_y[- (228),(229)

We now calculate an upper bound for each E; by a path counting method. There

are various cases to consider depending on the ordering of the branching and connec-
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tion points a, 3,7, o/, 3’,4’. However, we calculate an upper bound for H%"'I E,
for the case s < B; < v < &} < B/ < ¥ < @441, ete. (Figure 2.4(a)) and then
show that this ordering is the worst case. That is, that the upper bound for the
case o; < B; <V < o < B <4 < a1, ete, is an upper bound for any ordering of

the branching and connection points subject to (2.28) and (2.29).

We again use the inequalities 1 +z < e and Z . f() fa L f(x)dz for f(x)

decreasing, so that in particular

[1(:+5) e (25) oo msty) - (223)

J=a Jj=a

For Il = 1, K1(BC) = {a;}, so we sum over J; C K; = [r,5; — 1] containing
{n}. ¥ Jy = {1, 71,-..,7:} with @y < j3 < -+ < J¢ < By — 1, then the probability
Py(J;) is the probability that the points js,s = 1,...,t form two disjoint paths from

01, which is at most Hi=1(4/ Js), by independence, and if J; € [oq,; — 1] then

IPI(J 1) = 07 50
6r—-1
4 — 4
E< [] (1+—.)s (ﬁ—l—l) <P
j=an+1 J o o
For | = 2, Ky = {61,m,a},B1}, we sum over J, C K, = [B;, ] containing
{B,m, 4,8} So, Jo = (B, 47,3 i, 032,00, 05,5, B} and
the probability P2(J;) is the probability that
(i) the points j( ) s=1,...,t, form four disjoint paths — two from S;, two from
the existing end points in the 1-frame Jj,
(ii) the points ]( ).s=1,...,1t, form six disjoint paths — two from ~;, four from

the end points of the paths formed in (i),

(iii) the point o] is above two of the end points of the paths formed in (ii) (specif-

ically, two paths with different starting points),

(iv) the points J( ),s=1,...,t3 form five disjoint paths — one from o}, four from

the end points of the remaining paths formed in (ii),



2.3. A POSET NOT CONTAINED IN B, 58

(v) the point 8] is above two of the end points of the four “branching” paths
formed in (iv) (i.e., not the path from o}, and again specifically, two paths

with different starting points).

All these events are independent of each other, and so this probability is at most

i 8><t 12) 12 (t 10) 4
(1) (115 & (1135 &

so the sum over all subsets of K is

Nn-1 o -1 11

8 12\ 12 10\ 4

E< [] (1+—,) 11 <1+—,> — |1 (1+-,-> =

J=B1+1 J j=v1+1 J (21) j=a’1+1 J (21)

‘<(71—1)8<a3—1>” 24 (ﬁ;—l)m 8

“\ 6 M oy(oy —1) \ o A - 1)
/8
<283LL
B

Forl=2i+1(i=1,...,k—1), Kyy1 = 6 + 1, Bi1 — 1], K2i+1(BC) = {%, 2ia }

and by a similar calculation we have

¥—-1 8 1 air1-1 6 6 Biy1-1 8
Egit1 £ 1+ - 1+ -
= H (1+]> (%) H ( +J>ai+1 11 ( J)

J=Bl+1 2/ j=vi+1 j=aip1+l
<(7;-1 8 9 (a,-+1—1)“ 6 <ﬂi+1—1>8
B B; (v — 1) v Oy Oy
<223 461,84-1

ﬂ,8a1+1

andfor 1 =2i (i=2,...  k—1), Ky =[50, Kai( BC) = {Bi, 7, a, B;} and

easg 1T (1e 19)3 092 (+9%

M iyt 2/ j=ai+1
4(7 —~1\" 2 [of-1\" 24 (5;-1)10 8
*a\UE ) %\ (o —1) \ o A =1)
/8
<293t b
,811’}/23’

and
' 1

4 Mol 10\ 2 % 12\ 12 ! ( §> 4
]Eszﬂk H (1-}'7)_ H <1+7)'@1H 1+j (ﬁ;c)

J=Br+1 Ve et 2/ j=al+1 2
<i(*rk-1 ) <a;—1)12 24 (ﬁ;—1>8 8
AN Y\ % oplop, — )\ o J BB —1)

0/2 16
< 2°3-Ek

= Bz
ﬂk 7,":
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and

’Yk_l / 4 12
-1 2
Eort1 < | I ( ) — < <7k - ) T < 27—%.
=641 J (2’°) k N — 1) k

This gives the upper bound

2k+1 k-1 k-1
H E <L 51 Py H <223 By )H <293 )293""c ko
58 : Blfad, o B} Bt By

_ 73 QO g

4 4 3°
/8 =2 a?/@?’)/’b

We show that this is also an upper bound on EX (e, 3,~,a’,8',4') for any
ordering of the branching and connection points e, 3,4, ', 3’,4’. For any other
ordering, where some of the ;7 and «,_; fall into Ky;, we can carry out a similar
calculation, and obtain an expression of a similar form, namely

AkH azﬁz')"z b, ,:8/ )c,

=1

For any framework, from the conditions (a)—(d) in the definition, every i-branching
point (¢ # 1) must have one fewer path to it than from it (two fewer for i = 1),
but b; depends only on this difference, so b; is independent of the ordering of the
terms of «, B3, v, @', B',~'. Similarly, ¢; is independent of the ordering since, for any
framework, each i-connection point (¢ # k) has one more path to it than from it

(two more for i = k). So we have

X (=1)=1=-3 fori#1, 2x(+1)—2=0 fori#k,

b¢= C; =

2 x (—2) =—4 fori=1, 2x(+2)—2=2 fori=k
for any ordering. The constant factor, Ax, does depend on the ordering of the terms
ofa, B,7,a’,3,~. In particular, it depends on the number of choices of end points
(or pairs of end points) of paths that each branching (or connection) point can be
above, respectively. It remains to show that this number is smaller for any ordering

(satisfying (2.28) and (2.29)) other than o; < 8; < v; < o} < B} < ¥} < @41, ete.

Suppose we have an ordering where o < +; for some ¢. Then there is only

a choice of four pairs of end points of paths for o to be above, rather than the
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twelve pairs of end points in the case ; < ;. So we need only consider orderings
with 7; < o} for all . This means events occurring below ~; are independent of
events occurring above «j. In particular we can consider the cases illustrated in
Figures 2.4(b) and 2.4(c) separately (so the case in Figure 2.4(d) is a combination
of the two). If we have an ordering with +/_; > f3;, then there is only one end point
for B; to be above, rather than the two end points in the case 7,_; < B;. If we have
an ordering with o;,; < (] then there is only one end point o;y; can be above,
rather than the two end points in the case a;1; > ;. This only leaves the case that
a; < 7yi_,, but then there is only a choice of two end points for ¢; to be above, rather

than the three end points in the case o; > 7}_;

Therefore,
/2 2.2 K ol1q2
7 k’Yk 23
exs 3 e o
7 ’g} ,:(2.28),(2.29) =2
and summing first over o} < a;4; fori = 1,...,k — 1 (and similarly for #’,v") and

then relaxing all other constraints gives

k 1192
7 akﬁk ’Yk 273
EX < zﬁ: 273 ]l T
ak:ﬂk:!y,k
<2777/9 21132 k-1
=39\ 13
— (27/35)(21132)k—1 n®
r3k+6"

So, the probability that there exists a copy of P(1,2;3)%) in By[r,n] is less than
the probability that there exists a framework in Bs|r,n], which is O(n®/r®*+%) by

Markov’s inequality. O

We define the poset Q(k) as the poset P(1,2;3)*®) with an additional point
incomparable to all others. Write B;[r, o) for the random poset B, restricted to

the set of points greater than or equal to r. We have the following corollary of

Theorems 2.14 and 2.15.

Corollary 2.16. For k > 450, the probability that Bsr,00) contains a copy of
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Q(k — 1) is O(r=91/9),

Proof. For there to be a copy of Q(k — 1) in Bs[r, c0) there must exist a copy P of
P(1,2;3)%1 in By[r, 00), and some point b in Bs[r, c0) such that b is incomparable
to all the points in P. Label the least point in P by m, and the greatest point
by n, so that P is in Ba[m,n], and b must be incomparable to m and n. So, the
probability that there is a copy of Q(k — 1) in Bs[r, 00) is less than the probability
that there both exists some P in By[m,n], and some b > r incomparable to m and
n, for some m,n > r. If n = w(m!®) then the probability that there exists some b
incomparable to both m and n is O(r~=9/%). Now taking k > 450, if n = O(m!%)
then the probability there exists an P in By[m, n] is O(m™%) = O(r~3), since m > r.
So for fixed k > 450 the probability that Bs[r,co) contains a copy of Q(k — 1) is
O(r—91/%0), 0

Since events in Bs[r] are independent of events in By[r, 00) we have the following

corollary.

Corollary 2.17. For k > 450, there is a positive probability that the random poset

By does not contain a copy of Q(k).

Proof. Fix k > 450. Fix r so that the probability that Bs[r,00) does not contain

a copy of Q(k — 1) is at least 1/2. This is possible by Corollary 2.16.

With some positive probability p, the points 2,...,r in B, form a chain. (For
this to happen, each point j = 3,...,r must select point j —1,s0 p = H;=3(2/ j) =
27-1/rl) Recall that points 0 and 1 are defined to be incomparable, and vertex 2

selects 0 and 1 with probability 1, so all points in [r] are below 7 in Be[r].

Now, we can calculate the probability that Bs contains a copy of Q(k) given that
the first r elements are as above. Suppose such a B; contains a copy @ of Q(k).
Because of the structure of By[r] there can be at most one point of @ in By[r}.

Either this is the incomparable element of @), or one of the minimal points of the
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tower in @). If the former, label this point b, and we have b < r and so b is below r
in By. The point b is incomparable with all points in ¢}, which implies that r is also
incomparable with all points in Q). Since @ is a copy of Q(k), so is QU{r}\ {b}, and
there is a copy of Q(k) in Bs[r, o). If the latter, then @ contains a copy of Q(k — 1)
with all points greater than r, that is, a copy of Q(k — 1) in Bs|r, 00). If none of the

points in @ are in By[r], then @, a copy of Q(k), is contained in Balr, 00).

So, B does not contain a copy of Q(k) if Bs[r,00) does not contain a copy of
Q(k — 1). However, the probability of this is at least 1/2, and is independent of the
events in By[r]. Therefore the probability that By does not contain a copy of Q(k)
is at least p/2 > 0. O

We have shown that there is a positive probability that By does not contain
Q(k), that is, that Q(k) is not almost surely contained in B,. So, which posets are
almost surely contained in By? It seems ambitious to ask for a complete answer,
but it may be possible to provide both families of posets almost surely contained
in By, and families of posets not almost surely contained in B;. We have already
shown that Q(k), k > 450 (and so, also, any posets containing Q(k)) are not almost
surely contained in B,. In fact, we can apply the argument used in Corollary 2.16
to any poset in place of P(1,2;3)*-1  if we can show that it is not contained in
Bj[r,71%] almost surely. This is one way to provide further examples of posets not

almost surely contained in Bs.
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Chapter 3

Continuum limits of classical

sequential growth models

This chapter describes work carried out in conjunction with my supervisor, Professor
Graham Brightwell, and was worked on in equal proportion by myself and Professor

Brightwell.

In [25], Rideout and Sorkin provide evidence for a “continuum limit of transitive
percolation”. Transitive percolation, a model of random partial orders, is specified
by one parameter p, and produces partial orders sequentially, as follows. We start
with a single element, labelled 0. At stage n = 1,2,..., the element n is added to
the partial order and placed above each existing element independently with prob-
ability p, and incomparable to it with probability 1 — p. The transitive closure of
the added relations gives the partial order P,,;, at stage n. From this definition
we can see that the poset P, , is what is called a random graph order in the mathe-
matics literature. As mentioned in Chapter 1, these were introduced by Albert and
Frieze [1] and have been studied further by Bollobés and Brightwell |7, 8, 9], Pittel
and Tungol [23], and Simon, Crippa and Collenberg [27].

In this chapter, we confirm the observation of Rideout and Sorkin, that certain
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sequences of random graph orders do have “continuum limits”. We also show that,
even in a broader class of models, these continuum limits are essentially the only

ones that arise.

We start by defining carefully what it means for a sequence (P, )%, of probability
spaces, whose elements are finite partial orders, to have an atomless partially ordered
measure space as a continuum limit. Usually, the partial orders in P, will have

ground sets of size n.

We use a definition of a partially ordered measure space similar to that in Bol-

lobés and Brightwell [6].

Definition 3.1. A partially ordered measure space is a quadruple (X, F, u, <) such
that (X, F, i) is a measure space, (X, <) is a partially ordered set, and Ulz] = {y €
X:y>z}eF,and Dz ={ye X :y <z} € Fforevery x € X.

A partially ordered measure space (X, F, i, <) is atomless if p({z}) = 0 for all
z€X.

We now give formal definitions of the sampling from partially ordered measure
spaces, and the probability of forming a particular labelled partial order Q. (In this

context, the elements of @ will be labelled z,, . .., zx.)

Definition 3.2. For P a partially ordered measure space with probability measure
i, and k a natural number, define a random sample of k elements from P to be
a sequence Iy,...,Zx of elements of P, obtained by selecting k elements z;,..., zx
independently from P according to u, and conditioning on the event that z,,...,zx
are distinct. A random sample can be thought of as a (random) finite partial order

on the fixed ground-set {1, ..., 2}, inheriting the partial order from P.

For @ a finite partial order with ground-set labelled as {zi,...,2x}, and P a
partially ordered measure space with measure p, let A(Q; P) be the probability that

the partial order inherited from P on a random sample x1, ...,z of k elements is

equal to Q.
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Note that, for P an atomless partially ordered measure space, the probability
that the same element from P is selected twice is zero, and so conditioning on the

elements of a random sample being distinct makes no difference.

When we apply the above definitions to a finite partial order P = (X, <), we
alwayé take the probability measure ¢ to be uniform on X. With this convention,
sampling |Q| elements from P, conditioned on the elements being different, is equiv-
alent to selecting |@Q| elements from P without replacement. Therefore A\(Q; P) is the
proportion of labelled |Q|-element subsets of P that are equal to Q. To be precise,
for @, P finite labelled partial orders, if we select |@| elements without replacement
from P, label them with z1,..., g according to the order of selection, and take
the induced order from P, then A\(Q; P) is the probability that this random partial

order is equal to Q.

Note that for fixed P, we have A\(Q; P) = A\(@'; P) if the labelled posets @ and

@' are isomorphic.

We are now in a position to define a continuum limit. Here, and in what follows,

P, denotes a random partial order from P,.

Definition 3.3. A continuum limit of (P,)%2,, a sequence of probability spaces,
whose elements are finite posets, is an atomless partially ordered measure space Pu,

such that, for all finite labelled partial orders @,

EMQ; Pr) = A(@; Poo).

In [25], Rideout and Sorkin estimate A(Q; Py, p) for small partial orders Q, and
present evidence suggesting that, for suitable sequences p = p(n), all the expec-
tations EX(Q; P, ) converge to limits. To be more precise, they choose sequences
p(n) so that EX(Ca; P, p) converges, where C; is the 2-element chain, and observe
that, for such sequences p(n), expectations EA(Q; P p), for other small @, appear

to converge also. They offer this as evidence for the existence of a continuum limit.
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We define a sequence (P,)%2, of discrete probability spaces to be compatible
if (EMQ; Pn)):;l is convergent for all finite labelled partial orders Q. From the
definitions we have that, if (P,)32; has a continuum limit, then (P,)32, is compat-
ible. An interesting question (not answered here) is whether a compatible sequence
necessarily has a continuum limit. In Section 3.1.2, we show not only that suitable
sequences of random graph orders are compatible but also that they have continuum

limits, confirming the conjecture of Rideout and Sorkin.

Theorem 3.4. The sequence of models (Pppn))3>, of random graph orders has a

continuum limit if and only if one of the following holds:

(i) limy oo (p™" logp~'/n) =0,
(i) im0 (plogp~t/n) = ¢ for some 0 < c < 1, or

(i) liminf, .o (p~tlogp~t/n) > 1.

In the first and third of the cases above, the continuum limit is very trivial, being
a chain and an antichain respectively. In the second case, the continuum limit is a

“random semiorder”.

A semiorder is a partial order that can be represented by a collection of equal-
length intervals on the real line, ordered by putting z < y if the interval representing

z lies entirely to the left of the interval representing y.

Loosely, a random semiorder is obtained by placing n unit intervals uniformly at
random on an interval of given length, with the order as above. We give full details

later.

Semiorders ha;ve a very special and well-understood structure; an alternative
definition is that a semiorder is a partial order not containing either of the two
four-element partial orders H and L shown in Figure 3.1 as an induced suborder.

See Fishburn [14] for a proof of this and much more information about semiorders.
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Figure 3.1: Forbidden induced suborders

As explained in Chapter 1, transitive percolation is a one-parameter family of
models from the larger family of classical sequential growth models. Recall that a
particular classical sequential growth model is specified by a sequence t = (¢, t1,. .. )
of non-negative constants. We start with the partial order Py with one element
labelled 0. At stage n=1,2,..., the element n is added to P,_; and placed above
all elements in D,,, where D, is a random subset of {0, 1,...,n— 1}, the probability
that D, is equal to a set D being proportional to #|p|. The transitive closure is taken
to form the partial order P,,. We write CSG(t) for the model specified by sequence t.
These models are of particular interest as they are the only ones satisfying some
natural-looking conditions for discrete models of space-time—recall the conditions

of “discrete general covariance” and “Bell causality” explained in Chapter 1.

It is natural to ask whether continuum limits exist for sequences of classical
sequential growth models other than a sequence of transitive percolation models, and
in particular whether one can obtain continuum limits that are radically different

from random semiorders. In Section 3.2, we show that this is not possible.

We say that a p'artially ordered measure space P is an almost-semiorder if the
probability that a random sample of four elements from P is isomorphic to either

H or L is zero.

Theorem 3.5. If a sequence of classical sequential growth models (Pn), has a
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continuum limit, then this limit is an almost-semiorder.

It has been asked [24, 25] whether classical sequential growth models can be
constructed to resemble a “sprinkling” from Minkowski space M¢, for any dimension
d > 2, i.e., a partial order obtained from M¢ by taking points according to a Poisson
process with fixed density A. Alternatively, can a classical sequential growth model
have a continuum limit resembling M%? The results here demonstrate that this is
not possible. Indeed, an interval [a,b] of M? is a long way from being a semiorder,
so no classical sequential growth model can have a region of M? as a continuum

limit.

Before proving Theorems 3.4 and 3.5 we give a few observations about the prob-
abilities M\(Q; P).
Lemma 3.6. For @, P finite labelled partial orders with |Q| = j, and for k with
j<k<|P|,
Y MQ;P)=XQ,P).

IQ=k
Q I{zl ..... zj}=Q

Proof. Fix @ with |@Q| = j. For any k with j < k < |P|, construct a random
labelled partial order by taking a random sample 2; ...,z of k elements from P.
The probability that the labelled subposet on z1,...,z; is equal to @ is the sum of
@', P) over all labelled partial orders @' that, when restricted to {z,...,;}, are
equal to (). But this probability must be equal to A(Q; P), as we are only looking

at the structure of the first j elements sampled. O

Corollary 3.7. If Q is a (labelled) subposet of @' then M\(Q'; P) < M@; P), for all
P with |P| > |Q'|.

Proof. This follows immediately from Lemma 3.6. O

Write Ay, for the k-element labelled antichain and Cj for the k-element labelled
chain, {z; < zo < +++ < zx}. We have the following result which will allow us just

to consider A(Cy; P,.) and A(Ag; Py).
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Proposition 3.8.

(i) If EA(A3; P,) — 0 as n — oo, then EXN(Q; P,) — 0 as n — oo for all finite
labelled partial orders Q that are not a chain, and EX(Cy; P,) — 1/K! asn —

oo for all k > 2.

(i4) If EX(Cy; Pn) — 0 as n — oo, then EX(Q; P,) — 0 as n — oo for all finite
labelled partial orders Q that are not an antichain, and EX(Ax; P,) — 1 as

n — oo for all k > 2.

Proof. We show part (i). Part (ii) can be proved in a similar way.

Assume EA(As; P,) — 0 asn — oco. Fix £ > 2, and let @ be any labelled
partial order of size k, but not equal to Cy. Define @’ as a relabelled copy of @
with the elements z;,z, incomparable, which is possible since Q # Ck. Note that
ANQ'; P,) = M@; P,). Since A, is a subposet of @', we can apply Corollary 3.7 giving
MQ; Py) < MAg; P,). So, EA(Ag; P,) — 0 as n — oo implies that EA(Q; P,) — 0 as
n — oo for all @ of size k not equal to Cy. But > 5 A@Q; P,) =1, and there are

k! labellings of the k-element chain, so we have EA(Cy; P,) — 1/klasn—o00. O

3.1 Random graph orders

We recall the definition of a random graph order.

Definition 3.9. Let P,, be a random partial order on [n — 1] = {0,1,...,n — 1},
formed by introducing the relation (¢, j) with probability p, independently for each
pair of elements ¢ < j, and then taking the transitive closure. The partial order P, ,

is called a random graph order.

Note that the description of P,, above is equivalent to that given earlier. In
future, we will use the term random graph order, rather than transitive percolation,

but the reader should be aware that the terms are essentially interchangeable.
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3.1.1 Some results on P,

We include some results of Pittel and Tungol, from [23], which we will need in order
to prove the existence of a continuum limit. Results of a similar type can be found
in Bollobas and Brightwell [8], and Simon, Crippa and Collenberg [27]. We change
the notation slightly, for ease of use here. The following results apply to a random
graph order Py, and we will apply them with particular values for N and . Very
crudely, these results can be interpreted as saying that, if ¢ and j are elements of

[N — 1], then

(i) for a > 1, most pairs (4, j) with j — i > an~!logm™! are comparable in Py r,

(ii) for a < 1, few pairs (i,) with 0 < j — i < anr~'logn™' are comparable in

Py .

’

Theorem 3.10 (Pittel and Tungol, [23, Theorem 4.1(3)]). Let X be the number of

comparable pairs i < j in Py . Let m = alog N/N with a > 1. Then

EX = (1+0(1); (N (1 _ %))2

Define v4(0) to be the size of the up-set of 0 in Pp,.

Theorem 3.11 (Pittel and Tungol, [23, Theorem 2.3(1)]). Let 7 = alog N/N.

Suppose that a > 1. If M is such that

f(M) = (M— N <1 - é)) al(])\%N — loglog N = O(loglog N),

then
P(vx(0) > M) = (1+ o(1)) exp (—éef‘M))-
Theorem 3.12 (Pittel and Tungol, [23, Corollary 2.4(3)])- Let m=calog N/N. If
a=a(N)<1and
(1—a)logN —loglog N > —2logloglog N,
then
E(7n(0)) = (1 +o(1))N*.
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3.1.2 The continuum limits of P, ,
We show that, for suitable functions p(n), the continuum limit is the semiorder

defined below.

Definition 3.13. For 0 < ¢ < 1, let S, be the partially ordered measure space
([0,1], B, 1., <), where B is the family of Borel sets on [0, 1], the measure uj, is the

Lebesgue measure on [0,1], and < is defined by z < y ifand only if y —z > ¢.

In particular, Sy is the partially ordered measure space ([0, 1], B, p1, <) with z <
y for all z < y, so that ([0, 1], <) is a chain, and S; is the partially ordered measure

space ([0,1], B, ur, <) with z £ y for all z,y, so that ([0, 1], <) is an antichain.

By associating the number y with an interval of length ¢ with left-endpoint y,
we see immediately that S, is a semiorder. We now prove that, for certain p(n), the

semiorder S, is the continuum limit of our sequence of random graph orders.

Theorem 3.14. The sequence of models (P )32, of random graph orders has a

continuum limit for p = p(n) when either

(1) limy—.oo (p~' logp™'/n) =0,
(i3) lim, .o, (p~*logp~'/n) = c for some 0 < c < 1, or

(41) liminf, .. (p~!logp~'/n) > 1.
The continuum limit in each case is

(i) So, i.e., a chain,
(i1) S,

(i) Si, i.e., an antichain.

Proof. Suppose that lim,_,. (p™' logp~!/n) = 0. We will show that the continuum
limit is Sy = ([0, 1], B, p1,, <) with z < y for all z < y. Since A\(Q; Sp) = 0 for all @
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not a chain, and A(Cy; Sp) = 1/k! for all k, by Proposition 3.8, it is enough to show
that EA(As; P,) — 0 as n — oo.

Fix € with 0 < £ < 0.01, and let ng be such that p > (1/¢) logn/n for all n > ny.
We can apply Theorem 3.10 with N = n, 7 = (1/¢)log N/N, so that a = 1/e. We
have EA(Az; Pyx) = 1 — EX/(Y) which by Theorem 3.10 gives

14 0(1))3(n(1 — ¢€))?
IE/\(A2; Pn,p) < E)‘(A% Pn,(l/s)logn/n) =1- ( ( ))(Zn() ( )) <2+ 0(1)'
2
So, EA(Az; P, p) — 0 as required.

Now, suppose that liminf,_,, (p™'logp~!/n) > 1. We will show that the con-
tinuum limit is Sy = ([0, 1], B, pr, <) with z £ y for all z,y. Since A(Q; S;) = 0 for
all @ not an antichain, and A(Ax; S;) = 1 for all k, by Proposition 3.8, it is enough
to show that EA(Cy; P,) — 0 as n — oo.

Fix € with 0 < € < 0.01. Choose ng such that p < (1 + €)logn/n for n > n,.
We can apply Theorem 3.10 with N = n, 7 = (1 + ¢)log N/N, so that a =1+ «.
We have EX(Cy; Py,») = EX/ (%) which by Theorem 3.10 gives
(1+0(1))3(n(1 - 1/(1 +¢)))?

()

EA(C% Pn,p) < ]E)\(CZ; Pn.(l+e) logn/n) = < e + 0(1)-

So, EA(Cy; P, p) — 0 as required.

Finally, suppose that lim, ., (p™* logp~!/n) = c for some 0 < ¢ < 1. We will
show that the continuum limit is S, = ([0, 1], B, iz, <) with £ < y if and only if

y—x>c

Fix € with 0 < € < min{c,1 — c}. Since lim,—o p~"logp™*/n = ¢ we must also
have lim, . p~*logn/n = ¢, and since ¢ < 1, we have p > logn/n, for sufficiently

large n. Furthermore, since

?

log(c+e€)n _ <c+5/2> log(c+¢€)n <(- 6)10gn

(c+e)n c+e

(1+¢/2) cn cn

for some & > 0, we have p > (1 + ¢/2c)log (¢ + €)n/(c + €)n for sufficiently large

n. Similarly, we have p < (1 — £/2c)log(c —€)n/(c — €)n for sufficiently large
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n. Let np be such that p > logn/n, (1 +¢&/2¢c)log(c+e)n/(c+en < p < (1 —

e/2¢)log(c—¢€)n/(c — &)n, and n > 1/e for all n > ny.

We proceed as follows. For each n > ny, take a random order P,, according
to Ppp. Define an order <, on [0,1], by dividing [0,1] into n intervals of length
1/n, identifying [i/n, (i + 1)/n) with ¢ € [n — 1], and putting [i/n, (i + 1)/n) below
[i/n,(j +1)/n) if and only if i < j in P,,. Now for any sample of elements from

[0, 1] of fixed size k, we need that
P(<, induces different partial order from <) — 0

as n — oo. This is enough to prove that EA(Q; P, ) — A(@; S:) as n — oo for all
finite partial orders @, as follows. Let P, be the atomless partially ordered measure
space ([0, 1], B, 1z, <»), and suppose @ is any finite partial order with |Q| = k. By
the definitions of A(Q; P,,) and AQ; B,), the difference EA(Q; Pnp) — EXQ; P,)
is non-zero only because of the positive probability that in a random sample of k
elements from P, some of the elements are in the same interval [i/n, (i + 1)/n), for
some 7. Since the measure of these intervals tends to zero as n — oo, we have that
EMQ; P, p) —EXNQ; P,) — 0 as n — oo. So, it is enough to show that EX(Q; P,) —
A(@; S.), which follows if P(<,, induces different partial order from <) — 0 asn —
co. Indeed, it is enough to consider two elements z,y chosen uniformly at random

from [0, 1] and show that
P(<,, induces different partial order from < on {z,y}) — 0 (3.1)
as n — o0, since for any sample S of k elements from [0, 1],
P(<,, induces different partial order from < on S) < (’;)q,
where q = P(=<,, induces different partial order from < on {z, y}).
Call a pair of intervals [i/n, (i + 1)/n) and [j/n, (j +1)/n) good if either

(i) li:%);l > c and ¢, j are comparable in P, p, or
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. |T—=7]+1
(i) ——

< c and 1, j are incomparable in P, ,,

and call a pair of intervals bad otherwise.

We will show that the expected number of bad pairs of intervals is a small fraction
of n2. This will prove (3.1), since <, and < will only induce different partial orders

on {z,y} if the intervals that contain z and y are a bad pair of intervals.

We can be rather crude with our calculations, and can afford to assume that
pairs of intervals that are “too close to call” are all bad. That is, we assume that all
pairs (i, 7) with ¢ — & < |i — j|/n < ¢ + € are bad. There are at most 2en? of these.
For all other pairs of intervals, either |¢ — j|/n > c+e€or |i — j|/n < c—¢, and we

will show that almost all such pairs are good pairs.

First consider ¢ < j with (j —4)/n > ¢+ €. Such a pair i, 7 is bad if 4,j are
incomparable in P, ,. So the number of bad pairs of this type is equal to the number

of bad pairs of elements in B, ;:

[{(z,y) € Pnp: z,y incomparable,y — z > (c + e)n}|.

Define an element z < (1 —c—e¢)n in P, , to be an e-bad element if |U[z] N[z +
(c+€)n]| < en/2, and an e-good element otherwise. We will show that the number
of e-bad elements is small, and the number of pairs z,y with x an e-good element

and y —z > (c+ €)n is also small.

We can calculate the expected number of e-bad elements as follows. Let 7 =
(14€/2c) log (¢ + €)n/(c+¢)n. Since p > m, the expected number of e-good elements
in P, , is greater than the expected number of e-good elements in P, .. So, working
with P, r, note aIS(? that the size |U[z] N [z +(c+€)n]| is equivalent to 7,,),(0), ie.,
the size of the up-set of 0 in Py, where N = (c+ €)n. We want to apply Theorem
3.11 with N = (c+¢&)n, 7 = (1 +¢/2¢) log(c+€)n/(c+€)n, so a = 1 +€/2c. We
set M = N(1 — 1/e), so that f(M) = —loglog N is O(loglog N) as required and
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the theorem implies that

1
P(0osam(0) > M) = (1 o) exp ( —ps e ebeteror )

1+¢/2
c 1
> @) (1~ )

Since

enf2,

M=N(1—1/a)=(c+e)n<1 1 ) cte en

T1%e/2c)  c+ef22 >
we have P(z is e-bad in Pyx) < P(7f1(),(0) £ M). Therefore, the probability that
z is an e-bad element in P, , is O(1/logn)+o(1). So, the expected number of e-bad
elements is o(n) and assuming the worst case, that every pair of elements (z,y) with

y—x > (c+ €)n, where z is e-bad, is a bad pair, this gives o(n?) bad pairs.

We now need to count the number of bad pairs (z,y) with y —2 > (c+¢e)n
where z is e-good. So |U[z] N[z + (c+€)n]| > en/2, and the probability that (z,y)
is a bad pair is the probability that there are no edges between y and the elements
in Ulz] N [y]. But |Ulz] N[y]| > |Ulz] N[z + (¢ + €)n]] > en/2. Therefore, for

y—zx > (c+eé)m,
P((z,y) is bad|z is e-good) < (1 — p)*™/2 < e7P™/2 < /2

Therefore the number of bad pairs (z,y) with y — z > (c+ €)n where z is e-good is

o(n?).

Finally we need to count the number of pairs ¢ < j with (j —¢)/n < ¢—¢ and ¢, j
comparable in P, ,. Let 7 = (1—¢/2c)log(c—¢)n/(c—e)n. Since p < 7 the expected
size |U[z]N[z+(c—€)n]| in P, is less than the expected size |U[z]N[z+(c—¢)n]| in
P, . So, working with P, r, note that |U[z]N[z+(c—e)n]| is equivalent to 'yZ‘c_e)n(O),
i.e., the size of the up-set of 0 in Py », where N = (c—¢)n. So, the expected number
of pairs (z,y) in P,p with 0 < y — 2 < (c— €)n is at most nEYf,_¢),(0) which by
Theorem 3.12 is n(1 + 0(1))((c — &)n)*~/% = o(n?).

Therefore the total number of bad pairs of intervals is at most 2en? + o(n?).
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Therefore, there exists n; > ng such that
P(<, induces different partial order from < on {z,y}) < 5¢

for all n > n,. Since € is arbitrary we have the result. O

To complete the proof of Theorem 3.4, we now show that, for all other p(n), the
sequence (P, )2, does not have a continuum limit. We first make the following

observations.

The probability that two elements selected at random from S, are incomparable
is
MAg; S)=1-(1—¢c)®=2c—¢

which is monotonic in ¢ for 0 < ¢ < 1. So, we have

Lemma 3.15. For 0 < c¢; # ¢y <1, AM(Ag;Se,) # A(Az; Se,)- O

The following Lemma. is an obvious extension to Theorem 3.14 and is stated

without proof.

Lemma 3.16. If we have a subsequence (P,, )%, of random graph orders, with
p = play) satisfying one of conditions (i),(ii) or (iii) of Theorem 3.14, then the

subsequence has a continuum limit as described in Theorem 3.14. O

Theorem 3.17. If a sequence (P,)3, of models of random graph orders has a
continuum limit, then p = p(n) satisfies one of conditions (i), (i) or (iii) of Theo-

rem 3.14.

Proof. Suppose (P, p)o; is a sequence of models of random graph orders with

p = p(n) not satisfying any of (i), (ii) or (iii). This means that

liminf p~*logp~!/n < 1, and liminfp ' logp™/n < limsupp~logp~/n.
n—oo n—o

n—oo
So, there exist subsequences (a,), (b,) with lim,_. p~'logp=t/a, = ¢; < 1, where

p = p(a,), and limy,_,co ™" logp~! /b, = c3 > c1, where p = p(b,,).
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So, by' Lemma 3.16 the subsequence (P,, )52, has continuum limit S, and the
subsequence (P, )2, either has continuum limit S,, or S; depending on whether
¢ < lorc; 2 1. In either case, by Lemma 3.15 we have lim,_,, EX\(A3; P, p) #
limy, .o EA(Ag; By, p). This implies that (EA(Ag; P )%, does not converge, and

therefore (P, )32, is not compatible and so has no continuum limit. O

This establishes Theorem 3.4.

3.2 Possible continuum limits of classical

sequential growth models

In Section 3.1.2 we showed that the random graph order P, , has a continuum limit
for suitable functions p = p(n) and, when it exists, the continuum limit must be the
semiorder S,, where 0 < ¢ < 1 depends on p. As explained earlier, random graph
orders are a particular class of models from the larger family of classical sequential
growth models. In this section, we show that for any sequence of classical sequential
growth models, if the sequence has a continuum limit, then this limit must be an
almost-semiorder, as defined earlier. Unfortunately, we do not have a complete
result, like that of Theorem 3.4 for random graph orders; we provide some necessary
conditions for a sequence of classical sequential growth models to have a continuum
limit. The question of whether our necessary conditions are also sufficient is similar
to the question of whether compatibility is a sufficient condition, and as mentioned

earlier, we do not answer these questions here.

The results we give apply to all sequences t, but they are most interesting when
the ¢; tend to zero at least exponentially quickly but, in some sense, not much more
quickly. By this we mean that the general case should mirror the situation in the
case of random graph orders, so that the “interesting” continuum limits occur for

sequences t that are delicately balanced. We do not wish to spend time making
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these statements rigorous, but to help the reader understand this point, we give
the following rather loose argument. In the case where a classical sequential growth
model is specified by a sequence where the t; do not tend to zero quickly enough, the
growth model will produce a partial order typically denser than that produced by
some random graph order, P, ,, satisfying condition (i) of Theorem 3.14. Therefore,
we would expect the continuum limit of the growth model to be denser than the
continuum limit of P, ,, which, by Theorem 3.14, is a chain. Hence, we expect the
continuum limit of the growth model to be a chain. On the other hand, if a classical
sequential growth model is specified by a sequence where the t; tend to zero too
quickly, the growth model will produce a partial order typically sparser than that
produced by some random graph order satisfying condition (iii) of Theorem 3.14,
and therefore we would expect the continuum limit of the growth model to be sparser

than that of the random graph order, and hence an antichain.

To give a specific example, we note that the continuum limit of a sequence of
random binary growth models (or indeed, any models where ¢; = 0 for all ¢ greater
than some constant independent of n) is an antichain. This can be seen by noting
that for any r > en, the expected size of the up-set U[r] N [n] is bounded by a
constant (dependent on &, but not n), which follows from a simple path-counting
argument as in Lemma 2.13. This implies that, for any £ > 0, the expected number
of comparable pairs of elements is less than 2en? for sufficiently large n and by

Proposition 3.8 this is enough to show that the continuum limit is an antichain.

Our task is to show that, for any continuum limit P, of a sequence of classical
sequential growth models, \(H; Py,) = A(L; Ps,) = 0. Informally, we need to show
that, in any classical sequential growth model CSG(t), the number of copies of H
and L as subposets of CSG(t) is small. To do this, we show that CSG(t) has a
threshold “level” such that there are very few comparable pairs below the threshold,
whereas above the threshold, where the number of comparable pairs may become

significant, the model behaves very roughly like a random graph order, with every
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new element selecting a significant proportion of the existing elements.

To this end, we present some lemmas describing some properties of classical
sequential growth models. We believe these results to be important in their own
right, since they give particularly qualitative descriptions of a model CSG(t) without

referring to the sequence t that specifies the model.

Recall that D, is the set of elements selected by element x, and U[z] is the up-set
of . Note that D, is not the same as D[z], the down-set of z. We begin with the

following observation on the expected size of D,.

Lemma 3.18. For any classical sequential growth model, E(|D,|) is increasing in
x.

Proof. We show that for any z, we have the inequality E(|D,|) < E(|Dy41})-

Suppose the classical sequential growth model is defined by the sequence t =

(to, t1,... ) Note that

2 0 (5)t;
E(|D.) Z]P |Dsf = z’x‘) Sk
j=0 (j)tj
depends only on ty, t1,.. ., t;, and similarly
z+1 z+1
t;
(D) = 220 )

>t (m}rl)tj
depends on tg,t1,. . ., tz41-

Note that, for fixed g, t1,...,t, the probability P(|D;4,| = x + 1) is increasing
in t,.1 and all other probabilities P(|Dy1| = j) are decreasing in ¢;,,. This means

that E(|D,1|) is increasing in ¢,.; and we have

ZI_Q g (z+1)t

G o

E(|Ds41]) 2

Now, note that (“‘1) = ;21 (%) so the inequality (3.2) becomes

z+1—j
(lD Zm_o ﬁ%_g(w)t

z+1|) B Zg =0 :):+1—J( )tj
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and it remains to prove that

-—0 :z:+1—] (:;) J —Oj (;':)tj
Zm.o :c+1—] (j)t B Zz—o (j) )

which follows from Chebyshev’s Sum Inequality (see, e.g., [16, Theorem 43]), since

both j and 1/(x + 1 — j) are increasing on {0, 1,...,z}. O

For a fixed CSG(t), consider the process up to stage yo, which produces a partial
order on the ground set [yo]. Informally, the following lemma says that, if the
expected sizes E(|D,|) are small (these depend only on t and not the partial order
produced), then apart from the first en elements the expected sizes of the up-sets

of the elements in [yg] are also small.

Lemma 3.19. For0 < e <1, > 0 and n € N, if E(|Dy,|) < dlogn for some

Yo < n— 1 then E(|U[z] N [yo]]) < n®lo8 /) for all z € [en,n — 1].

Proof. Note that by Lemma 3.18 we have that E({D,|) < dlogn for all y < y,. We
use the fact that
E(|D,|) < dlogn
y Y
for all z < y < yo, and count E(|U[z] N [yo]|) by a path-counting method.

P(y selects z) = (3.3)

Define a path from z to y to be a sequence of elements sg < 8; < - -+ < 8, with
So = T, 8x = ¥, such that s; selects s;_; for all j =1,...,k. So, the probability that
any given sequence sg < §; < -+ < 8 is a path is exactly
k
HIP(s,- selects s;_1)
=2

and the expected number of paths from z to some y with y < y, is

k
' Z P(s; selects x) H]P’(sj selects s;_1).

81<82< <8, E[x+1,y0) j=2

Since every element in U[z] N [yo] must be an end point of such a path, this expected



3.2. POSSIBLE CONTINUUM LIMITS OF CLASSICAL SEQUENTIAL GROWTH 81
MODELS

number of paths is an upper bound on E(|U[z] N [yo]|). Using (3.3), we have

E(Unl) < 3 H‘”"g” H( Mogn)

81<82< <8k j=1 s=x+1
€[$+1a'y0]
Yo 61
Z ogn
8
s=x+1

Yo 1
< exp (Mogn/ ;ds)

< (yxg)élogn < (1/6)6logn — n&log(l/e)

where the equality in the first line is seen by expanding out the product on the right
hand side and noting that each term appears in the sum on the left hand side. The

final inequality comes from the fact that yo < n and z > en. O

Using Markov’s inequality with the conclusion of Lemma 3.19 gives the following

result.

Lemma 3.20. For 0 < € < 1, § = (2log(1/¢))™! and sufficiently large n, if
E(|Dy,|) < 6logn for some yo < n — 1 then P(|U[z] N [yo]| > en/2) < € for all

z € [en,n—1].

Proof. By Lemma 3.19 we have that E(|U[z]N[yo]|) < n®°8(/e) for all z € [en,n—1].
So, Markov’s inequality implies that P(|U[z] N [yo]] = en/2) < 2nf8(1/9) jen =
(2/€)n"2/2, which gives the result. 0O

So, we have that for sufficiently large n, in order to get large up-sets, we require
that the model CSG(t) is such that the expected size E(|D,,|) is at least dlogn for
some 7. The next lemma shows that if at any stage y the expected size E(|D,|) is
this large, then we do not have to continue the growth process much further before

we find z > y having a small probability that the random variable |D,| is small.

Lemma 3.21. For ¢ > 0 and sufficiently large n, if E(|D,|) > dlogn for some
y € [en,n ~ 1 —n/y/logn| and & > 0, then P(|D, .,/ mgnl < vIogn) < ¢/8.
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Proof. Fix € > 0. Suppose that E(|D,|) > dlogn, for some constant § > 0. Since

1Zl=o i(y)t'
(lDyl) 1—0 (g)t’. ’

we have

Zy:z( )t > 5lognz< > (3.4)

=0 =0

Let j = n/y/logn and M = /logn. We need to bound from above the proba-
bility
M (y+1)
y+J (y+J) Z
We use the following upper and lower bounds for (¥*7)/(¥). We have,
(Y) _+iu+i=1) (+j—i+l (y+J> (1+i)"

¥ yly—1)-(y—i+1) y

But j =n/+/logn and y > en, so j/y < 1/(ey/Iogn) so for any n > 0 we have

B(| Dyl < M) = (35)

o) > (1 — )€ (3.6)

(%)

for all ¢, for sufficiently large n.

Also,

) _@+D@+i=D---@+i—i+l) _ (y+j—z-+1>" < gillr—itD)
*) yly—1)---(y—i+1) —\ y—i+1 =

(]

So, for i < M = /logn we have

< Mily (3.7)

for sufficiently large n.

So, using the upper bound for (y'H )/ (%) in the numerator in (3.5) and the lower

bound in the denominator, we have

eMify M (V)¢ <YL ()t

2 K3

1 —m) Xt eiv(®); — (1-n) Yl ed/v ()t

P(|Dyy;| < M) <

and using (3.4) we have
M Tl

D, ;| <M< '
PPyl < M) < G 55T0gn L, e ()
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Finally, we use the fact that i/e¥/¥ is maximised when i = y/j so that i/e"/¥ <
e"'y/J.

So, we have
Milvely/;
(1 —mn)dlogn

which, after substituting j = n/y/Iogn, M = y/logn and en < y < n, gives

P(|Dyy5] < M) <

e2/5—1

P(|Dy4n/viognl < Viegn) <
y+ /\/l—g_l ) (1—17)(5\/@

for sufficiently large n. Therefore

P(lDy+n/\/l?)g_n| < 4/log n) < 8/8
for sufficiently large n, as required. O

Combining the previous two results, we can now define a threshold in a classical
sequential growth model. Informally, the threshold has the property that, for suf-
ficiently large n, below the threshold we have very few comparable pairs, whereas
just above the threshold, where we begin to get a significant number of compa-
rable pairs, a high proportion of elements select a significant number of existing
elements. We shall see that, for example, this means that the expected proportion
of triples z; < zy < z3 with z; and x, comparable and z; and z3 incomparable is
small. Importantly, the window between “below the threshold” and “just above the

threshold” is small enough not to be a problem.

Lemma 3.22. For any classical sequential growth model CSG(t), any € with 0 <

€ <1 and any n € N, there ezists a threshold yo = yo(t,e,n) defined as

(i) if y < yo then P(JU[z] N [y]] > en/2) < e for all x € [en,n — 1],

(i3) if yo <y <n—1 then P(|U[z] N [y]| > en/2) > € for some z € [en,n —1].
Furthermore, if n is sufficiently large, then

(a) E(|D,]) > élogn for allyo <y <n—1, where § = (2log(1/e))?,
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(b) P(|Dy| < VIogn) <e/8 for all yo+enfd<y<n-1.

Proof. Fix t,e, and n. Note that for fixed z € [en, n — 1] the probability P(|U{z] N
[y]| = en/2) is zero for y < £ — 14+¢en/2 and increasing in y, so we have a threshold
as claimed. Specifically, yo is the minimum over all z € [en,n — 1] of the maximum
y < n— 1 satisfying P(|U{z] N [y]| > en/2) < €. By the previous remark, this is well

defined and gives the threshold as required.

Now, suppose n is large enough so that we can apply Lemmas 3.20 and 3.21.
To prove (a), we apply Lemma 3.20, which implies that E(|D,|) > dlogn for all
Yo < y < n—1, with § as claimed. To prove (b), we apply Lemma 3.21 for
each y satisfying (a), which implies that P(|D, ./ gl < viogn) < &/8 for all
v <y <n-—1-mn/logn. For sufficiently large n, we have n/+/logn < en/4, so
that P(|Dy| < ilogn) < e/8forall yp+en/d <y <n-1. 0O

For a particular partial order P, arising from a growth process on [n — 1}, and
elements z,y € [en,n— 1], we say that = is a y-good element (in P,) if |Ulz]N[y]| <
en/2, and a y-bad element (in P,) otherwise. So y, as defined above is the maximum
value y such that, for all elements z in [en,n — 1], the probability that z is y-bad is

less than e. In particular, the expected number of yo-bad elements is at most en.

For any subset A C [n — 1] define max A to be the largest element in A. We
have the following lemma, which states that if a set is at least some (small) constant
proportion of [n — 1], then the expected number of elements above the threshold yo

not selecting elements in the set is at most some (small) constant fraction of n.

Lemma 3.23. For any € with 0 < € < 1, and sufficiently large n, given any subset

A C [n — 1] with |A| > en/2, and m = max{yo + en/4, maxA+-1}, we have
E(number of elements in [m,n — 1] not selecting an element of A) < en/4,

where yy is the threshold defined in Lemma 3.22.

Proof. By Lemma 3.22, for y € [m,n — 1] we have P(|D,| < +/logn) < ¢/8,
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for sufficiently large n. So, the expected number of y € [m,n — 1] with |D,| <
viogn is less than en/8, for sufficiently large n. For each y € [m,n — 1] with
|Dy| > +/logn the probability that y does not select an element in A is less than
(1 —g/2)VIoBn < e=eVI%™/2 < ¢/8 for sufficiently large n. So, in total the expected
number of elements in [m,n — 1] not selecting an element in A is less than en/4, for

sufficiently large n. a

We also require a result of Chernoff, which bounds large deviations of a binomial

random variable from its mean. For further details see, for example, [2, Appendix A].

Theorem 3.24 (Chernoff). If X ~ B(N,n) and a > 0, then P(X < (1 —a)7N) <

e—a21rN/2 )

Using Lemmas 3.22 and 3.23 and Theorem 3.24, we now prove Theorem 3.5,
which states that a continuum limit of a sequence (P,)%2; of classical sequential

growth models is an almost-semiorder.

Proof of Theorem 3.5. Suppose Py, is the continuum limit of (P,)3%,. Recall
that H and L are the four-element partial orders in Figure 3.1. We will show that
both EX(H; P,) — 0 and EX(L; P,) — 0 as n — oo, where P, is a random partial
order taken from P,, which implies that both \(H; Px) = 0 and A(L; Px) = 0.

Claim 3.1. EX(H; P,) — 0 as n — o0.

Proof of Claim 3.1. Call a quadruple X = (x1,25,23,24) € [n—1]% an H-
quadruple if the partial order on X induced by the order on F, is equal to the partial
order H. Fix ¢ > 0. We will show that, for sufficiently large n, the expected number
of H-quadruples is less than 5en?. This implies that EA(H; P,) < 6¢ for sufficiently

large n.

The number of H-quadruples including an element below en is certainly at most

2ent, so we may restrict attention to quadruples all of whose entries are in [en, n—1].

We now fix any pair of elements (z1,z;) from [en,n — 1], and estimate the
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expected number of H-quadruples with these elements as the first two entries, which

is exactly

E(|U[z:]) \ Ulza]| x [Ulza] \ Ulai]l).

This is certainly at most n times the expectation of the minimum of these two
sizes. We claim that, for any choice of (z;, z2), the expected value of min{|U[z,] \

Ulzs]|, |U[z2) \ Ulz1]|} is at most 3en; this will suffice to prove the claim.

Recall the threshold yo = yo(t, €, 1), as defined in Lemma 3.22, with:

(i) if y < yo, then P(z is a y-bad element) < ¢ for all z € [en,n — 1],
(ii) if yo < y £ n—1, then P(z is a y-bad element) > ¢ for some z € [en,n — 1].
We consider increasing y until one of the two sets Ulz;] N [y} and Ulzs] N {y]
(without loss of generality the first) reaches size en/2. To be precise, define y; such

that, for all y < y;, both z; and z, are y-good, and for all y > y;, one of them

(without loss of generality z,) is y-bad.

One of the following events occurs.

(a) y1 =mn — 1, as neither set ever reaches size en/2,

(b) Y1 < Yo,

() yo<yi<n-—1

If event (a) occurs, then certainly |U[z1]\ Ulzo]| < en/2 < en.
The probability of event (b) is at most 2¢, by definition of ¢ and y;.

We now consider the case where event (c) occurs, and condition on the event
that y; takes some particular value in the range [yo,n — 2}; note that this event
depends only on the sets selected by those elements up to and including y; + 1; in
what follows we will only consider the sets selected by elements beyond y; + 1, so

we can effectively ignore the conditioning.
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By definition of y;, we have |U[z;|N[y1+1]| = |en/2]+1 and |U[z2]N[n1]| < en/2.

We now show that the expected size of U[z] \ Ulz;] is small.

Since the set U[z]N[y; + 1] has size greater than en/2, and y; > 1, Lemma 3.23
implies that the expected number of elements in [y; + en/4,n — 1] not selecting an
element from Ulz1] N [y; + 1] is less than en/4, for sufficiently large n. So the
expected number of elements in [y; +en/4,n ~ 1] not above z; is less than en/4, for

sufficiently large n.

So, conditioned on this value of y;, the expected size of U[z,] \ Ulz,] is at most

[Ulze] 0[] + |31 + 1,31 +en/4]| + Ellys + en/4,n — 1]\ Ulzi]|

<en/2+enfd+enfd=en,
for sufficiently large n.

Considering all the possible cases (a)-(c), we now have that the expected value
of min{|U[zy] \ Ulzs)|, |Ulza] \ Ulz1]|} is at most en + nP((b) occurs) < 3en, for

sufficiently large n. This completes the proof. |

Claim 3.2. EX(L; P,) — 0 asn — oo.

Proof of Claim 3.2. Call a quadruple X = (z1,22,%3,74) € [n — 1J® an L-
quadruple if the partial order on X induced by the order on P, is equal to the
partial order L. Fix € > 0. We will show that, for sufficiently large n, the expected
number of L-quadruples is less than 6en®. This implies that EA(L; P,) < Te for

sufficiently large n.

Generate a partial order P, on [n— 1] according to the classical sequential growth
process defined by t, and consider any quadruple (z;,z2, %3, z4) of elements from
[n — 1], with en < 21 < 23 < 23 (in [n — 1]). Set y1 = y1(Pp, 1) to be the largest

element such that z; is a y;-good element. One of the following is true.

(@) v1 < ¥o,
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(b) z2 < w1 +en/4,
(c) za —en/d < x4 < 29,
(d) y1 > Yo, 2 > Y1 +en/4 and z4 > o,

(e) y1 > Yo, T2 > Y1 + enfd and x4 < T2 — en/4.

We show that the expected number of L-quadruples satisfying each of the above
sets of conditions is at most en*. This gives the expected number of L-quadruples
to be at most 6en?, including those with x; < en. The above claim is immediate in
case (c). For case (a), the condition implies that z; is yo-bad, and we know that the
expected number of yo-bad elements is at most en. The bound for case (b) follows
immediately from the definition of y;: the condition implies that x5 lies in one of

the small sets Uz} N {y1] or [y1 + 1,11 +en/4].

For case (d), it suffices to prove that, for fixed x;,z2 with o > m = max{yo +
en/4,y; + 2}, conditioned on the growth process up to m, the expected number
of elements z; € [z3,n — 1] with z4 not above z; is less than en/4. We apply
Lemma 3.23 to the set Ulz;] N[y; + 1], which is of size |en/2] + 1 by definition of

y1. Since max(U[z1] N [y1 + 1]) = 1 + 1, we have that the expectation
E(number of elements in [m,n — 1] not selecting an element of U[z;] N [y + 1])

is less than or equal to en/4, which implies the desired result.

Turning finally to case (e), we fix z, with zo > yo + en/4, and z, with 24 <
zy — en/4, and condition on the growth process up to z4. It suffices to show that

E|U[zs] \ Ulz4]| < en.

Since o > yo + en/4, we have E(|D,|) > dlogn for all z € [zy — en/4,z, — 1),
where 6 = (2log(1/¢))~!. So,

E(|D.|) > dlogn
z

P(z selects z4) = -

)
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which means that the probability that fewer than edlogn/8 of the elements in

(o — en/4, z, — 1] select x4 is less than
P(X < edlogn/8)

where X has the binomial distribution B(en/4, dlogn/n). Using Theorem 3.24 with

a=1/2, N=¢en/4 and nm = dlogn/n gives
P(X < eblogn/8) < e™®018n/32 < ¢ /8

for sufficiently large n. Let Z = Ulzy] N [z2 — en/4, 2z, — 1]. With probability at
least 1 — /8 we have |Z| > edlogn/8. We next show that, if this is the case,
then, conditioned on the growth process up to z,, with high probability either

|Ulz3]| < en/2, or Ulz4) N [y] reaches size en/2 before U[xz] N [y] does.

Recall that a path in a poset P arising from a growth process is a sequence
ai, ag, . . ., a of elements such that each element selects the previous one; we say the
path has start point a; and endpoint a;. For 2 < 29 <y, define PY to be the set of
all elements in [y] that are an endpoint of some path with start point equal to z and
all other elements in the path in [zg + 1,y]. The starting point for this definition is

that P22 = {2} for each z < 5.

Note that PY C Ulz] N [y], with equality if 2 = z,. We claim also that the pro-
cesses (P¥\ {z})p=2, are identically distributed, independent of the growth process
up to 3, for all 2 € Z U {z2}. To see this, note that P72\ {2} = @ for each z < z,,
and that, for each y > 9, y enters P if and only if it selects an element of PY™,

an event whose probability depends only on |PY™1|.

Now consider all the identically distributed size processes (|P¥|)p=;,, for z €
Z U {z;}. The probability that |P| reaches size en/2 before any of the other
processes is, by symmetry, at most 1/(]Z| + 1) < 8/(edlogn) < /8, for sufficiently
large n. So, with total probability at least 1 —e/4, we have either (i) |P2!| < en/2,

or (ii) there exists some z € Z and some y > x, with |P¥| > en/2 and |P¥| < en/2.
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If (i) occurs, then |Ulz,]| = |P2!| < en/2. We will prove that, if (ii) occurs,
then, conditioned on the growth process up to y, the expected size of U[z2] \ U[z4] is
less than 3en/4. This will imply that the expected size of U[z2] \ U[z4], conditioned

only on the assumptions in (e), is less than n, as we require.

Suppose then that (ii) occurs, when we have |U[zs] N [y]| > |PY| > en/2 and
|U[z2]N[y]| = |PY,| < en/2. Applying Lemma 3.23 to the set U[z4]N[y] implies that,
conditioned on the process up to y, the expected number of elements in [y+1,n— 1]
not above z is less than en/4, so the expected size of U[zs] \ U[z] is indeed less

than en/2 + en/4 = 3en/4.
This completes the proof. O

Combining the claims, we have that the continuum limit Py, satisfies A(H; Poo) =

0 and A(L; Py) = 0 so that P, is an almost-semiorder. O
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This part is concerned with counting embeddings of trees into complete trees.
In [17], Kubicki, Lehel and Morayne proved that for binary trees T} and T with 7}
a subtree of 15, the proportion of the embeddings of 77 into a complete binary tree
that map to the root is no more than the proportion of the embeddings of T into the
complete binary tree that map to the root. They conjectured that this inequality
holds even for T3, 75 not binary. Here, we show that the conjecture is false and look

at different generalisations of their result.

In Chapter 4 we give some background and motivation for this work, and intro-

duce our notation.

In Chapter 5 we provide an algorithm for calculating the number of embeddings
of a tree into a complete binary tree and the number that map to the root of the
complete binary tree. Using this algorithm for a particular pair of trees we provide

a counterexample to the conjecture of Kubicki, Lehel and Morayne.

In Chapter 6 we investigate the asymptotic behaviour of the number of embed-
dings as the height of the complete binary tree tends to infinity. Using this behaviour
we are able to give conditions on when a pair of trees will be a counterexample for
all large enough complete binary trees. Using this we construct a family of pairs of

trees which are such “asymptotic counterexamples”.

In Chapter 7 we show that the results in Chapters 5 and 6 can be reformulated
for embeddings of trees into a complete p-ary tree and we state and prove some of

these more general results.

In Chapter 8 we generalise the result of Kubicki, Lehel and Morayne to em-
beddings of binary trees into a complete p-ary (rather than into a complete binary
tree). Our proof employs the FKG-inequality, a powerful result which gives corre-
lation inequalities for events on distributive lattices. Therefore, we can view the
Kubicki, Lehel and Morayne result as one of many possible correlation inequalities

for embeddings of binary trees into complete p-ary trees. In this light we see that
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the case of binary trees is special; we cannot use this distributive lattice method
when we generalise to embeddings of arbitrary trees. We give an example where a
correlation inequality for embeddings of binary trees does not hold if we generalise

to embeddings of arbitrary trees.

However, we show that we can generalise to arbitrary trees, if we instead look at
order-preserving maps from trees to complete trees. In other words, the conjectured
inequality is true, if we count order-preserving maps rather than embeddings. In
this case, we are able to apply the FKG-inequality to get correlation inequalities
for order-preserving maps of arbitrary trees into complete trees. This is true for
both strict and weak order-preserving maps. (Formal definitions can be found in
Chapter 8, but the main difference between strict and weak order-preserving maps
is that a strict order-preserving map cannot map two comparable elements to the
same element, whereas a weak order-preserving map can.) We finish the chapter

with some related open problems.

In Chapter 9 we look at some lemmas for product lattices, which give alternative
sufficient conditions for applying the FKG-inequality. We show that some of the

conditions can be weakened if we have other extra conditions holding.
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Chapter 4

Preliminaries

4.1 Basic definitions

A tree poset is a partial order with a maximum element, called the root, such that
every element that is not the root has exactly one upper cover. The minimal elements
of the partial order are called the leaves. The Hasse diagram of a tree poset is a tree
in the graph-theoretic sense; here we use the word tree as a synonym for tree poset.
For p > 2, a p-ary tree is a tree where every element has at most p lower covers.
We will use binary and ternary as synonyms for 2-ary and 3-ary, respectively. A
complete p-ary tree is a p-ary tree such that all maximal chains are of equal length
and every element:‘ that is not a leaf has exactly p lower covers. The height of a
complete p-ary tree fully determines the partial order, for example the complete

p-ary tree of height n, denoted by T, has (p" —1)/(p— 1) elements and p"~* leaves.

For T a tree, we write 17 for the root of T', and write 1, for the root of . An
embedding ¢ of a tree T' into the complete tree T, is a map from T to T} such that
#(z) > ¢(y) in Tg‘ if and only if z > y in T. Define Ag’?) (n) to be the number of
embeddings ¢ of T into T with ¢(17) = ¢(1,) and define C'r_,(? )(n) to be the total

number of embeddings of T" into T3
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4.2 Background

This work is motivated by results from previous papers by Kubicki, Lehel and
Morayne. In [22], Morayne looked at a partial order analogue to the secretary
problem. For a detailed history and discussion of the secretary problem see [13]. As
explained there, the classical secretary problem is to find the optimal strategy given

the following set-up.

1. There is one secretarial position available.
2. The number N of applicants is known.

3. The applicants are interviewed sequentially in random order, each order being

equally likely.

4. It is assumed there is a ranking of the applicants from best to worst without ties.
The decision to accept or reject an applicant must be based only on the relative

ranks of those applicants interviewed so far.
5. An applicant once rejected cannot later be recalled.

6. Your payoff is 1 if you choose the best of the N applicants and 0 otherwise.

It turns out that the optimal strategy is to reject the first M = M(N) applicants
and then accept the next applicant who is the best out of those already interviewed.
There is an explicit expression for M in terms of N, and M/N — 1/e as N — oo.
Furthermore, the probability of success by following this strategy tends to 1/e as

N — o0o. See, for example, {15] for both exact and asymptotic results.

The above conditions can all be modified to give different variants of the problem,
for example where the interviewer has k offers in which to get the best secretary,
or where it is possible to recall a rejected candidate (with some cost). Morayne

considers the situation where condition 4 is modified so that the applicants are
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ordered as a complete binary tree, and at each stage the interviewer knows the partial
order formed by the applicants interviewed so far. There is still a best applicant
~ and the problem is to find the optimal strategy that maximises the probability of
choosing the best applicant. The number of applicants N is equal to 2" — 1 for some

n, the height of the complete binary tree T7.

In [22], Morayne proves that the following strategy is optimal. If the partial order
of the interviewed candidates is not a chain, and the current applicant is best-so-far
then we accept him. If the partial order is a chain, then we only accept a best-so-far
applicant if the height of the chain is greater than n/2, half the height of Ty'. In
other words, the strategy is to take the first applicant that is best-so-far, with the
caveat that if the first k applicants are totally ordered (for k < n/2), then we should
not take the best-so-far. This caveat for the chain case is necessary, as can be seen
in the following example. Suppose that n is large so that the number of applicants
N = 2" — 1 is large in comparison to n, and suppose that after three interviews the
partial order of the applicants is a chain, with the third applicant the best-so-far.
It is highly unlikely that the third applicant is the best; this probability is of the
order n~! and tends to 0 as n tends to infinity. In contrast, if after three interviews
we have that the third applicant is best-so-far, and the first two are incomparable,
then the probability that the third applicant is the best is greater than 1/2, for

any n > 2.

In this set-up, where the applicants are ordered as a complete binary tree, let us
look at the probability that the current applicant is the best applicant. As is the
case for the classical secretary problem, if the current applicant is not the best-so-
far then they cannot be the best applicant. So, consider the case when the current
applicant is the hest-so-far. Therefore, the partial order seen by the interviewer is
a tree with the maximum elefnent of the tree being the current applicant. Denote
this tree by T. The fact that the interviewer knows the ordering of the interviewed

applicants after each interview means we can consider T to be a labelled tree. Sup-
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pose we have interviewed k applicants, so that T is a k-element tree labelled with
the numbers 1 to k, and the root is labelled with k. To calculate the probability
that the current applicant is the best, given the tree T, we need to count the number
of orderings of the elements of T7' so that the first k£ form an isomorphic copy of T,
and count the proportion of those that have the k-th element as the root of T3'. Put
another way, we count the number of labellings of 77 (with the numbers 1..., N)
for which the elements labelled 1,..., & form an isomorphic copy of T, and count
the proportion of those which have the root of 77 labelled k. But this is exactly the
proportion of embeddings of T into T3 that map the root of T to the root of T3
Therefore, the probability that the current applicant is the best applicant, given

that the interviewed applicants form the tree T is the ratio A% (n)/C® (n).

Morayne shows that this probability is greater than 1/2 when either 7T is not a
chain, or T is a chain with k > n/2. This means that any strategy which dictates
that we should continue interviewing applicants, given such a T, is a worse strategy.
Morayne also shows that to stop interviewing if T is a chain with £ < n/2 is not an

optimal strategy, which essentially shows the strategy given above is optimal.

Important to Morayne’s proof is the fact that, for T a chain, Agg) (n)/ C’? Y(n) is
increasing in the height of the chain. This leads naturally to the question: Is the
ratio Ag? ) (n)/ C’? ) (n) “increasing in T”, for other trees T'? In other words, if T1, T,
are trees with 7} a subtree of T does the inequality

2 2
AR(n) _ Ap)(n)

cP(n) ~ CP(n) @

hold? The intuition is that for the larger tree, we have more information about the
current applicant—he is better than more applicants—so the probability that he is
the best applicant should be greater. As mentioned above, in [22] Morayne proves
the inequality when Ty, T, are chains. In [17], Kubicki, Lehel and Morayne prove

the inequality for binary trees Tj,T3, as below.

Theorem 4.1 (Kubicki, Lehel and Morayne). For anyn and any binary trees T1, T3
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with T\ a subposet of Ty we have

AR(n) _ AR ()
P (n) =~ CP(n)

They prove the result using lemmas which can be stated as follows.

Lemma 4.2. For any binary tree T, and any z in T, we write C:(rz)(n;m — k) for
the number of embeddings of T into T3 that map = to an element in level k of T3,
and write Arf,?) (n;z — k) for the number of those embeddings that also map the root
of T to the root of Ty'. We have

APz —k) _ AD(nz — k+1)

< . 4.2
Pz k)~ P (njz — k+1) 2
Lemma 4.3. For any binary tree T, in both cases
(a) z aleaf of T,
(b) x the only lower cover of an element in T,
we have
AP(K) _ AP (k+1)
O = 4@ ) (4.3)
Ag'(k)  Ag'(k+1)

where S =T\ {z}.

Both lemmas are proved by “brute force”; Kubicki, Lehel and Morayne calculate
expressions for each term in the inequalities (4.2) and (4.3) in terms of sums of
products of similar expressions for smaller trees, and then apply induction to get the
result. They combine the two lemmas and results about log-concavity of sequences

to prove Theorem 4.1.

Informally, Lemma 4.2 states that, for any element z in T, if an embedding maps
 to a higher level (nearer to the root) of T then it is more likely that the embedding
also maps the root of T to a higher level, e.g., to the root. Lemma 4.3 states that,

in both of the two cases stated, there are proportionally more embeddings of the
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larger tree T than of S = T\ {z} when the root is mapped to a higher level of
T3'. Both the lemmas give the impression of being correlation inequalities (on some
unspecified probability space). Indeed, we show in chapter 8 that the lemmas are
examples of correlation inequalities on certain lattices. In this way we can generalise
Theorem 4.1 to embeddings, and other mappings, into more general complete trees.
We essentially follow the proof method of Kubicki, Lehel and Morayne in [17), but
using the power of the FKG-inequality we can simplify (and therefore more easily

generalise) Lemmas 4.2 and 4.3.

In [17], Kubicki, Lehel and Morayne conjectured that the inequality (4.1) also

holds for arbitrary trees, as follows.

Conjecture 4.4 (Kubicki, Lehel and Morayne). For any n and any trees Ty, Tp
with T1 a subtree of Ty we have

AR(n) _ AR (1)

Cr(n) ~ Cf ()

In [19], Kubicki, Lehel and Morayne show that Conjecture 4.4 is true for stars
rooted at their centre. Intuitively the conjecture seems highly plausible, especially
given the interpretation of the inequality in terms of the secretary problem. Surpris-
ingly then, the conjecture is in fact false. Indeed, we will show that the conjecture
is false even when we restrict 73, T; to being ternary. As mentioned in the introduc-
tion, we study the asymptotics of Ag?) (n)/ C:S? ) (n) which helps direct our search for

counterexamples to Conjecture 4.4 for arbitrarily large n.

We begin with some recurrence relations for A% (n) and C{?)(n). For ease of
notation we write 7™ for the complete binary tree T3 and write Ar(n),Cr(n) for

the numbers A (n), C (n).
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Chapter 5

The expressions Ar(n) and Cp(n)

5.1 Recurrence relations for Ar(n) and Cr(n)

We can use the regular structure of T™ to find recurrence relations for Ar(n) and
Cr(n). Let t1,t; be the 2 lower covers of 1, in T™. Write (T"); for the set of all
elements that are lower than or equal to ¢; in 7", and similarly for (7™),. So, (T™);
and (T™), are both copies of 7"!. For any embedding of a tree T into T™ the root
17 of T is either mapped to 1,, or mapped into (T™); or (T™);. Counting these

embeddings of T" into T™ gives
Cr(n) — 2C7r(n — 1) = Ag(n). (5.1)

So, once we have calculated Ar(n) we can solve a simple linear recurrence to find

CT(TL)

We now show that Ar(n) also satisfies a linear recurrence relation. For any
x € T we write D[z] for the set of all elements in T that are lower than or equal
toxinT. Let T t;e a tree and suppose the root 1r has r lower covers xzy,...,Z,.
For any subset L C [r] write Ty, for the tree formed by removing the subtrees Dz;]
for all j € L°. (Here, L° = [r] \ L.) Notice that T{; \ {17} = Dla;], T}y = T and

Tq) = {lT}
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We will count the embeddings of T into 7™ by considering the possible places
to map the elements x;,...,z,. In particular we are interested in the partition
of {z1,...,2,} defined by which of the two subtrees (T™);, (T™); an element z; is

mapped to.

Write A7 (n) for the number of embeddings of 77 into 7" that map the root 1r
of T, to 1, and map z; into (T™);, for each j € L. By the symmetry of T" this is
the same as the number of embeddings of T, into 7™ that map 17 to 1, and map

z; into (I™),, for each j € L.

For a fixed set L C [r] we can count the number of embeddings ¢ of T into T™
with ¢(x;) in (T™); for all i € L, and ¢(z;) in (T™), for all 4 € L. Since the two trees
(T™); and (T™), are below incomparable elements ¢, and ¢, we have that the number
of such embeddings that also map 17 to 1, is exactly the product Az, (n)Ar, . (n).
So,

Z Az, (n)AT,.(n) (5.2)

LC[r]

For L = {, we have Ty = {17} and A7, (n) is equal to 1. For L a singleton,
A7z, (n) is the number of embeddings of T, \ {1r} = D[z, into (T™), which itself
is a copy of T""1. So Az, (n) = Cpp;j(n — 1). Finally, for |L] > 2, A7, (n) is the
number of embeddings that map 1r to 1, and map z; to an element of (T"); for all
j € L. Since |L| > 2 any such embedding ¢ cannot map any of the z; to t;. So, for
each embedding ¢ we can construct a new embedding ¢ of Ty, into T™ by defining
Y(1r) = t; and ¥(z) = ¢(z) for all z € Ty \ {1r}. Now, % is an embedding into
(T™), which maps 1r to t;, the root of (IT™);. Since (T™); is a copy of T""! the
number of these embeddings v is Ar, (n — 1). Since each ¢ corresponds uniquely to

a 1, and vice-versa, we must have Az, (n) = A, (n — 1). To summarise,

4

1 L=40

Ar,(n) = { Cp,(n—1) L= {j} (5.3)

Ar,(n—1)  otherwise.
\
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It will also be useful to have another expression for A7, (n) when L = {j}. We
have that A7 (n) is the number of embeddings of Ty, into 7™ that map 17 to 1,
and map z; to an element in (7");. By symmetry of T™ it is also the number of
embeddings of Ty, into T™ that map 17 to 1, and map z; to an element in (T™).
Since, every embedding of T}, into 7™ that maps 17 to 1, must map z; to an element
in either (T™); or (T™); we have 247, (n) = Ag,(n) or

- ATL (n)
2

Az, (n) (5.4)

for L = {4}

We can use equations (5.1)-(5.4) to find Ar(n) and Cr(n) inductively. For T a

tree, the number of leaves of T is denoted by I(T).

Theorem 5.1, For any tree T, the number of embeddings of T into T" is of the

form
UT)

Cr(n) =) _ g;(n)2'™,

=0
where each g; is a polynomial.

For T the 1-element tree, the number of these embeddings that map the root of
T to 1,, Ar(n), is equal to 1. Otherwise, for T with |T'| > 1, the number is of the

form
@) .
Ar(n) =) g;(n)2’™,
=0

where each g; is a polynomial.

The following lemma on recurrence relations will be useful.

Lemma 5.2. Suppose | is some fized positive integer. Then the solution to the
equation

{
Yn—2n1 = D [i(n)2", y=0, (5.5)

J=0
where each f; is a polynomial, is

l
Yn = Z 9j (n)2jn
7=0



5.1. RECURRENCE RELATIONS FOR Ar(n) AND Cr(n) 103

where each g; is a polynomial. Furthermore, for j # 1, the polynomial g; is the

unique polynomial satisfying the identity

9i(n) — 27 gi(n — 1) = f;(n),

and g, satisfies the identity

g1(n) — g1(n — 1) = fi(n),

where the constant term of g, is given by
!
Y g()Z =0
§=0

Proof. By linearity, it is enough to find the complementary solution, and the
particular solutions to ¥, —2y,-1 = fj(n)2’" for each j. The complementary solution
is the solution to y, — 2y,-1 = 0, which is just y, = K2", for some constant K. For
a fixed j, a particular solution to ¥, — 2y,—1 = f;(n)2'" is of the form y,, = h;(n)2/",
for some polynomial h;, by an elementary result on recurrence relations. For j # 1,
the polynomial h; has the same degree as f;, and h; has degree one larger than
f1. (Also, assume h; has no constant term; this is covered by the complementary
solution.) The general solution is y, = Z;eo g;(n)27", where g;(n) = h;(n) for all

7 # 1 and g1(n) = hi(n) + K. So, the solution to (5.5) will be of the required form.

Moreover, if y, = h;(n)2/™ is the particular solution to y, — 2y,—1 = f;(n)27™,

then we have h;(n) — 2'7hi(n—1) = f;(n). So, for all j, the polynomial g; satisfies

gi(n) — 2" gi(n — 1) = fi(n).

For j # 1, since g; and f; are polynomials of the same degree, this equation uniquely
determines g;. Since the equation hi(n) — hi(n — 1) = fi(n) uniquely determines
hy (as we assumed‘that hy has no constant term), the polynomial g, is determined
except for the constant term K. We fix K with the initial condition of (5.5), y; = 0.

This gives the equation

l
> ()2 =0
=0
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as claimed. O

L

Proof of Theorem 5.1. We include the case of T being a l-element set for
completeness. In this case, we see immediately that there are 2" — 1 embeddings of
T into T™, which is exactly the number of elements in T™. Also, only one of these
embeddings maps the root of T to 1,,. So, Ar(n) = 1 as claimed, and Cr(n) =2"—1

is of the required form.

For |T'| > 2, we simultaneously prove that Ar(n) and Cr(n) are of the required
form by induction on the size of T. We shall make use of Lemma 5.2 to solve recur-
rence relations for Ar(n) and Cr(n). We use induction to show that the recurrence
is of the form of equation (5.5), and since we will only be considering trees with

|T| > 2 we have the initial conditions Ar(1) = 0,Cr(1) = 0 as in (5.5).

For |T'| = 2 the only tree is the 2-element chain, which has one leaf. Label the
root 17 and the leaf z;. Since 17 has only one lower cover, r = 1 in equation (5.2)
and the subtrees of interest are Tj;y = T and Tp = {1r}. Using equations (5.2) and
(5.3) we ha;/e

Ar(n) = Az, (n)Az

Ty (M) + Ay, (n)Ag, (n) =2Cp3(n—1)

But we have shown earlier that Cyg,}(n) = 2" — 1. Therefore Ap(n) = 2" — 2 which

is of the required form (where I(T) = 1, go(n) = —2 and ¢;(n) = 1).

In fact, we can see immediately that Ar(n) = 2™ — 2, since this is exactly the
number of places to embed z; in T" (anywhere except at 1,,, where z is embedded).
Using (5.1) and Lemma 5.2 we have that Cr(n) = (n — 2)2" 4+ 2 which is of the

required form (g;(n) =n — 2 and go(n) = 2).

Suppose the result is true for all T with |T| < k and let T be any tree with
|T'| = k. There are two cases to consider, depending on whether the root of T" has

exactly one lower cover. If the root has exactly one lower cover, z;, equation (5.2)
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reduces, in a similar way to the base case, to

8

Ar(n) = 20ppey)(n — 1).

Applying the inductive hypothesis to D[z1], a tree with I(D[z;]) = I(T) leaves, we

have that
T)

CD[a:l](n) = Z g; (n)zjn

=0
where g; are polynomials. Therefore,

UT) I(T)

Ar(n) =2 gj(n — )20 =" g;(n)2"
j=0 j=0
where g; are polynomials.

If the root of 7" has r > 1 lower covers x,...,x, then we can write equation

(5.2) as

Ar(n) = Az, (W) Az () + Az (WAg,(m) + Y Ag,(n)Az,.(n)

LCir]
L#0,[r]
which can be rearranged to
Ar(n) —2Ar(n—1)= > Az (n)A7,.(n). (5.6)
LC[r]
L#0,{r]

We use equations (5.3) and (5.4) in order to apply the inductive hypothesis. Terms
in the sum where L is not a singleton or complement of a singleton are of the form
Ar, (n—1)Ar,.(n — 1). Terms where L is a singleton but L€ is not, are of the form
Az, (n)Ar,.(n — 1)/2; terms where L is not a singleton but L° is, are of the form
Ar, (n—1)Ar,.(n)/2 and terms where both L and L¢ are singletons (this will only
be for r = 2) are of the form Ar, (n)Ar,.(n)/4.

By our inductive hypothesis we have Ar, (n) = El(fé) g;(n)27™ for polynomials g;.
This means that the right hand side of equation (5.6) is of the form ZI(T) hj(n)27™
for polynomials h;. That is, Ar(n) satisfies a recurrence relation and applying
Lemma 5.2 gives the result for A7(n). Finally, we use (5.1) and Lemma 5.2 which

gives the result for Cr(n). a
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5.2 Counterexamples to a conjecture of Kubicki,

Lehel and Morayne

Note that the proof of Theorem 5.1 actually shows how to find the polynomials g;
and g; in the expressions for Ar(n) and Cr(n). However, for a particular tree T,
in order to calculate Ar(n) and Cr(n) we need to calculate Ar, (n) for all subtrees
Ty. For small trees the calculations are still relatively simple. We use the algorithm

given in the proof of Theorem 5.1 to find explicit expressions for the two trees Ty, T

SR

Figure 5.1: Counterexample to Conjecture 4.4

in Figure 5.1.

To find these expressions we need to also calculate Ag and Cg for subtrees S of
T; and T5. Define the subtrees S = {, Sy = I, S3 = , Sy = /\, S5 = A
In order to find Ay, we need to calculate Ag,, Ag,, As,, Ag,, and to find Ag, we need
to calculate Cg,. For Ar, we also need to calculate Ag, and to find this we need to

calculate Cs,. Table 5.1 lists the expressions Ag(n), Cs(n) needed.

Solving the recurrence relations for T; and T, using the expressions in Table 5.1,

gives

Aq, (n) = (n—14/3)8™ + (—3n? + 24n — 34)4" + (n®/3 ~ 8n® + 65n/3 + 44/3)2" + 24

Ag,(n) = (2n/3 — 20/9)8" + (-n® + 8n® — 30n + 58)4™

+(—2n3/3 + 202 — 40n/3 — 430/9)2" — 8
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S As(n) Cs(n)
I 2" -2 (n—2)2" +2
{ (n—3)2"+4 (n?/2 — 5n/2 + 4)2" — 4
/\ 4"+ (—2n+1)2" -2 24" + (—n? —4)2" + 2
{\ (n —4)4™ + (—n?/2 + 9n/2)2" + 4 Not needed
)\ 4" + (—n? +2n—-5)2" + 4 Not needed

Table 5.1: Ag(n), Cs(n) for small trees S

and, using (5.1), we have

Cr,(n) = (4n/3 — 20/3)8™ + (—6n® + 60n — 134)4"

+ (n*/12 — 5n/2 + 83n%/12 + 145n/6 + 494/3)2™ — 24

Cr,(n) = (8n/9 — 88/27)8" + (—2n® + 22n? — 110n + 250)4"
+ (—n/6 +n®/3 — 35n? /6 — 487n/9 — 6878/27)2" + 8

So, Ar, (4)/Cr, (4) = 99/101 > 67/69 = Ar,(4)/Cr,(4), a counterexample to the
conjecture of Kubicki, Lehel and Morayne. We also have

Ar,(5) _ 2635 1783 _ Ar(5)
Cr,(5) ~ 2837 7 1921 Cp(5)

but
Ap(6) _ 44147 _ 31055 _ Ary(6)

Cr,(6) ~ 49821 ~ 34897 Cr,(6)

So, for n = 4,5 these trees give a counterexample, but not for n = 6. In fact,

for n = 6,...,11 the conjectured inequality holds, but for larger n it does not.

Asymptotically, we have

An(r) _ (= 458500 3 L5 L
C’;(n) " (4n/3 — 20/3)8" + O(n24r) ~ 4 it +o(n~?)
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and
Ar,(n) _ (2n/3 — 20/9)8™ + 0(n34n) 3 1, 11, ,
CTz(n) B (8n/9 - 88/27)8” + O(n34n) - Z + Zn + En + O(n ),

so Ar, /Cr, is asymptotically larger than Az, /Cr,.

This asymptotic difference is very subtle. Here, the ratios Ar,/Cr, Ap/Cr,
differ only in the n=2 terms and terms of lower order. We will show, in Section 6.3,
that for any 77 C T, which have Ap, /Cr, asymptotically larger than Ar, /Crp, the

ratios differ only in the n~2 terms and terms of lower order.

For small values of n there are two competing factors which determine whether
the conjectured inequality holds. Since A7 and Cr are related by (5.1), we have
Ap(n)/Cr(n) =1-2Cr(n —1)/Cr(n). So, the conjectured inequality is equivalent

to
CTz(n - 1) < CTz (n)
CTl(n - 1) - CTl(n)

We can think of the ratio Cr,(n)/Cr,(n) as the expected number of embeddings of

T, into T™ that are an extension of a randomly chosen embedding of T; into T™.
So, for n = 3, each embedding of 77 into 7 can only be extended one way (there
is only one place in T3 to which we can map the extra element of T3), therefore
Cr,(3)/Cr,(3) = 1. For larger values of n, some embeddings of T; into T™ have no
extensions to an embedding of T into T™, others will have many extensions to an
embedding of T3 into T™. In this example, as n increases there will tend to be a
larger fraction of embeddings of T} into 7™ with no extension to an embedding of
T, into T™. However, those embeddings of 77 into 7" that do have extensions to
embeddings of T into 7™ will tend to have more of them, as n increases. These
two competing effects determine whether the ratio Cr,(n)/Cr, (n) will increase or
decrease for an in.crease in n. In this example the two effects are quite equally
balanced, making it difficult to see intuitively why the inequality holds for some

values of n and fails for others.

The following example better illustrates the failure of the conjectured inequality,
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T1 T2

Lok

Figure 5.2: Counterexample to Conjecture 4.4

as in this example one effect dominates the other. Let T} and T, be as shown in
Figure 5.2, where k is some fixed integer. As we have explained, the conjecture
claims that Cr,(n)/Cr,(n) is increasing in n. However, we show that for these trees,
the ratio is considerably larger for small n than it is for large n, since for small
n there is a higher proportion of embeddings of 7} that can be extended to an

embedding of Ts.

For any n with n > k + 1, an embedding of T5 into 7" must map all the leaves
Z1,...,Zox-1 into the same half of 7™, and it must map all the leaves Zar-1,4,..., 2o
into the same half of 7™. This is a restriction imposed by the elements y; and ys.
Embeddings of 77 into T™ do not have this restriction, and any embedding of T}
into 7™, which does not partition the leaves in the same way cannot be extended to

an embedding of T5.

Now, for n = k+1, the tree T%*! has 2 leaves, so all embeddings of T} into T*+!
map the leaves of T} to the leaves of T*t!. Therefore, we know that half the leaves
of Ty are mapped into one half of 7%*! and the other half into the other half of T*+1,
So whether the embedding extends to an embedding of T, depends only on which
particular set of 25~ leaves are mapped into one of the halves of T**1, Since there
are (2,351) subsets of size 2¥~!, and two of these yield an extendible embedding (when
we choose {z1,...,Zok-1} OF {Zok-111,...,Zo¢}), each with one possible extension,

the ratio Cr, (k + 1)/Cry (k + 1) is equal to 2/(,2,).
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For n > k + 1, most mappings from 77 into T" are embeddings, but only
those which partition the leaves as described above can be extended. Moreover,
most of the embeddings that can be extended map the leaves z;, ..., Zo-1 into one
half of 7", and the leaves Zgk-1,1,...,Zoc into the other half of 7™ (rather than
the same half) and most of these extendible embeddings have only one possible
extension. So of the total number of embeddings of 77 into 7™ the fraction that are
extendible is roughly 2-2" and most extendible embeddings have just one possible
extension. Therefore, Cr,(n)/Cr, (n) is roughly 1/2%° which is considerably smaller

than Cr,(k +1)/Cn(k+1) = 2/(,Z,).
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Chapter 6

Asymptotic behaviour of Ap(n)
and CT(TL)

In this chapter we study the asymptotic behaviour of Ar(n) and Cr(n) in order to
provide counterexamples to Conjecture 4.4, for arbitrarily large n. This tells us that
we cannot hope for a version of ‘the conjecture that holds “for sufficiently large n”.
The calculations are similar in style to those in the previous chapter, but here we
need to be more exact, as we will need to calculate the leading terms of Ap(n) and
Cr(n). Also, using these expressions, we are able to describe a “typical” embedding

of T into T™ (for large n).

6.1 Leading terms of Ar(n)

We have shown that Ar(n) = E;=0 g;j(n)29™, where each ¢; is a polynomial. We
wish to examine the asymptotic behaviour of Ar(n) and so we need to calculate
the leading terms of the dominant polynomial ¢;(n). Throughout this chapter we
use the symbol ~ to mean “asymptotically equivalent to”; we write f(n) ~ g(n)
if f(n)/g(n) tends to 1 as n tends to infinity. We shall make use of the following

lemma which gives the solutions to some particular recurrence relations.



6.1. LEADING TERMS OF Ar(n) 112
Lemma 6.1. The recurrence relation
l .
Un = Wno1 = B Fi(n)27,
j=0

where each f; is a polynomial, and the leading term of fi(n) is an®, has solution

(
%nd“? 2fl =1
Yn ~ J (61)
2[—1
= conf2™ if 12 2.

Furthermore, if d > 0 and the leading two terms of fi(n) are an®+ Bn?!, then the

solution is

(
(Z%—lnd“ + (g + %) nd) o ifl=1
-1
L2z-21 — (O‘"d " (’8 B 2l—(fa— 1) "d_l) 2" iz

Proof. We have, for example from Lemma 5.2, that the solution to the recurrence

relation is
!
Yn = Z gj (n)zjn,
Jj=0

where each g; is a polynomial satisfying
gi(n) = 27g;(n — 1) = f;(n). (6.3)

The dominant terms of the solution come from the polynomial g;. It is a simple
exercise to check, using (6.3), that if the leading term of fi(n) is an?, then the
leading term of g;(n) is given by (6.1), and, for d > 0, if the leading two terms of

fi(n) are an® + Bn¢~!, then the leading two terms of g,(n) are given by (6.2). [

Theorem 6.2. The leading polynomial qiy(n) in the expression

KT)

Ap(n) = Z g;(n) 27"
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has degree d(T), where d(T) = |{x € T : = not the root or a leaf, D|z] is a chain}|.

The coefficient ar of nT) satisfies the following equations.

If T is the 2-element chain, then ar = 1. Otherwise, if the root of T has r lower

covers, then

(
XDl .
d?éwsl T a chain, r=1
07
2l(T)£-)[1z_1]__1 T not a chain, r=1
ar = 9 (6.4)
oz, 01y, 202 =2
A(T)-1 _ 1 r=
Y g 01y 0myy 2T+ 50 e, ooy, 27 >3
\ WT)-1 _ 1 rz

Moreover, if d(T) > 0 the coefficient Br of n¥T)~' satisfies the following equa-

tions.

If T is the 3-element chain, then fr = —3. Otherwise, if the root of T has r

lower covers, then

( IBD[ﬁ] _d(T)aT
d(T) — 1 2

T a chain, r=1

Bpizy] — H(T)ar2™-1

T not a chain, r=1

A(T)-1 _ 1
AT)-1 _ 1 =
2= (amy,y Bryyye + amyBry, — d(Tyjye)ory,, oy, ) 246D
T)-1 . ] o3
T —
Zzle1Sr_2(aTLﬂ1‘Lc + aTLCﬁTL - d(T)aTLaTLc)z_l - d(T)aT
+ UT)-1 _
(6.5)

where Bs = 0 for any subtree S C T with d(S) = 0.

Proof. We proceed by induction on |T'|. We first show that the degree of g7y is
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d(T) and that o is as claimed. For |T| = 2 we have already shown that T is the
2-element chain and Ar(n) = 2"—2. For this tree d(T") = 0, [(T') = 1, s0 gy)(n) = 1
a polynomial of degree 0, with leading coefficient equal to 1. That is, ar = 1 as

claimed.

Suppose the result is true for all T with |T'| < k and let T be any tree with
|T| = k. As in the proof of Theorem 5.1, there are different cases to consider,
depending on whether the root of T has exactly one lower cover. If the root has
exactly one lower cover, z;, we have equation Ar(n) = 2Cpjq,)(n ~ 1). But by

Theorem 5.1, and our inductive hypothesis, we know that

If T is a chain, then [(T) = I(D[z;]) = 1 and d(T) = d(D[z;])+1 since the element z;
contributes to d(T") but not d(D[z1]). So, Cpi,)(n) satisfies the recurrence relation
(5.1), which is of the form in Lemma 6.1 with o = apy,}, d = d(Djz,]) and | =
I(D[z1]) = 1. So, by (6.1),

Y 9Dlm]  d(Dlzi))+1on _ XDlz1l d(T)on

So

= — ~ g_D[ill. — 1)dTon-1 _ D[z} _ 1\d(M)on
AT(n) 2CD[31](’I’L 1) 2 d(T) (n 1) 2 d(T) (n 1) 2",

Therefore gr) is of degree d(T') and ar = api,}/d(T), as claimed. If T is not a
chain, then (T) = I(D]z1]) > 1 and d(T) = d(D[z,]) since the element z; does
not contribute to eithér d(T) or d(D|z,]). As above, Cpy,,)(n) satisfies a recurrence
relation of the form in Lemma 6.1 with a = apjs,}, d = d(T') and | = I(T') > 1. So,

by (6.1), .y
2 —_—
CD[zll(n) ~ Wl___iaD[ml]nd(T)zl(T)n-

So

21(T)—1

_ 0Dy d(T)ol(T)n
_W)_Ll_l__l(n_l)( )ol(T)n
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Therefore gyr) is of degree d(T) and ar = app,)/(20~1 — 1), as claimed.

If the root of T has two lower covers z1,z, then equations (5.6) and (5.4) give

AT(n) - 2AT(n - 1) = AT{I} (n)ATm (n)/2 SO,

Ar(n) — 2Ar(n — 1) ~ ag, n* T2 T ap  ndTe) 9 T /2

= aT{l} aT{z} nd(T) 21(T)n/2

since d(T{1}) + d(Tqy) = d(T) and [(Tjyy) + U(Tey) = U(T). So, Ar(n) satisfies a
recurrence relation of the form in Lemma 6.1 with o = ar,,ar,, /2, d = d(T),

I =lT) > 1. So, by (6.1),

(T)—1
N 20 QT (1) ¥T(ay ndT)glT)n
(21 2 1)2

Ar(n)
so qyr) has degree d(T') and ar is as claimed.
Finally, if the root of T has r > 3 lower covers z,...,Z, we can write (5.6) as

"1
Ar(n) —2A7(n~1)=2) S AT, (M) Az (n —1)
. =1

+ Y An(n—1Ar.(n-1).

2<|L|<r-2

Terms in the first sum are of the form

; ; 1) olTpe)n=1) - 2T ¥ e
aT{j}nd(T{J})zl(T{J})naT{j}c (’ﬂ — 1)d(T{J} )ZI(T{J) Y1) —E(Z-J(-I—,{-j}—:)——nd(T)?(T)n,

and terms in the second sum are of the form

ar, 0T, .
ary (n — DETOPI g, (1 1)dTe)gl(Tre)n-1) %nd(T)zl(T)n,

So, Ar(n) satisfies a recurrence relation of the form in Lemma 6.1 with

,
=Y ATy My ) 01, ATy
i=1 2<|L|<r-2

d =d(T) and | = I(T) > 1. So, by (6.1),

21 — o1y, Oy AT OTye | d
o~ < (T)ol(T)n
AT(n) 2l(T)—l . 1 Z 2l(T{j}c) Z 2I(T) n 2
j=1 2<|L{<r-2
r WTyiy)—1 -1
_ Zj:l aTU}aT{j}c 2 ¢ {J}) + ZZSILlST—2 ar aTch nd(T)zl(T)n

UT)-1 _ 1
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Therefore gy(ry is of degree d(T") and o is as claimed.

We now prove that Sr is as claimed. For |T'| = 2, we must have T equal to the
2-element chain and so d(T) = 0 and there is nothing to prove. For |T| = 3 the
only T with d(T) > 0 is the 3-element chain. As calculated earlier (see Table 5.1),
Ar(n) = (n — 3)2" + 4 and so By = —3 as claimed.

We now prove the inductive step, following the exact method used for ar but we

d(T)-1 ol (T)n

now also consider the coefficient of n in the calculations, and use (6.2)

when applying Lemma 6.1.

Suppose that Br is as claimed for all T with |T| < k, that is, that Sr satisfies
(6.5) when d(T) > 0. Let T be any tree with |T'| = k and d(T") > 0. By our
inductive hypothesis we have that for all S C T with d(S) > 0 the first two terms
of gi(n) are agnd®) + BgndS)~1, For some S C T we may have d(S) = 0. For these
trees set B¢ = 0. Doing so means that, for all S C T the first two terms of ¢(n) are

agnd®) 4 BgndE)-1,

We can now consider the different cases depending on the number of lower covers
of the root of T'. If the root has exactly one lower cover, z;, we have equation
Ar(n) = 2Cpig,j(n — 1). But by Theorem 5.1, and our inductive hypothesis, we
know that

AD[a:l](n) ~ (aD[mllnd(D[m]) + ﬂD[m]nd(D[m])—l)2l(D[m1])n'

If T is a chain, then {(T) = l(D[z;]) = 1 and d(T') = d(D]z1))+1 since the element x;
contributes to d(T") but not d(D[z1]). So, Cpis;)(n) satisfies the recurrence relation
(5.1), which is of the form in Lemma 6.1 with & = apjs,}, 8 = Bpjey), d = d(D]z1])
and [ = l(D[z;]) = 1. So, by (6.2),

CD[m](n) ~ (__O‘D_[””_l]__nd(D[m])H + ( Bbja,] n OtD[ac1]> nd(D[ml])) on

d(Dlz1]) +1 d(D[z1]) 2
(oD _am) BDlzy] AD(z1] \ , 4(T)~1) on
"(d(T)”dT+<d<T>—1+ 2 )" l>2'

Note that, since T is a chain of at least four elements, we have d(T") > 1 so that we
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are not dividing by zero. So
AT(n) = 201)[,,-1](1’1 - 1)
~2 (E‘D_[wl_l(n — 1)4D 4 (dﬂﬂ{zﬂ n aD(nJ) (n - 1)d(T)—1) gn-1

d(T) (T)-1 2
~ (O:Zl(?;;] T _ aD[zI]nd(T)—l + (d(ﬁ]?)[zi] 1 n Otpz[zl]) ,nd(T)—l) on
_ [ @Dl a(ry Bpie) _9Dfz1] \ | d(T)-1\ on
(d(T) * (d(T) —1” 2 )" )"

Therefore, using (6.4), we have

Bol) 9Dl _ _Bppy  _ d(T)or
AT -1 2 d(T)-1 2

br =

as claimed. If T' is not a chain, then [(T") = [(D[z1]) > 1 and d(T") = d(D]z:]) since
the element z; does not contribute to either d(T’) or d(D[z4]). As above, Cpjg,j(1)
satisfies a recurrence relation of the form in Lemma 6.1 with o = apzy), 8 = Bp(z4)s

d=d(T) and | = [(T") > 1. So, by (6.2),

24T)-1 d(T)CYD —
Cppe (%) ~ e (aD[m]nd(T) + <5D[m1] e ] ) PdD) 1) ol(TIn

So

AT(n) = 201){21](’!1—1)

2T d(T)ap( B ~
~ T [aD[mll("'l)d(T) * ( Dlza] — oiT)—1 [ 11])("—1)d(T) 1] 2!Mn-1)
) aD[mllnd(T) —d(T)aD[ ]nd(T)—l l()

~N—_———— 2 Tn

T)-1 _ 1 d(Tap _

(IBD[G:I] oUT)-1 [w11] nd@)-1

1 d(T) dT)epEy2 DN yry-1] oy

= 1 — 1 LOlD[acl]’l’L + ,BD[;,_-I] - 21(T)-—11 3 n (T) 2( "

Therefore, using (6.4), we have

_ 1 ‘ IB _ d(T)aD[ZI]Zl(T)-l 3 ﬁD[::l] d(T)aT2l(T)—1
Br = UT)-1 _ 1 Dlz1] UT)-1 _ 1 TM-1_1 T M-1_71 °

as claimed.

If the root of T has two lower covers z;,z, then equations (5.6) and (5.4) give
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AT(n) — 2AT(TL - 1) = AT{I} (n)AT{z} (n)/2 SO,
AT(TL) _ 2AT(TL _ 1) ~ (aT{l}nd(T{l}) + ﬂT{l}nd(T{l})_I)Ql(T{l})n

X (OéT{Q}nd(T{ﬂ) + ﬁT{z}nd(T{z})*1)2l(T{2})n/2

~ < X7y OTa ndT) 7y Brysy + 01y Bryyy nd(T)—l) QU(T)n
2 2

since d(T1y) + d(T(ey) = d(T) and [(T{yy) + U(T(ey) = UT). So, Ap(n) satis-

fies a recurrence relation of the form in Lemma 6.1 with o = a1, QT /2, B =

(ot By, + arg, Oy, ) /2, d = d(T), L =I(T) > 1. So, by (6.2),

R e T e
n (O‘TmﬂT{z} “;O‘T{z}ﬂT{l} _ d(T)‘;’;’;{;;O‘lT{z}/ 2) nd(T)—1] QU(T)n
So, using (6.4), we have
ol(T)~2 d(T)ar,, oty
Pr = UT)-1 _ 1 <0‘T{1}6T{z} + 7 Bryy — QUT)—1 )

_ (aT{l}ﬁT{z} + O‘T{Z}ﬁT{l))y(T)‘z —d(T)ar

- A(T)-1 _ 1 ’
as claimed.

Finally, if the root of T has r > 3 lower covers z1,..., %, we can write (5.6) as

Ap(n) - 247(n—1) =23 %AT“} (n) Ay, (n — 1)

j=1
+ Z Ap,(n—1Ar,.(n—1).
2<|LI<r—2

Terms in the first sum are of the form

(aT{j}nd(Tm) + 5T{j}nd(T{j})—l)zl(T{j})”

X (QT{,}C (n _— 1)d(T{J}C) + /BT(J}C (n _ l)d(T{j}c)—1)2[(T{j}c)(n__1)
d(T
1 |emyorgn™®

~ — 2l(T)'n,
UTsye)

+ (aT{j}/BT{J'}C + a1, Oy, — d(T{j}c)aT{j}aT{j}c> nd(T)-1
and terms in the second sum are of the form
(og, (n = 1)) 4 By, (n — 1)TL)=1)2HTL)(n=1)

X (ar,.(n— 1)8Tee) 4 B _(n — 1)4Tee)=1)lTLe)(n=1)

1

~ @ [aTLaTLc nd@ 4 (o1, Bryc +aryPr, — d(T)O‘TLGTLc)nd(T)’I] 9HTin.
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since I(T") = I(Ty) + I(Tye) and d(T) = d(T;) + d(T}e).

. . .1 with
So, Ar(n) satisfies a recurrence relation of the form in Lemma 6

r

o= Z 0715 WTgpe 01, OTpe
Ty ;70) § : 1(T)
¢ 25 2
j=1 2<|L|<r-2

B = i o1, P T(jye T aT{j}cﬂT{j} — d(Tjye ) oy ¥

e 2UTse)
ar, Bryc + or,.Pr, — d(T)or, OTge
+ Y L e PTy :
]
2<|LI<r-2 20
dT)~1 ;
d =d(T) and | = [(T) > 1. So, by (6.2), the coefficient fr of the term m =
the leading polynomial ¢; of Ar(n) is
/ i aT(j}ﬁT{j}c + aT{j}CﬁT{j} -— d(T{j}c)aT{j}aT(j}c \
= 2HTsye)
QI(T)-1 4 Z ar, Br,. + ar,Br, — d(T)ar, 0Tz
UT)-1 _ | 2<|L<r—2 2UT)
d(T) ~ T35, AT o1y %k
~ oUT)-1 _ Z Ty~ T Z 9UT)
210 1 Jj=1 2/ 2<|L)gr-2 /
Therefore, using (6.4), we have
(T3
Br ——E;=1(aT{j}'BT{j}c + ory Py, — d(Tye)omy, a’-"{j}c)Q ’
- UT)-1 _ 1
-1 _
4 2 acitj<r—2(0mBrye + omye Br, — d(T)or, ar,e)2 d(T)aT,
UT)—T _ 1
as claimed. .

6.2 Typical embeddings of T into T™

We have that, for T' a tree with |T| > 1, Ap(n) ~ apndD24D", for ar some
constant that can be found. Let us give an informal description of a “typical”
embedding of T" into T™, giving an alternative method of seeing at least the lower
bound Ar(n) = Q(n¥T)2"). For any tree T, call the elements counted by d(T)

lower bead elements of T. So, a lower bead element of T is an element z such that
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Diz] is a chain, and z is not a leaf or the root. Call an element which has more
than one lower cover a branching element of T. Call the remaining elements of T’
different from its leaves the upper bead elements of T. These are elements z which
have only one lower cover, but D[z] is not a chain. Therefore, upper bead elements
only occur on a chain above a branching element. Note that, depending on the tree

T, the root can be either a branching element or an upper bead element.

So, if T is a chain, then T has a root and one leaf, joined by a chain of d(T') lower
bead elements. Otherwise, for I(T) > 1, the tree T has a root, the root and the
branching elements are joined by (possibly empty) chains of upper bead elements,
and some branching elements are joined by (possibly empty) chains of lower bead

elements (of which there are d(T")) to the {(T") leaves.

To see that Ap(n) = Q(ndM2UD") first consider T a chain. We count the
embeddings that map the root of T to 1, and the leaf of T" to some leaf of T". We
have 2"~! choices for where to map the leaf. Once we have fixed the leaf of T, this
defines a path from 1,, to the leaf of 7™. This gives a choice of n — 2 elements of
T™ into which we can map the d(T") lower bead elements of T'. So, asymptotically
we have ©(nT)) choices for where to map the d(T") lower bead elements. Therefore
Ar(n) = Q(ndT)2"), and since I(T) = 1 we have that Ar(n) = Q(ndD21D") for T

a chain.

For T not a chain, so there exist branching elements of T, let ¢ be some embed-
ding which maps the root of T to 1,,, and maps the branching elements of T to as
high a level of T™ as possible. Consider, for large n, the number of embeddings of T
into T™ that agree with this fixed ¢ on the root, branching elements and upper bead
elements. Let us only consider those embeddings which map the leaves of T' to the
leaves of T". If a leaf y is joined to a branching element x by a chain of lower bead
elements, then note that ¢(z) is a fixed distance from the root of T™, so that ¢(x) is
in level n—k, of T", where k; is a constant independent of n. So, given ¢, the leaf y

can be mapped to 27%22"~! leaves in T™. So, the total number of choices for all the
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leaves is asymptotically ©(247)"). (The over-counting due to the possibility that
two leaves that are below the same branching point are mapped to the same leaf
of T™ is negligible for large n.) It remains to choose where to map the lower bead
elements. However, in a similar way to the case where T is a chain, a lower bead
element on the chain between the branching point z and the leaf y must be mapped
to an element on the path between the images of z and y. Since z is mapped to level
n — k;, and y to a leaf, the path has n — k, — 2 elements, with k, independent of n.
Since there are d(T') lower bead elements, we have asymptotically ©(n4T)) choices
for where to map the lower bead elements. (Again, this is an over-count due to the
possibility that two lower bead elements that are below the same branching element
but above different leaves are mapped to the same element of T™. However, this
is negligible because typically the lower bead elements will not be mapped within
O(1) of a branching element.) So, the number of embeddings that agree with ¢ is
asymptotically Q(n¥T)24D™) and we have Ar(n) = Qn¥D 24T for T not a chain.

By Lemma 6.1 we also have the asymptotic behaviour of Cr(n), given in the

following corollary.

Corollary 6.3. For any tree T with I(T) = 1 the number of embeddings of T into
T" is asymptotically

L _or d(T)+1gn
Cr) ~ g1t 2

and if d(T) > 0 then

wf_er _ann Br ot _41)\ on
Cr(n) (d(T)+1" +(d(T)+2)" )2'

For any tree with [(T') > 1 the number of embeddings of T into T™ is asymptoti-
cally

2l(T)—1 oT
CT(TL) ~ él—(TTi—_—laT’n )2n

and if d(T) > 0 then

2H(M)-1 AT d(T)ar d(T)—1 \ ol(T
Cr(n) ~ FAOT 1 (aTn T) 4 (I@T BT " 1) n%T) ) QUT)n
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Proof. We have that Ar(n) ~ arnd@2Dn and if d(T) > 0 then Ap(n) ~
(arn®®) 4 Brnd@-1)2UT)n  So Cp(n) satisfies the recurrence relation (5.1) which is
of the form in Lemma 6.1. Applying Lemma 6.1 with @ = oy and 38 = Br gives the
result. O

This tells us that for a tree T not a chain, a typical embedding of T into T" maps
the leaves of T' to the low levels of T™, the branching points and upper bead elements
of T to the high levels of 7™, and the lower bead elements of T" will be mapped to
elements spread roughly evenly along the paths in T™ defined by the images of
branching elements and leaves of T, as explained earlier. There are ©(n“T)2UT))

of these embeddings.

For T a chain, a typical embedding maps the leaf of T to a low level of ™, and
the remaining elements of T' are mapped to elements spread roughly evenly on the
path from 1, to image of the leaf in T™. Here the root is not necessarily mapped to
1,, and the root can be thought of as a lower bead element, so there are d(T') + 1

elements to position on this path. So, we get ©(ndT)+12") of these embeddings.

6.3 Asymptotics of the ratio Ar(n)/Cr(n)

In [18], Kubicki, Lehel and Morayne proved that lim, o An(m) o lim,, 00 M,
BTl (n) BTz(n)

where Br(n) is the number of embeddings ¢ of T into T™ with ¢(1r) # ¢(1.), by
showing that limy,_.co Ar(n)/Br(n) = 2T~ — 1 (Proposition 2.3 in [18]). Here,

using Theorem 6.2 and Corollary 6.3 we have

. Ap(n) 2MD-1_
lim =

which is equivalent to Proposition 2.3 in [18], since Br(n) = Cr(n) — Ar(n). This
tells us that for trees Ti,T> with I(T1) < Il(T:) there exists some ngy such that
Ar, (n)/Cr,(n) < Agy(n)/Cry(n) for all n > ny. Here, we show that there exist trees

T, C T, with [(T1) = I(T3), with the inequality the other way round. That is, there
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is an ng such that Ar (n)/Cr(n) > Ar,(n)/Cr,(n) for all n > ng. All such pairs

Ty, T, are counterexamples to the conjecture, for all n > nyg.

Theorem 6.4. For any tree T with I(T) > 1 and d(T') > 0, we have

- d(T)
—-—‘éign; —1- -———21(T1)~1 (1 ~ i:l + ﬁ_n2_2l + %) +o(n”?) (6.6)

where

bp= x4 6.7)

ar T o)1 _1°

For any tree T with l(T) > 1 and d(T) = 0, we have

Ap(n _

C’;Eng =1-— EI(T)_—I + O(’I’L 1). (68)
For any tree T' with I(T) = 1, we have

Ar(n d(T)+1 _

C’;E‘n; _ 4 31 +o(n7h). (6.9)

Proof. Let T be a tree with I(T) > 1 and d(T) > 0. By (5.1) it is sufficient
to work with the ratio Cr(n — 1)/Cr(n). By Theorem 5.1 we have that Cr(n) =
23(__23 g;(n)2’™ and by Corollary 6.3 we have that

QiT)~1 d ard(T) d(T)~1
ql(n) ~ 2l(T)-—~1 _ 1 (O[Tn (T) + (ﬂT - 2l(T)—1 _ 1 7n ( ) ) .

So,
Cr(n) = 2Tnap(md® 4 prnd@=1 4 opdD=2 4 o(ndD-2))
where
2i(M-1 _br d(T)
9T = -1 — 19D br = ap | D1 _]

and cr is an unspecified constant. Note that this equation is true for d > 2, and
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can be made true for d = 1 by setting cr to 0. We have

CT(n—l) 3 Ql(T)(n—l)aT((n_l)d(T) + bT(n_l)d(T)—l +CT(n_1)d(T)—2 +O(nd(T)—2))

Cr(n) AT gp(nd@) 4 bpndD-1 4 crndT)-2 4 o(ndT)-2))
1 (1= 1/n)¥D 4821 —1/n)dM=1 4 (1 — 1/n)4D=2 4 o(n~2)
" 2 1+br/n+cr/n?+ o(n—z)
1 dr) | (D) b bT(d(T) -y, -
= 5 (1— —+ :2 - +o( )
(1 n n? t oz n2 + o(n” )>

d(T)

and, using (5.1), we have

Ar(n) 1 dT) (D) | br 2
Crln) ~ 1-— ST (1 - + o + nZ +o(n™*)

as required.

Now, suppose {(T') > 1 and d(T) = 0. So, Cr(n) = az2" ™" + Z;gg—l g;(n)27".
That is, Cr(n) = ar2"™"(1 + O(g(n)2™™)) for some polynomial g(n). So, it is
certainly true that Cr(n) = ar2™"(1 4 o(n~1)) and

Cr(n-1 1 1
o = am el

which by (5.1) gives the required result.

If I(T) = 1, then Az(n) = 2"ap(n®® +0(n¥M)) and Cp(n) = 2" 2L-(ndD+1 4+

AT+
o(ndM+1)). So,
AT(n) 2"ap(ndD) + o(nd(T))) d(T) +1
Cr(n) 2n T (nATHT 4 o(ndMHT)y (1+o0(1))- =

Corollary 6.5. For any two trees Ty, Ty, if either
(i) (T1) > l(Ty), or
(i) (Ty) = I(Tz) and d(T1) > d(T), or

(m) l(Tl) = l(T2); d(Tl) = d(T2) >0 and aTl//BTl > aTz/IBTm
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then there exists an integer ng such that

An(n) _ Az,(n)
Cn(n) ~ Cr,(r)

for all n 2 no.

Proof. (i) If [(T1) > I(T3) then we can just compare the limits of the ratios
Ar, (n)/Cr,(n) and Ag,(n)/Cry(n). By Theorem 6.4 (or from [18]) we have that

lim Ar(n) _y _ _1
n—oo Cp(n) UT)-1"

Note that this also holds for trees T with {(T") = 1. Since the limit is increasing in

I(T) the result follows.

(ii) If {(Tv) = U(T3) and d(T1) > d(To) there are two cases to consider. If
I[(Ty) = I(T3) = 1 then using equation (6.9) from Theorem 6.4 we have that

AT1 (n) — d(Tl) +1 + o(n‘l) ATz (n) _ d(T2) +1

Cr,(n) n | Cr,(n) n +o(n™")

and since d(T1) > d(T3) there exists an ng such that Az, (n)/Cr (n) > Ag,(n)/Cr,(n)
for all n 2> nyg.

If [(Ty) = (T2) > 1 then using equation (6.6) from Theorem 6.4, and considering

only terms up to n~! we have

An(n) _, 1 ( —d—(%l—)>+o(n'1),

O, (n) U1
ATz (n) _ 1 d(TZ) -1
Oty ~ T Tm (1T T ) o),

This is also true for d(T3) = 0 by equation (6.8). Since I(T7) = I(T2) and d(T7) >

d(T3) there exists an ng such that Ar (n)/Cr,(n) > Ap,(n)/Cr,(n) for all n > ny.

(iii) If I(Ty) = I(T2) and d(T) = d(T3) > 0 and ar, /81, > ar,/Br,, we first note
that J(T}) cannot be equal to 1. (If I(T7) = I(Ty) = 1 then d(T1) = d(T%) implies that
T, and T are the same tree, the (d+ 2)-element chain.) So we have {(T;) = {(T3) > 1
and using equation (6.6), we see that Ap, (n)/Cr,(n) and Ar,(n)/Cr,(n) differ only
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in the n~2 term and in terms of lower order. Therefore, it is enough to show that
br, < br,. But this follows immediately from the inequality or, /81, > a,/Br, and
(6.7). a

6.4 A family of counterexamples to

Conjecture 4.4 for arbitrarily large n

Corollary 6.5 provides a simple method for comparing the asymptotics of the ratios
Ar, (n)/Cry(n) and Ag,(n)/Cr,(n). Firstly, we compare the number of leaves of the
two trees, the tree with more leaves being the tree with the asymptotically larger
ratio A/C. If the trees have the same number of leaves, then we compare the values
of d(T1) and d(T3); the tree with the larger d has the asymptotically larger ratio
A/C. Both the number of leaves, {(T"), and d(T) are very easily obtained from the
Hasse diagram of the tree. If both of these are the same for the two trees, then
we need to compare the ratios ar, /B, and ar,/Br,- The tree with the larger ratio
o/ has the asymptotically larger ratio A/C. This comparison involves rather more
calculation, using the algorithm provided by Theorem 6.2. These calculations can
be simplified if the two trees have a very similar structure, for example, as we will
see later, if the trees are identical except for the addition of one element to one of

the trees.

Corollary 6.5 also guides our search for more counterexamples to the conjecture
of Kubicki, Lehel and Morayne. The counterexample given in Section 5.2 has two
important properties, namely that [(T1) = I(T3) and d(T;7) = d(T3). That this is a
necessary condition for a pair of trees to be an asymptotic counterexample follows
from Corollary 6.5. Since we are only considering trees Ty C T, we must have [(T}) <
[(T;). But we are looking for trees T7,T> where the ratio A/C is asymptotically
larger for Ty than for T3, so we need to look at trees with I(T}) = {(T3). f T} C T

and the trees have the same number of leaves we must have d(T}) < d(T2). (Each
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element counted by d(7T7}) must also be counted by d(T;) otherwise T> would have

more leaves than 77.) So, to find our counterexamples we need to look at trees with

d(Th) = d(Ta).

The following theorem gives an infinite family of pairs of trees which form coun-
terexamples. We do not claim, or believe, that this is the only way to construct
counterexamples. However, the construction is relatively simple, which makes the
calculations much more manageable. Also, there are many ternary tree pairs in this
family, including the counterexample given in Section 5.2, which shows that the

conjecture does not just fail for trees with high branching numbers.

Theorem 6.6. Let T be a tree whose root x has three lower covers x,,Z3, T3, and
let T' be formed from T by adding a new element y below = and above T, and x3
(see Figure 6.1). If d(T) > 0 and d(D[y]) = 0, then there exists ng such that
Ar(n)/Cr(n) > Ap(n)/Cr(n) for all n 2 ny.

T T

I Z2 I3 431 Z2 Z3

Figure 6.1: General counterexample for d(T") > 0,d(D[y]) =0

Proof. We have [(T) = I(T") and d(T") = d(T") > 0 so by Corollary 6.5 it is enough
to show that opBr > arBr. We use equations (6.4) and (6.5) to express these o and
B in terms of some other ag and B for common subtrees S of T' and T”. As before,
for L C [3] write 77, for the subtree formed from T by removing the elements in D|[x;]

for each j € L°. Write T7,, for the subtree formed from T" by removing elements in
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Dly] and write T, for the subtree formed by removing elements in D{z;]. We have
that T1y = Ty, and Tyz5 & Dly]. By the assumption that d(D[y]) = 0 we have
that d(T) = d(T") = d(T(1,23) = d(Tj1,33) = d(T{y), and we denote this common
value by d. We also have that d(T(z}) = d(T3)) = d(T,;) = d(D[y]) = 0. For ease
of notation, we write [ for the common value I(T) = I(T"), write I; for I(T(y}), L
for I(T{1,2}), etc., and we use a similar notation for o and §. For example, writing

(3] for OtT{l} .

Using equation (6.5) to find Gr and (v, we have

— 0123,3121‘—1 + (a2ﬁ13 — da2al3)212‘1 + (a3,312 - da3a12)2‘3‘1 - daT

ﬁT— ’

211
ay,@12“2 — daT/
B

ﬁq"l

S0

1 aroy$127% — aps (a23B12 7! + (0af13 — dao03)227Y)
arfr —orfBr = T —]
— ar(asfiz — dasa)25™

and using (6.4) to find ar and aT} we have

_ a1a232ll‘1 + 05201132l2_1 + 04301122l3_1

ar 21_1 —1 3
o2t
T = o 1
This gives
« r = Qi 2l—1 -1 2 - -
(arfr 55@2( ) = (a2a132l2 !+ azea2f 1) B
y

(213 — dagay3)22!

+ (a3fiz ~ dazap) 25!
= 22"l ay (36 — B3 + dayags)
+ 2l"'_lCls(Oflz,Bl — 01012 + doy o).

Finally, we have

ha—2
Pra327° — days

a1a32’13‘2
ﬂlS - 2l13__1 _ 1

T ghsT ]

and aq3
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S0

o a32h1s2 o Bras2132 — dayg
gha~1 —1 71 THT gha=1 7]

_ dOt]_Oz132l13_1

T g1

a1361 — a1613 + dajosz = + donas

and similarly
da1a122112_1

1201 — Bz + dojog = -1 _ ]

Therefore

_ ay2l‘2 lo—1 da1a132l13‘1 la—1 da1a122l”‘1
aTﬂT’ - aT’ﬂT - (2[—1 . 1)2 l:z 2 a2 2l13—1 _ 1 + 2 3 a3 2112_1 _ 1

oy (2l‘2)2 doy [ agoys Q3002
- (2l—1 — 1)2 23—-1 _ 1 ' 2he-1__ 1

_ daT'21“2[ Qp0v13 Q302 }

D I R e e R |

and since ag > 0 for all trees S, we have arf8r — apfr > 0 as required. O
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Chapter 7

Results for the complete p-ary tree

We can generalise the results of Chapters 5 and 6 to embeddings of trees into the
complete p-ary tree. The aim of this chapter is to show that a most accommodating
version of Conjecture 4.4 is still false, namely that even for embeddings into p-ary
trees with p > 2, there exists a pair of ternary trees Ty, T> with T} a subposet of T,

such that -
AR () _ AR()
CP(n) ~ CP(n)
for all n > ny, for some ngy. This means that, even in this setting, the restriction on

T3, T; being binary cannot be removed.

We present some of the results in this chapter without proof, since they are the

exact analogues of the results for the particular case p = 2.

7.1 Recurrence relations for Ag,?) (n) and C’g’ )(n)

Let ty,...,t, be the p lower covers of the root of T, and let 77; be the elements of

13 below or equal to i;, for i=1...,p. The subtrees T, are copies of T;“l.

So, the recurrence relation corresponding to (5.1) is

CP(n) - pCP(n — 1) = AP (n). (7.1)
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Let T be a tree and suppose its root 17 has r lower covers z1,...,2,. We are
now interested in the partition of {z1,...,z,} defined by which of the p subtrees
T34, .., T}, an element z; is mapped to. For L C [r] write AS?L) ~(n) for the number
of embeddings of 77, into 7} that map the root 17 of 77, to 1, and map z; into 17
for each j € L. As for the complete binary tree, this number is the same as the
number of embeddings of T}, into T that map 1r to 1, and map z; into Tp; for

eachje€ L, foranyi=1,...,p

Write (Ly, ..., L,) | [r] to mean that the sets Ly, ..., L, form a partition of [r],
so that (Jf_, L, = [r], LyN L; = 0 for all i # j. We have

p

APm)= Y HAgeg;(n) (7.2)
Li,uLp:  i=1
(L1ye-nsLp)t[r]

corresponding to equation (5.2),

(1 ifL=10
AF (W) =10® (n-1) i L={j) (7.3)
A(p )( 1)  otherwise

for alli =1,...,p, corresponding to equation (5.3), and
_ A(p)(n)
ARy () = == (7.4)

for L = {3}, corresponding to equation (5.4).

We have the following result for embeddings into T, analogous to the complete

binary tree case.

Theorem 7.1. Let p be an integer with p > 2. For any tree T, the number of
embeddings of T' into Ty is of the form

UT)

cP(n) =3 gi(n)p™,

=0

where each g; is a polynomial.
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For T the 1-element tree, the number of these embeddings that map the root of
T to 1,, Ag’f) (n), is equal to 1. Otherwise, for T with |T| > 1, the number is of the

form
(T)

AP(m) =3 g™,

where each q; is a polynomial.

To prove this, we again use some results on recurrence relations; here we need

the following generalisation of Lemma 5.2.

Lemma 7.2. Let p be an integer with p > 2, and suppose l is some fized positive

integer. Then the solution to the equation
l s
Yn — PYn-1 = Zf](n)Pm, h = 07 (7'5)
3=0
where each f; is a polynomial, is
I
Yn = Zg](n)p’"
=0

where each g; is a polynomial. Furthermore, for j # 1, the polynomial g; is the

unique polynomial satisfying the identity
gi(n) = p'g;(n — 1) = fy(n),
and gy satisfies the identity

g(n) —gi(n—1) = fi(n),

where the constant term of g1 is given by
l .
Y g(p =0
=0

Proof. The proof method exactly follows that of Lemma 5.2, with 2 replaced
by p. O
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Proof of Theorem 7.1. The proof follows the same method as for Theorem 5.1,
but with slight modifications because of the difference between equations (5.2) and

(7.2).

We include the case of T being a 1-element set for completeness. In this case,
we see immediately that there are (p* — 1)/(p — 1) embeddings of T into 7', which
is exactly the number of elements in T}'. Also, only one of these embeddings maps
the root of T' to 1,,. So, AS}’) (n) =1 as claimed, and C®(n) = (" = 1)/(p—1) is of

the required form.

For |T| > 2, we simultaneously prove that A% (n) and cl )(n) are of the required
form by induction on the size of T. We shall make use of Lemma 7.2 to solve
recurrence relations for Ag,{’) (n) and C¥(n). We use induction to show that the
recurrence is of the form of equation (7.5), and since we will only be considering

trees with |T| > 2 we have the initial conditions Aq(?)(l) =0,C%(1) =0 as in (7.5).

For |T| = 2 the only tree is the 2-element chain, which has one leaf. Since the
root 17 has only one lower cover z;, say, we have r = 1 in (7.2). The only partitions
of the set [1] = {1} are those with L; = {1} for exactly one ¢, and L; = 0 for all
j # 1, a total of p different partitions. Using (7.3) with L; = {1} or L; = @, equation
(7.2) becomes

AP(n) =pCH)y(n — 1).

1
(Compare this with the binary case, where p = 2.) We have shown earlier that
C’g)l}(n) = (p" — 1)/(p — 1). Therefore Ag‘f’)(n) = (p" — p)/(p — 1) which is of the
required form, since {(T) = 1, go(n) = —p/(p — 1) and ¢;(n) = 1/(p — 1). Using
(7.1) and Lemma 7.2 we have that

p((p—n—p)+p
(p—1)2

which is of the required form, since {(T") = 1, go(n) = p/(p — 1) and ¢:1(n) =

(p—1n-p)/(@—- 1>

oPn) =

Suppose the result is true for all T with |T| < k and let T be any tree with
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|T| = k. As before, there are two cases, depending on whether the root of T has
exactly one lower cover. If the root has exactly one lower cover, z;, equation (7.2)

reduces, in a similar way to the base case, to

AP (n) = pCE) (n—1).

Diz)\"

Applying the inductive hypothesis to D[z;], a tree with [(D[z;]) = I(T) leaves, gives

I(T)

D[z1] Z gJ "

where g; are polynomials. Therefore,

I(T) uT)

ng - )Pl = qu

where g; are polynomials.

If the root of T has r > 1 lower covers z, . .., z,, then [r] has exactly p partitions
with L; = [r] for some %, and L; = @ for all j # ¢. All other partitions have L; # [r]
for allt =1,...,p. So equation (72) becomes

AP(m)=pAP(n-1)+ Y HA ~(n),

LiyLp: =1
(L1, Lp)F[r],

Li#[r]
or, equivalently,
AP(n) -pAP(n -1 = nAseg (m). (76)
Ly,.,Lp: =1

(Ll) )LP)}-[T];
L;#[r

It remains to show that this equation is a recurrence relation of the form of equation

(7.5), as follows.

Each term A,E,{f: (n) is either 1, Aj({?i (n)/p for some L; a singleton, or A:,(’,;)i (n—1)
for some L; not a singleton. Since all trees Tz, have fewer elements than T' (by
the condition that L; # [r]) we can apply our inductive hypothesis and we have

(p) ( ) = ;(_gz gj(n)p™ for polynomials g;. This means each term A(P) (n) is
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either 1, or of the form E( 2 rj(n)p’™ for polynomials r;, for some L; # 0, [r].

Therefore each term appearing in the sum in equation (7.6) is of the form

HZf(@)(,n jin

i=1 j;=0

for polynomials f; g,i), where ). m; = [(T) and some m; can be 0. So the right hand
side of equation (7.6) is of the form 2’(?3 ¢;(n)p’™ for polynomials ¢;. This means
we have the required recurrence relation for Ag? ) (n) and applying Lemma 7.2 gives
the result for A% (n). Finally, we use (7.1) and Lemma 7.2 which gives the result
for CP)(n). 0O

7.2 The leading terms of Ag}f’)(n)

We now generalise the results of Chapter 6, giving the leading terms of A,frp)(n),
and therefore the asymptotics of AZ(? ) (n) /C:(,”) (n). We will require the following

generalisation of Lemma 6.1.

Lemma 7.3. The recurrence relation
l
Yn —PYn—1 = ij(n)pm;
§=0

where each f; is a polynomial, and the leading term of fi(n) is an?, has solution

' o d+1,n ifl=1
P
Yn ~ < (77)
—ptl——omdp’” if 1> 2.
P11 <
Furthermore, if d > 0 and the leading two terms of fi(n) are an? + Bn?"!, then the
solution is
([ o P B «
_ = pdl [t d 7 ifl=1
<d+ﬂ’ +<d+2)">p if
Yn ~ 4 (7'8)
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Theorem 7.4. The leading polynomial ql(T) (n) in the expression

P) (n) = Z g;(n

has degree d(T'), where d(T) = |{z € T : z not the root or a leaf, D|z] a chain}|.

The coefficient a of ndT) satisfies the following equations.

If T is the 2-element chain, then a%’) = 1/(p — 1). Otherwise, if the root of T

has r lower covers, then
(p)

anﬂ :
T a chain, r=1
d(T)
i
Tt T . —
ag’) = P11 not a chain, r=1 (7.9)
Z [ H a(p)

(Ll,.L..;IZ[p%l—[r] i:L;#0

where p = p=iza=UTL)D=1 " Moreover, if d(T) > 0 the coefficient BP of nd@)-1

satisfies the following equations.

If T is the 3-element chain, then P = (=2p +1)/(p — 1)2. Otherwise, if the

root of T' has r lower covers, then

)

() (p)
Bpey) _ d(T)or T a chain, r=1
d(T) -1 2
®  _ dT)a® pHD-1
ﬂD[m] (T)er T not a chain, r=1
PO-1 -1
> o] S I o) - (1) S o
(L L] LiLg#0 L Lt dLd>1
Li#lr] i
-1 1
r>1
_d(T)of
\ PO 1
(7.10)

where Bg = 0 for any subtree S C T with d(S) = 0.
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Proof. Here we prove only that the degree of g7y is d(T) and that o

is as
claimed. The proof method is naturally very similar to the method used in the
proof of Theorem 6.2, which covers the case p = 2. The proof that ﬁ,_,(? ) is as claimed
can be obtained by considering the coefficient of nT)~1p"™" in the calculations

below, and using (7.8) when applying Lemma 7.3.

We proceed by induction on [T|. For [T| = 2 we know that AP (n) = (p" —
p)/(p—1) and for this tree d(T) = 0, I(T) = 1, so qy7)(n) = 1/(p — 1) a polynomial
of degree 0, with leading coefficient equal to 1/(p — 1). That is, ag) =1/(p—1) as

claimed.

Suppose the result is true for all T with |T'| < k and let T be any tree with
|T| = k. If T has one lower cover, 1, then A¥ )(n) = D[m](n 1). By Theorem 7.1,

and our inductive hypothesis, we know that

x I(Dfz1])n
Ag?au (n) ~ ag?m]ndw[ ll)p (Dlealin,

If T is a chain, then [(T) = {(D[z;]) = 1 and d(T) = d(D[z4]) + 1, so D[m](n)

satisfies the recurrence (7.1), which is of the form in Lemma 7.3 with a = ag[)zﬂ,
d = d(D[z1]) and | = I(D[z;]). So, by (7.7)

{p) (p)

®) D] a(Dlm)+1n — XDlel d()
Cppay(m) ~ d(D[x;]) + 1 P=my P
So
) o®
ag{m] >

(n— 1)d(T)pn—1 D[zﬂ Dlzd o _ )d(T)pn'

d(T)

Therefore g1y has degree d(T') and ag,?) = a%’?x /d(T), as claimed. If T is not a

AP0 =28 - D~

chain, then {(T) = I(Dlz1]) > 1 and d(T) = d(Dlz1]), so again C¥), (n) satisfies a
recurrence of the form in Lemma 7.3 with a = a%’f p @=d(T) and l = I(T). So,

by (7.7),

PO nd(@) (T

(»)
Cp 1](") P 19Dl" P
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So
(T)-1
() = () d T n—
{p)
_ O‘D[m] (n — 1)) kD

Therefore g,y has degree d(T) and o = o®) /(P01 — 1), as claimed.
(T) T Diz]

If T has r > 1 lower covers, then Ag?)(n) satisfies the recurrence

AP@m) —pAP(n-1)= Y HA“”

LiynLp:  i=1
(Ly,..,Lp)FIr],
Li#|r]

Since Agf;)_(n) is equal to 1 when L; = (), the equation above becomes

APm) -pAP(m-1)= > T[ A% ().
(L1yee Lp)Flr], i: i 70

Li#[r

For L; # 0, the term A%}: (n) is either A%l- (n)/p or A%)i (n — 1), depending on
whether L, is a singleton or not. By our inductive hypothesis the leading term of
Ag,f’L). (n) is aé’fL). ndTt)piTLdm | 50 we have

i:Li#0 &2 Li=1 i:|Li|>1
= i Lyl=1 1=-35L;151 HT,) H ag{?i nd(T)pl(T)n

:L;#0

(p) d(T), (T)n
l(T) 1 H Ay, | P
:L;#0

~p

where p = pzi=lLiI=1(l(TLi)"l)’l. Therefore Ag?) satisfies a recurrence of the form in

Lemma 7.3, with

°= 2 pl(T)l I %, |,

(L1, Lp)Fr], i:Li#0

Li#|r)
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d=d(T), 1 =U(T) > 1. So by (7.7),

AP (1) ~ piM-1 > p I] o | ntmp
T p@M-1_1 P G, | P
(L1yees Lp)F{r], i:L;#0

L;#[r

>, o II o8

L1y Lp)Flrl, | i:Li0

Li#(r) d(T) , UT)
P11 nepTe.
Therefore gyr) has degree d(T) and aéf’ ) is as claimed. 0O

Note that we can use equations (7.9) and (7.10) to explicitly calculate a(}’ ) and

:(,? ) for a particular tree T', and particular p, but the calculations would be ex-

tremely cumbersome. Even without expressions for aq(’f) and ﬂg" ) we can see that
the dominant term accounts for most embeddings, as in the complete binary tree

case.

7.3 Typical embeddings T' into T}

As in section 6.2 we describe a “typical” embedding of T into T}, which shows

that the leading term given in the previous section gives the lower bound A(}’ ) (n) =

Q(nd(T) pl(T)n)'

If T is a chain, we can count the embeddings that map the root of T to 1,, and
the leaf of T to some leaf of 7;7. We have p"~1 choices for where to map the leaf.
Once we have fixed the leaf of T}, this defines a path from 1, to the leaf of T}. This
gives a choice of n — 2 elements of T into which we can map the d(T) lower bead
elements of 7. So, asymptotically we have ©(n¥™) choices for where to map the
d(T) lower bead elements. Therefore Agf’ ) (n) = Qn¥Mp"), and since [(T) = 1 we
have that Ap(n) = Qn¥Dp™M") for T a chain.

For T not a chain, so there exist branching elements of T, let ¢ be some embed-

ding which maps the root of T  to 1,, and maps the branching elements of T to as
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high a level of T}* as possible. Consider, for large n, the number of embeddings of T
into T} that agree with this fixed ¢ on the root, branching elements and upper bead
elements. Let us only consider those embeddings which map the leaves of T to the
leaves of T}7'. If a leaf y is joined to a branching element z by a chain of lower bead
elements, then note that ¢(z) is a fixed distance from the root of T, so that ¢(z) is
in level n—k, of T}, where k; is a constant independent of 7. So, given @, the leaf y

can be mapped to p~*=

P! leaves in T>. So, the total number of choices for all the
leaves is asymptotically ©(p"™"). (The over-counting due to the possibility that
two leaves that are below the same branching point are mapped to the same leaf
of T} is negligible for large n.) It remains to choose where to map the lower bead
elements. However, in a similar way to the case where T is a chain, a lower bead
element on the chain between the branching point x and the leaf y must be mapped
to an element on the path between the images of # and y. Since z is mapped to level
n — kg, and y to a leaf, the path has n — k; — 2 elements, with k, independent of n.
Since there are d(T') lower bead elements, we have asymptotically ©(n%®) choices
for where to map the lower bead elements. (Again, this is an over-count due to the
possibility that two lower bead elements that are below the same branching element
but above different leaves are mapped to the same element of T;'. However, this
is negligible because typically the lower bead elements will not be mapped within
O(1) of a branching element.) So, the number of embeddings that agree with ¢
is asymptotically Q(nd@p!™") and we have AP (n) = QndDp™n) for T not a

chain.

By Lemma 7.3 we also have the asymptotic behaviour of Cé? )(n), given in the

following corollary.

Corollary 7.5. For any tree T with [(T') = 1 the number of embeddings of T into
T} is asymptotically

cw (n) 0‘5? : ndD+1n
T dT) + 1 P
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and if d(T) > 0 then
(p) (p)

(»)
CP (1) ~ O d(T)+1 Br or” ) _d(T) n
r () <d(T)+1” NapT2)" )F
For any tree with I(T) > 1 the number of embeddings of T into T} is asymptoti-
cally

H(T)~1

D
CP (n) ~

pl(T)—-l — aé?)nd(T)pl(T)n

and if d(T) > 0 then

1(T)-1 (p)
(p) p ®), d(T @ _ _dTay dT)=1\ UT)n
CTWNWLT(‘“T"()J’(T_IDI(_T)-T:{ nd0=1 | .

This tells us that for a tree T not a chain, a typical embedding of T into T’ maps
the leaves of T' to the low levels of T?, the branching points and upper bead elements
of T' to the high levels of T}, and the lower bead elements of T' will be mapped to
elements spread roughly evenly along the paths in T} defined by the images of
branching elements and leaves of T, as explained earlier. There are ©(ndT)pHT)n)

of these embeddings.

For T a chain, a typical embedding maps the leaf of T' to a low level of T, and
the remaining elements of T' are mapped to elements spread roughly evenly on the
path from 1, to image of the leaf in T™. Here the root is not necessarily mapped to
1,, and the root can be thought of as a lower bead element, so there are d(T") + 1

elements to position on this path. So, we get @(n¥D+1pn) of these embeddings.

7.4 Asymptotics of AD(n)/CP(n)

We have the following extension to a result of Kubicki, Lehel, and Morayne, which
follows immediately from the asymptotic expressions for Agf’) (n) and Cq(f’ ) (n) given

by Theorem 7.4 and Corollary 7.5.

Proposition 7.6.
lim A'.('l?) (n) _ pl(T)—l —1 0
w0 () PO
7 (n) p
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This provides the following extension to the asymptotic inequality of Kubicki,

Lehel and Morayne.

Corollary 7.7. For anyn and p and any trees Ty, T, such that T, contains a subposet
isomorphic to Ty, we have

AR(m) . AR®)

n-l-»ngo C(P) - 'n,l—>rgo C(P) ’
T (n) T (n)

(7.11)

Proof. This follows immediately from Proposition 7.6, since we have [(T}) < I(T3).

a

We have the following asymptotic behaviour of Ac({f)(n)/ C’§? )(n), similar to the

result for the binary complete tree.

Theorem 7.8. For any tree T with I(T) > 1 and d(T) > 0, we have

AP (n) 1 a1 () o 4
C}p)(n)=l—W 1—-7-*-—;2—4‘;7’? + o(n™%) (7.12)
where "
)
w _ Pr N d(T)
W =5~ g1 (7.13)
For any tree T with [(T) > 1 and d(T') = 0, we have
A'g"p)(n) _ -1
ET%—) =1— pl(T)—l + o(n ) (714)
For any tree T with I(T) = 1, we have
(p)
A(T)(") _ADHL L e, (7.15)
Cr’(n) n
a

Corollary 7.9. For any two trees 11, Ts, if either
(1) UT1) > UT3), or
(it) UTy) = l(T) and d(T1) > d(T3), or

(iii) I(Th) = (Tz), d(T1) = d(T3) > 0 and aq({i)/ﬁ%) > aq(’i;)/ﬁ%),



7.4. AsympTOTICS OF AP (1)/CP) (n) 143

then there exists an integer ng such that
AR ()  ADM)
Cf)(n) = CE)(n)
for alln > nyg. O

This implies that to find examples of trees 73,73 with 75 containing a subposet
isomorphic to 77 and satisfying
AR(m) _ AR (n)
CRm)~ ()
for all n greater than some ng, we need only consider pairs with {(T}) = {(T3),

d(Ty) = d(T3) > 0 and o) /6% > o) /62,

We finish this chapter by showing that the pair of trees T3, T5 in Figure 5.1 on
page 106 are an example of such a pair. The following calculations are very similar to
those in the proof of Theorem 6.6, but using the more complicated expressions (7.9)
and (7.10) for a® and 8. Indeed, it would be possible to generalise Theorem 6.6
to give a whole family of examples, however the calculations would be rather more

involved.

Theorem 7.10. Let T1,T; be trees as depicted in Figure 5.1. There exists some ng

such that
AR () _ AR

)
C(P) (n) > O(P)( )

for all n 2> nyg.

Proof. Note that {(T}) = [(T3) = 3 and d(T1) = d(T2) = 1. So, by Corollary 7.9, it

is enough to show that ” "
orn _ on

ﬂ(P) ,B(p) )

As in the proof of Theorem 6.6, we will calculate aTl)ﬂ(p ) ag,’i;) ﬂ%’ ) and show that

it is positive.

Let the lower covers of the root of T} be 1, z2, x3 and let y be the extra element

of Ty, so that Ty = T3 \ {y}. For each tree T = T}, T;, we write agf’) and 65? ) in
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Tty Ty =Ty Tpoy =Ty Ti2,3) Ty

| {\ N\ /K

Figure 7.1: Subtrees of T} and T3

terms of ag"’) and ﬁg” ) for the subtrees S defined in Figure 7.1. For ease of notation,

we write ol for aq(l?l}, a®) for a% )112}, etc., and similarly for 8.

Also, note that d(T7,) = d(T23y) = d(T(2}) = d(T(3;) = 0 and therefore ﬁ{,p ) =

() = B®) = g = 0, which will simplify the calculations.

Using (7.10), we have

) (p)
o _ b [BP8 fe o+ s0ef) ~aPalt] o
T T 21 -1
g +(p - 2870 o
(»)
a® - pp— )P  of
T2 p2 -1 p2 -1

SO

) (»)
50 _ g _ 2= L [PAeR — (Ao + Aol — o o)) or;
Qr P, — QO Py = 2 _ 1
P ~ (B20® - aPa® + (p - 2)6PaP o) 0¥

and using (7.9), we have

-1 )
ol = 271 [aPa 4 aPolf + ool + (p - DaPafal?],

p(p — 1)aPa

p’-1

o) =
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This gives,

(a(p) {p) a%)ﬁ(p))(ﬁ —1)?

oz("")p(p 1)

_ ﬂfp) (a(p)agp) +a(p) (p) + a(p) (:D))

+ﬂ§p (p 2)a(p) (p) (p)

o (BP0 + 2o — aPa)

( {g)agp) agp)a(’;) +(p— 2),8(”)04 agp))
agp) ( 5§p) ag‘) (p) 5(1)) + af )a(p))
(ﬁ(p a12 (p) ,B(p) gp) agz;))_
Finally, we have

®) (p— 1) (p) (P) agg)

13 =

and ag) = a(p)agp)

p— 1
SO
(»)

(), ()
p—1G3"a;’ —a
pr) agzg) (p) ﬂ(”) gp) ag) — §p) a§p) agp) _ agp)( ) ;— i 1B 14 (p) a%)

__P _»_ ®
p—la ay

Therefore

Bp®) PP = o’pp =1 (@PaPa® + oPaP o)
' 1

o Q oy 0y
Ty Ty P> —12 p-— 1 Q3 3
_afalPp?(p— 1)( ®)0) | 0P o®)
(p? —1)?
P
- FEalefol) + of’al)
which is positive, since a(p ) is positive for all T a

) ﬂ(p ) B(p ), with p = 2, corresponds

Note that the above expression for a.
exactly with the expression for ar, 87, — ar,fr, found at the end of the proof of
Theorem 6.6, for the specific trees T = Ty and 7" = T,. In fact, the calculations

throughout the two proofs are very similar; the main difference is that for p > 2,

the set [3] can be partitioned into three sets {1} U{2} U {3}, which is not possible if
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p = 2. These partitions account for the terms with the prefactor of (p — 2) (which
vanish for p = 2), and we note that these terms apparently cancel when calculating
AP _ o g

As mentioned earlier, this hints at a possible generalisation to Theorem 6.6 which
would give a family of pairs of trees 7' C T’ with

AP(n)  AD(n)
CP(n) " CB(n)

for sufficiently large n. However, more important than finding many of these pairs is
the fact that there is at least one such pair of trees that are ternary. Theorem 7.10
tells us that if we want to generalise Theorem 4.1 of Kubicki, Lehel, and Morayne,
to embeddings of trees into the complete p-ary tree, we must keep the condition on
the trees being binary. For example, we do not have, as might at first be hoped, that
the result is true for embeddings of p-ary trees into the complete p-ary tree (nor even
for embeddings of ternary trees into the complete p-ary tree). In the next chapter
we show that the result is true for embeddings of binary trees into the complete

p-ary tree.
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Chapter 8

Generalisations of Theorem 4.1

We have shown that Theorem 4.1, of Kubicki, Lehel and Morayne, stating that

An(n) _ An(n)
CTl(n) = CTz(n)

for binary trees T1, 75 such that T, contains a subposet isomorphic to T}, does not
extend to arbitrary trees Ty C T». Here, we look at generalisations of the result
in other directions, for example by looking at embeddings of binary trees into the
complete p-ary tree, for any p > 2. We will also generalise the result to order-

preserving maps of arbitrary trees into the complete p-ary tree.

As explained in the previous chapter, we cannot generalise Theorem 4.1 to em-
beddings of arbitrary trees into the complete p-ary tree. In this regard, we have the
best possible result, that Theorem 4.1 generalises to embeddings of binary trees into

the complete p-ary tree.

8.1 Embeddings of binary trees into the complete

p-ary tree

Recall that 7 is the complete p-ary tree of height n, with root 1,, and we write
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Ag’f ) (n) for the number of embeddings of T into T* that map the root 17 of T to 1,
and Cq(? ) (n) for the total number of embeddings of T into T};. We prove the result

that
AP () _ AR ()
o n) ~ CP(n)
for binary trees 73,7, such that 75 contains a subposet isomorphic to 7;. We

do so by defining an appropriate distributive lattice and then applying the FKG-
inequality. The FKG-inequality is a powerful corollary of the Four Functions The-
orem by Ahlswede and Daykin. See, for example, (3] for a background to the FKG-
inequality and examples of its use in probabilistic combinatorics. We state a form

of the inequality that we will use repeatedly.

Theorem 8.1 (Fortuin, Kasteleyn, Ginibre (1971)). If (F, <) is a finite distributive
lattice and if o, B are both increasing (or both decreasing) non-negative functions on

F and p is a non-negative function on F such that u(f)u(g) < p(f Vv g)u(f Ag) for
all f,g € F, then

S el ) S OB < Y uH) D ulHa(F)BY) (8.1)

feF feF ferF feF

A function u on a lattice F is said to be log-supermodular if

p(fu(g) Sp(fvau(fAg) foral f,ge F. (8.2)

The power of this result means the inequality Ag,’f;) (n)/ C’%’)(n) < Ag,’;) (n) /C’%’ )(n)
can be viewed as just one of many correlation inequalities for embeddings of binary
trees into complete trees. We define an appropriate distributive lattice F and log-
supermodular function u so that 3, u(f) equals the number of embeddings into
T;'. Then we have the FKG-inequality (8.1) for any pair of increasing functions «, 3.
As we will see, the definition of the lattice F means that the indicator functions
of events like “the root of T is mapped to 1,,” or “element x € T is mapped to a
high level of 77" will be increasing on . The FKG-inequality then tells us that
events like this are positively correlated, i.e., the probability that one event occurs

increases if we condition on the other event occurring.
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We only need consider the case where 77 and 75 differ by one element, since we
can reduce to this case by the following lemmas. Lemma 8.2 is obvious, and the

proof of Lemma 8.3 can be found in [17].

Lemma 8.2. Given a binary tree, the following types of operation produce another

binary tree with one element fewer.
(a) Removing a leaf,

(b) Removing the lower cover of an element that has ezactly one lower cover. U

Note that if an element has exactly one lower cover and the lower cover is also a
leaf, removing this leaf can be considered as an operation of both types. Also, note
that we can think of operation (b) as contracting the edge between the element and

its lower cover, that is, identifying them in the new tree.

Lemma 8.3. If Ty, and T, are binary trees and T, contains a subposet isomorphic
to Ty, then there is a sequence of operations of type (a) and (b) leading from T3 to

an isomorphic copy of Ty through binary trees. O

Theorem 8.4. If T) and T are binary trees such that Ty contains a subposet iso-

morphic to Ty, then ”
AT1 (n)
CR ()

AD(n)

<
~ C¥(n)

(8.3)

Proof. From Lemma 8.3 it is enough to show (8.3) for the particular cases where T}
is isomorphic to the subposet produced from T3 by exactly one operation of either
type (a) or (b). Let m be the element removed from T3, and for ease of notation we

identify T} with the subposet Tz \ {m}.

Firstly, we define a distributive lattice. Write [n] for the chain on the n-element
set {1,2,...,n} with the natural ordering. For any binary tree T, write Fr =
F(n; T) for the lattice of strict order-preserving maps from T to [n]. So f € Fr

is a function from T to [n] such that z > y in T implies f(z) > f(y) in [n]. The
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ordering on Fr is f > g if and only if f(z) > g(z) for all z € T. The join, f V g, is
the pointwise maximum of f and g, and the meet, f A g, is the pointwise minimum
of f and g. It is relatively simple to check that Fr is a distributive lattice. The

easiest way to see this is to note that it is a sublattice of the distributive lattice

)™

We call a function in Fr a level function. If we have an embedding ¢ of T into
T, we can construct a function f by setting f(z) equal to the level of ¢(z) in T}
Since ¢ is an embedding, z > y in T implies that the level of ¢(x) is greater than
the level of ¢(y), and so f(z) > f(y). Therefore, f is a level function and we say
that ¢ corresponds to f. In fact, we can do this for any strict order-preserving
map ¢ from T" to T7. For each level function f € Fr we can count the number of

embeddings from T to 7 that correspond to f. This defines a function x from Fr

to Ry w(f) = pi(f)pe(f) where uy, o are defined as

pa(f) = pn—f(lr) H pf(w)-f(y)’

>y, an edge in T

pa(f)= J[ @ —pr=xtesen-fu),

YET, -
y has 2 lower
covers, z1, 22

Here, p11(f) counts the number of strict order-preserving maps from T to T3 that
correspond to the level function f. However, a strict order-preserving map from
T to T} need not be an embedding of T" into 7;'. The term pa(f) is exactly the
fraction of those strict order-preserving maps from T to T corresponding to the
level function f that are also embeddings of T into T;'. To see that u(f) and u2(f)
are as claimed, suppose we are constructing a strict order-preserving map ¢ that
corresponds to f, by choosing the element ¢(z) from level f(z), for each z from the
root, 17, downwards. We have p»~fU7) choices for ¢(17), and then for each edge
¢ > y in T, once we have chosen ¢(z) we have pf@—f®) choices for ¢(y). This
gives a total of ui(f) strict order-preserving maps. Since we have ¢(z) > ¢(y) for

all z > y in T, the map ¢ is an embedding if ¢(z1) and ¢(2;) are incomparable

for all elements z;, 2, with a common upper cover in 7. Let y be some element
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of T which has two lower covers z;, 2z, and, without loss of generality, suppose that
f(z1) = f(22). When constructing ¢, once we have chosen ¢(y) and ¢(z2) (elements
in the levels f(y) and f(z2) respectively), there are p/®=7(21) choices for ¢(z;).
One of these choices (the element on the path between ¢(y) and ¢(2;)) will give
¢(z1) > ¢(22) in T}, meaning that ¢ is not an embedding. The other choices mean
&(z1) and ¢(z2) are incomparable as required for ¢ to be an embedding. Because
of the regularity of T}, these numbers are independent of the choice of ¢(2,), so
the fraction of choices which allow ¢ to be an embedding is 1 — p~(f®)-f(z1)) So,
taking the product over all such y gives the expression po(f) as the fraction of strict

order-preserving maps (corresponding to f) that are also embeddings.

Claim 8.1. u is log-supermodular on Fr.

Proof of Claim 8.1. Since

(f Ag)(=) + (f V g)(2) = min(f(z), g(z)) + max(f(x), g(x)) = f(z) + g(z)

for all x € T, we have that i (f)ui(g) = wm(f A gra(f V g). So, it is enough
to prove (8.2) for us. For each y € T with two lower covers, 21, 29, write o(f) =
max(f(21), f(22)) — f(y). Since pg is a product of terms indexed by such v, it is

sufficient to prove that
(1-— p"(f))(l _pa(g)) <(1- pa(f/\g))(l - ptf(fV.q)) (8.4)
for all y € T with two lower covers.

Without loss of generality, we can assume that f(21) > f(22), g(21), 9(22). So

U(f A g) = max{min(f(zl),g(zl)), min(f(zz),g(zz))} - mln{f(y)’ g(y)}
= max{g(z), min(f(22), 9(22))} — min{f(y), 9(v)}

and

o(f Vv g) = max{max(f(z1),g(21)), max(f(z2), 9(22))} — max{f(y), 9(y)}
= f(z1) —max{f(y),9(y)}
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which gives

o(f Ng)+o(fVg) =max{g(z), min(f(z5), g(22))} + f(21) — f(y) — 9(y)
< max{g(21), 9(22)} + f(z1) — f(y) — 9(v)
=0o(f)+a(g)

(with equality unless both g(z) < g(22) and f(22) < g{(z2)). Moreover, since

a(fVg) = f(a1) —max{f(y),9(y)}, if f(y) > g(y) then o(f V g) = o(f) and so
o(fAg) £ o(g) and then (8.4) follows. Otherwise, f(y) < g(y). Set s = g(y)—f(y) >
0. Then o(fV g) = f(z1) — 9(y) = o(f) — s and o(f A g) < o(g9) +s. Also,

o(g)+s= max{g(z}), 9(z2)} —9(y) + s < f(21) — f(y) = o(f). So,

(1= p"Uray(1 — poV9y > (1 — p°@+e)(1 — po)-9)

=1 — pe@+s _ yo(f)=s 4 yolfltale)
=(1- pa(f))(l - po(g)),

where the second inequality holds since the function x : z +— p® is convex for all

z € R, and o(g) < o(g) + s,0(f) — s < o(f) with s > 0. a

So, we have that u is log-supermodular on Fr, and therefore the restriction u’

of u to any sublattice F' of Fr is log-supermodular on F".

We have that the number of embeddings of T into T} is 3 (e, u(f). Also,
we can split a tree T at any point and perform similar sums on the two subtrees,
as follows. Recall that for z € T, the set D|z] is the down-set of z in T. Write
D(z) for the set D[z] \ {z} of elements below z in T. Let x be an element of
T and define subtrees S; = T \ D(z) and S; = D[z] and consider two lattices
Fuk) = {f € F(n; 1) : f(z) = k} and Fo(k) = {f € F(k;S2) : f(z) = k}, where
1<k <n Then ) e r i WS ) is the number of embeddings of S; into T} that map
z to an element of T} in level k, and ), - * u(f) is the number of embeddings of
S into T: that map x to the root (the only element in level &k of T;“). Consider any

pair of embeddings (1, ¢2) where ¢, is an embedding of S, into T that maps z to
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an element in level k, and ¢, is an embedding of S; into Tzf that maps z to the root
of TF. We can construct an embedding ¢ of T into T} as follows. For any point
y € Si, define ¢(y) to be ¢;(y). So, the point z € S, is mapped to ¢(z) = ¢(z), an
element in level k. So, ¢; specifies a unique copy of T]f in T}}, namely the down-set
of ¢1(x) in Tp. So, for elements y € S define ¢(y) to be the element corresponding
to ¢o(y) in this copy of Tzf. Since the only element in S; N Sz is z and ¢o(z) is by
definition the root of T]f, we have a well defined function ¢ and this is certainly an
embedding of T" into T} that maps = to an element in level k. Since any embedding
of T into T} that maps z to an element in level k can be split into two embeddings
by reversing this process, we have that the number of embeddings of T into T;;' that
map Z to an element in level kis Y ¢ 7, o0y K(f) 2o 4e7,0) #(9) and therefore the total
number of embeddings of T" into T™ is

DN u) > wle). (8.5)

k=1 feF (k) gEFa(k)

Note that this holds for any element z in 7T'.

Recall that m is the point removed from T, to obtain T;. Let [ be the upper
cover of m in Tp. Write T; for the subtree Ty \ D(l), and T}, for D[l] as a subtree of
T:. Note that we have split 77 into two trees 7; and T}, as explained earlier. Write
Ty+ for the tree D{l] as a subtree of T, so that T+ = T, U {m}. Therefore, we have
split T into two trees T; and T,+. So, T; is common to both trees Ty, T, and T;
and T+ differ by only one element. Furthermore, since we have that 7} is obtained
from T, either by (a) removing a leaf, or (b) removing the lower cover of an element
with exactly one lower cover, we know that either (a) Ty+ has the extra element m
as a leaf, directly below the root [ of T,+, or (b) T3+ has the extra element m as

the only lower cover of I. (See Figure 8.1.)

Let us look at the sublattice ' of F(n;T,) defined by F' = {f € F(m;T}) :
f(y =kor f(I) = k+1}, for 1 < k < n. We have 44 defined on F’ as described
earlier, and p is log-supermodular. Define a(f) = I{f (17,) = n} as the indicator

function of the event f(1r,) = n and define B(f) = I{f(l) = k + 1} as the indicator
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(a) m is a leaf (b) m is the only lower

cover of |

Figure 8.1: The two cases for T+

of the event f(I) = k + 1. Both a and 3 are increasing functions, since the sets

{7: f(1z,) =n} and {f: f(I) = k + 1} are both up-sets of F'.

For k =1,...,n, let ax be the number of embeddings of T; into T;}' that map I
to an element in level &, and let by be the number of embeddings of T; into T’ that

map [ to an element in level k and map the root 17, to the root 1,. Then,

> w(H)elf) = be + brga, 3 ulf) = ar + a1,
feF! feF

3" w(HBS) = ars, > w()a(B) = bis,

feF! JEF!

and applying Theorem 8.1 to F', i, c, B gives (bx + bey1)ar+1 < (ak + Gxy1)be4q OF

b _ bin
ap ~ Ggyl

forallk, 1<k <n.
Now let us look at the trees T, and T,+. Let ¢, be the number of embeddings of

T;, into T that map [ to 1, and let di be the number of embeddings of T;+ into TF

that map [ to 14, for k= 1,...,n. First consider case (a), where m is a leaf of Ty+.

Each embedding of T+ with [ mapped to 1; can be thought of as an extension

of an embedding of T; with ! mapped to 1;. To extend an embedding of T; with
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[ mapped to 1; to an embedding of T,+ with | mapped to 1; we just need to
decide where in Tzf to map m, being careful to make sure that the chosen element
is incomparable with the image of the other lower cover of . When this other lower
cover is mapped to level k — 1 of Tzf, there are pF~! — 1 choices for m, and if it is
mapped to any lower level, then there are more choices for m. Since the total number
of elements below 1 is equal to (p* — p)/(p — 1), we have that every embedding of
Ty, with [ mapped to 1 can be extended to at least p*~! — 1 distinct embeddings of
T+ with [ mapped to 1, but to at most (p* — p)/(p — 1) distinct embeddings of
Ty+ with [ mapped to 1. Since p > 2, we have

We now show that di/cr < di+1/ck+1 also holds in case (b), again using Theorem
8.1. Let F” be the sublattice of F(k + 1;T;) defined as F" = {f € F(k+ 1;T) :
fi) =kor f(I) = k+ 1}, for 1 < k < n. Take y defined on this sublattice as
before, so that u is log-supermodular. Define a(f) = I{f(l) = k + 1} and define
B(f) = (pin — p)/(p— 1), where fmin = minger, f(z). We have that « is increasing
on F”, and fyn, is increasing on F* therefore 3 is also increasing on F”. Before

applying Theorem 8.1 we show what each of the terms in (8.1) is.

There are p elements in level k of TF*! whose down-set is a copy of T, so
each of the ¢, embeddings of T} into T; that map [ to 1; corresponds to p distinct
embeddings of 7}, into 7;**! that map { to an element in level k. Therefore the sum
> sern u(f), which counts embeddings of Tj into T;*" that map [ to an element in
level k or k+ 1, equals pcy + ck+1. The sum Y .z u(f)a(f) equals cgi1. The sum
> sern B(f)B(f) counts the number of embeddings of Tp+ into T¥*! that map [ to
an element in level k or k + 1. To see this, fix f in F” and let ¢ be an embedding
of T} into Tzf'“ that corresponds to f. By definition the lowest level mapped to by
® 18 frmin, S0 ¢ maps the elements of T}, to elements of Tzf"‘l between levels f,.;, and

(l)_fmin +1

#(1) inclusive. In fact, it maps T} into a copy of T defined as the elements

in the down-set of ¢(l) that are in levels fi;, to f(1) of T**!, inclusive. Call this
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copy Ty. We can construct an embedding ¢ of T+ into T¥*! as follows. Choose
some integer ¢ between 1 and f,,;, — 1; this is the number of levels by which we will
“push down” the embedding ¢ so as to “fit in” the element m. (So, if frn, = 1 this
construction does not yield an embedding of T}+, which agrees with u(f)3(f) =0
for fmin = 1.) Define ¥(l) to be ¢(l) and define ¥(m) to be any element in level
F(1) —1i that is below ¥(1). Once this choice is made % is then determined. Consider
the copy of T =% that is the down-set of ¥ (m). By the choice of %, this has at least
as many levels as Ty, so just considering the top f(I) — fimin + 1 levels, we have a
copy of T;. Then, for all z € T+ with £ # I, m, define 9(x) to be the element
in this copy of Ty that corresponds to the element ¢(z) in the original Ty. Since
for each 7 we have a choice of p' elements for /(m), the total number of distinct

embeddings this construction yields for a particular ¢ that corresponds to f is

fmin_l f .
i — p kg 1) — p _
; P= =60

Since there are u(f) distinct embeddings that correspond to f, this construction
yields 37 .. zv (f)B(f) distinct embeddings of T3+ into TF*! that map | to an

element in level k or k + 1.

Since each embedding of Ty+ into T**! that maps [ to level k or k + 1 can be
converted to an embedding of T} into T¥** that maps [ to level k or k-1 by reversing
the above construction, we have that the total number of embeddings of T;+ into
TF*! that map [ to an element in level k or k + 1 is exactly ) cpm u(f)B(f)-
Therefore, 3s¢pr i(HB(S) = pdi + dirs and ¥y wlNFBU) = duss. So,
applying Theorem 8.1 gives cx+1(pdk + di+1) < (pck + Ck+1)dr4+1 which is equivalent

to the inequality dy/ck < diy1/Cks1-

So, we have two increasing sequences (bi/ax) and (di/ck) for £k = 1,...,n. We
need to apply Theorem 8.1 once more to a very simple lattice, namely the n-element
chain, [n]. A chain is obviously a distributive lattice, and moreover any function
p is log-supermodular, since {k,k'} = {k A K,k V k'} for all k,k' € [n]. Define
w(k) = axck, define a(k) = by/ax, and define §(k) = di/ck. Then a and G are
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increasing on [n], and applying Theorem 8.1 gives
n n n n
Z bkck Z akdk < Z apCr Z bkdk. (86)
k=1 k=1 k=1 k=1
Note that this inequality is the weighted version of the elementary inequality known

as Chebyshev’s Sum Inequality (see, for example, [16, Theorem 43]).

But ZZ=1 axcy, is the total number of embeddings of 77 into TI;‘, as we split T}
into T; and Tp. Similarly, 3 ¢, axdy is the total number of embeddings of T; into
T}, as we split T3 into T; and Ty+. Since by only counts those embeddings counted
by as that also map the root of T; to 1,, we have that > ;_, bxck is the number
of embeddings of Ty into T} that map the root of T to 1,, and D _y_; bxdy is the

number of embeddings of T, into T, that map the root of T; to 1,.

Therefore equation (8.6) becomes
AR ()CE (m) < CF ()AL (m)
as required. 0

Note that the proof is similar in its approach to the original proof by Kubicki,
Lehel and Morayne; however in the set-up where we can apply the FKG-inequality
we can view this result as one of many possible correlation inequalities on the lattice
F(n;T), for T some binary tree. Informally, in the proof of Theorem 8.4 we first
show that the events “the root of T; is mapped to a high level of 77" and “the
element [ is mapped to a high level of T}*” are positively correlated on the lattice
F(n;T;). We then show that in the lattice F(k;T;) having “l mapped to a high
level of TI{‘” means “the number of ways to embed an extra element” increases. We
combine these correlations to show that if the root of T is embedded “higher up”

in T}, then there are more embeddings of an extra element into T'.

We can use the lattice F(n;T") and the function p and other pairs of increasing
functions on F, to find other correlation inequalities. For example, we have the

following result, which informally says that for any binary tree 7' and any two
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elements z,y in 7', the events “z is mapped to a high level of T, and “y is mapped

to a high level of T;}” are positively correlated.

Theorem 8.5. For any binary tree T, and any elements z,y € T, and for any k

and ! with 1 < k,l < n, we have

E(k+11) _ E(k+1,1+1)
Ek) — EMkI+1)

where E(i, j) is the number of embeddings of T into T3 that map x into level i, and

y into level j.

Proof. Consider the sublattice ' of F(n;T) defined by F' = {f € F(n;T) :
f(z) =k,k+1 and f(y) =1,1+1}. We take u to be our log-supermodular function

as described above, so that Y- ;- u1(f) is exactly
E(k,)+ E(k+1,0)+ E(k, I+ 1)+ E(k + 1,1 +1).

Define a(f) = I{f(z) = k+1} as the indicator of the event f(z) = k+1, and define
B(f) = I{f(y) =l + 1} as the indicator of the event f(y) = [+ 1. Both o and

are increasing on F' and so we can apply Theorem 8.1. This gives the inequality

[E(k+1,0) + E(k+ 1,1+ 1)) [E(k,1 + 1) + E(k + 1,1+ 1)]

<[EkD)+FEk+1L,)+EkI+1)+Ek+1L,I+1)]Ek+1,1+1)
which is equivalent to the required inequality. ]

This statement is not true if 7" is allowed to be arbitrary, as illustrated by the
following example. Let T be a tree with 4 elements, the root z and its three lowers
Ccovers I, T2, T3. Suppose we are embedding 7" into 7%, the complete binary tree
on 4 levels. We can calculate the different number of embeddings that map the
elements z; and z, into particular levels. There are 12 embeddings that map x; to
level 3 and z, to level 2, there are 32 embeddings that map z; to level 3 and z, to
level 1, there are 76 embeddings that map z; to level 2 and z; to level 2 and there

are 184 embeddings that map z; to level 2 and z; to level 1. So, if we consider a
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uniform probability distribution over all embeddings of T' into T™, we have that the
conditional probability that an embedding maps z, into level 2, given that it maps
T2 into either level 1 or 2 and maps z; into level 3, is 12/44 = 3/11. However, the
conditional probability that an embedding maps z; into level 2, given that it maps
z2 into either level 1 or 2 and maps x; into level 2, is 76/260 = 19/65 which is
greater than 3/11. In other words, it is more likely for z; to be in the higher of the
two levels 1 and 2, if x; is in the lower of the two levels 2 and 3. This is still true
for embeddings of T into T: for p > 2. This means that we are unable to use this

approach even for embeddings of p-ary trees into the complete p-ary tree.

8.2 Order-preserving maps of arbitrary trees

into the complete p-ary tree

We can consider the case of T being binary as special. For arbitrary T we cannot
define a log-supermodular function u on F(n; T') so that 3 ¢ zn.r) #(f) is the num-
ber of embeddings of T into T;7. However, we can look at other types of mapping
from T into T3}, for example order-preserving maps. Recall that an order-preserving
map preserves comparability of elements, but may introduce extra relations between
elements. We look at both strict and weak order-preserving maps, the difference
essentially being that a strict order-preserving map must map comparable elements
to distinct elements, but a weak order-preserving map need not. We give formal

definitions later.

8.2.1 Strict order-preserving maps

For strict order-preserving maps, the situation is very much simplified; as we have
seen in the proof of Theorem 8.4 the function y,, which counts the number of strict

order-preserving maps, is log-supermodular with equality on F. Moreover, if we
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allow T to be arbitrary, the function p; still counts the number of strict order-
preserving maps. This is essentially because a strict order-preserving map only
needs to preserve edges and not incomparability between elements. Therefore we can
generalise the correlation inequalities for embeddings of binary trees to correlation

inequalities for strict-order preserving maps of arbitrary trees.

Recall that a strict order-preserving map is a map ¢ from T to T} such that
z >y in T implies ¢(z) > ¢(y) in T;*. Define Ag,’f)(n) to be the number of strict
order-preserving maps of 7" into 7} that map the root of T' to 1,, and define C’é? ) (n)
to be the total number of strict order-preserving maps of T' into T7'. We have the

following result, corresponding to the inequality of Theorem 8.4.

Theorem 8.6. If 71 and T, are trees such that T, contains a subposet isomorphic

to 11, then

AR ) _ AZm)
CRm) ~ CEm)
Proof. We follow the proof method of Theorem 8.4, making the necessary changes

for strict order-preserving maps of arbitrary trees.

Firstly, note that we can define a distributive lattice of level functions F(n;T)

when T is an arbitrary tree. We take y; defined, as before, as

p(f) = pn-f(lT) H pf(z)—f(y)’

z>y, an edge in T

which is a log-supermodular function. This satisfies log-supermodularity with equal-

ity (as noted in the proof of Theorem 8.4). Also, for any tree T', the sum

Z i (f)

feF(niT)
is the number of strict order-preserving maps of T into 7', as explained earlier.
As before, we can assume that 7y is isomorphic to the subposet T3 \ {m} of T,
where m is some element of 7. Let [ be the upper cover of m in T. We split T}
into T; = Ty \ D(l) and T, = D[l] as a subposet of T1, and split T into T; and
Tb+ = Tb U {m}
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Set 7' = {f € F(m;,T;) : f(I) = kor f(I) =k+1} for 1 < k < n and let
a(f) = I{f(1g) = n} and B(f) = I{f(l) = k + 1}, which are both increasing on
F.

Fork=1,...,n, define ar, to be the number of strict order-preserving maps of
T; into 7} that map ! to an element of level k, and define b to be the number of
strict order-preserving maps of T; into 7' that map ! to an element of level k and

map the root of T; to the root 1,,. Here, we have

Zl‘l‘l(f)a(f) =5k+5k+1) Z[l:l(f) = Qi + Qg41,
feF feF

Y- m(NB(S) = e, > m(Ha(HB) = ber,

fe}-’ fefl

and applying Theorem 8.1 we get

b < bet1

Gy ~ kel
in a similar way as in the proof of Theorem 8.4.

Now we look at trees T}, and T+ and define &, to be the number of strict order-
preserving maps of T} into T,f that map ! to 1j, and define di to be the number of
strict order-preserving maps of T+ into T: that map [ to 1. Whereas in the proof of
Theorem 8.4 we had two cases to consider (from the two cases in Lemma 8.2), here,
since the trees T}, T> are not necessarily binary, we cannot be so specific. However,

we just need that m is the lower cover of [ in T+, where [ is the root of T+.

Let 7' = {f€e F(k+ 1;Ty): fl) =kor f(I)=k+1} for 1 < k < n and let
a(f) = I{f(l) = k+1}. Recall that D(m) is the set of elements below m in T;+. We
can consider D(m) as a subposet of either T, or Ty+. Let B(f) = (p/mn —p)/(p—1),

where finin = minge pmyu{ty f(z). We have that o and 3 are increasing on F”. As
before, the sum 3~ zu p1 (f) equals pl + i1 and the sum 3¢ v pa(f)o(f) equals
Ck+1-

We now show that Y ez 1 (f)B(f) = pdi + des1 and > sern a(fla(f)B(f) =
dis1. Note that D[m], the subtree of Ty+ of elements below or equal to m in T)+
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is isomorphic to the subtree D(m) U {l} of T;,. In a similar way as in the proof
of Theorem 8.4 we construct strict order-preserving maps from T3+ to T,f“ using
strict order-preserving maps from T} to T:"‘l. Fix f in F” and let ¢ be a strict
order-preserving map from 7 to T;““ that corresponds to f. By definition of fiun,
the map ¢ maps the elements of D(m)U{l} to elements of T**! between levels finr
and f(!) inclusive. So, it maps D(m)U {l} into a copy of T! O=Fmintl Gofined as the
elements in the down set of ¢(l) that are in levels fri, to f(I) of Tx+!, inclusive.
Call this copy Ts. We construct ¢ a strict order-preserving map from T3+ to Tzf“
as follows. For all z € T, \ D(m) set ¢(z) = ¢(z). Choose some integer i between
1 and finin — 1. Define ¢(m) to be any element in level f(I) — 4 that is below ¥(1).
Since we are constructing an order-preserving map, it does not matter if we choose
an element that is comparable, or even equal to ¥(z) for some z € T\ (D(m)U{(}).
So, we have a choice of p* elements. Once the choice is made ¢ is then determined.
Consider the down-set of ¥)(m), which is a copy of T =% By the choice of 4, this
has a least as many levels as T}, so considering just the top f(I) — fmin + 1 levels
we have a copy of Ty. Then, for all z € D(m), define ¥(x) to be the element in this
copy of T} that corresponds to the element ¢(z) in the original Ty. Each choice of
i and choice of element ¥(m) gives a distinct strict order-preserving map from T+
to T;*1, so this construction yields

frin—1 .
= ”fT'f_;l? = 8(f)
i=1
distinct strict order-preserving maps for a particular ¢ that corresponds to f. There
are u1(f) distinct strict order-preserving maps that correspond to f, each yielding
B(f) distinct strict order-preserving maps, so we can construct a total of

S m(DB)

feF"

distinct strict order-preserving maps from Tp+.

Since each strict order-preserving map from 73+ to Tlf““ can be converted to a

strict order-preserving map from T} to T‘,l’f+1 by reversing the above construction,
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and the level that [ is mapped to is unchanged in the construction, we have that
> rern Ma(£)B(S) is the total number of strict order-preserving maps from T+ to
T,** that map [ to an element in level k or k + 1. Therefore, 3 ;. zv t1(f)B(f) =
pdy, + diyp and 3 rer i (fe(f)B(f) = di41, and applying Theorem 8.1 gives the

required inequality di /G, < di41/Cr+1-

Finally, as in the proof of Theorem 8.4, we have increasing sequences (by/as)
and (dx/3) and a final application of Theorem 8.1 gives

Z l_)kfk Z dkc-l—k < Z QrCr Z -b-kd_k.
k=1 k=1

k=1 k=1

which, by inspection of each sum, is identical to the inequality
AR ()CF (n) < CF (n) AL (n)
as required. O
As with embeddings of binary trees, by applying the FKG-inequality to different
increasing functions, versions of this proof can be used to establish other correlation

inequalities for strict order-preserving maps of arbitrary trees into the complete

p-ary tree.

8.2.2 Weak order-preserving maps

We have an analogous result for weak order-preserving maps from T to 7. A
weak order-preserving map is a map ¢ from T to T such that z > y in T implies
¢(z) > #(y) in T}*. Note that a function which maps all of T" to a single element of

T3 is a weak order-preserving map.

Define ng’ )(n) to be the number of weak order-preserving maps of 7' into T that
map 17 to 1,, and define Cz’éf’ )(n) to be the total number of weak order-preserving

maps of T into T}

We have the corresponding inequality as follows.
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Theorem 8.7. If T1 and T are trees such that Ty contains a subposet isomorphic

to Ty, then ) )
Apw AP w)
EPm) ~ CP(n)

Proof. The proof is naturally very similar to that for strict order-preserving maps.
We follow that proof through, highlighting the differences for weak order-preserving

maps.

For any tree T, write F(n;T) for the lattice of weak order preserving maps from
a tree T to [n]. So, f € F(n;T) is a function from T to [n] such that z > y in
T implies f(z) > f(y) in [n]. As for F(n;T), the lattice of strict order-preserving
maps from T to [n], the ordering on F(n;T) is f > g if and only if f(z) > g(x) for
all z € T. Again, the join, f V g, is the pointwise maximum of f and g, and the
meet, f A g, is the pointwise minimum of f and g, and we have that F(n;T) is a

distributive lattice.

We call a function in F(n; T) a weak level function. Every weak order-preserving
map ¢ from T to T} corresponds to a weak level function f by setting f(z) equal
to the level of ¢(x) in T;'. Moreover, if y; is defined on F(n; T) as

pi(f) = pn-f(lr) H pf(z)—f(y)
r>y,anedgein T
then - ¢ () #1(f) is equal to 5‘;? ) (n) the number of weak order-preserving maps
from T to T}

As before, the function y; is log-supermodular (with equality) on F(n;T).

Assume T is isomorphic to Ty \ {m}, for some m € T3. As in the earlier proofs,
we split 7} into T} and T, and split T; into 7; and Ty+. Let ' = {f € F(n; T) :
F(1) =k or £(1) = k+1} and let a(f) = I{f(15,) = n} and B(f) = I{f(}) = k+1}

which are both increasing on F'.

We define @, to be the number of weak order-preserving maps of T; into /g

that map ! to an element of level k, and define b to be the number of weak order-
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preserving maps of T; into T' that map [ to an element of level k and map the root

of T; to the root 1,. Then, as in the proof of Theorem 8.6 we apply Theorem 8.1 to

F', i, 0, B to get

Il

k
S +1 .
k+1

QIl

gu' S 0

Now, define ¢, to be the number of weak order-preserving maps of T}, into T: that
map ! to 1, and define di, to be the number of weak order-preserving maps of T3+
into T that map ! to 1x. Let 7" = {f € F(k+ LiTy) : f(I) =k or f(I) =k + 1}
and let a(f) = I{f(l) = k+1 and B(f) = (p'» — 1)/(p — 1) where frnin =

minge pmyuqy f ().

Given a weak order-preserving map from T} to Tzﬂ““ we use the same construction
as described in the proof of Theorem 8.6 to construct weak order-preserving maps
from T,+ to Tf‘l. However, note that a weak order-preserving map from 7;+ is
allowed to map the elements [ and m to the same element in T;’,““. In order to also
construct these maps we allow the choice for ¢ to include 0, so that the level we pick
for the element m can be the same as the level for . Therefore, for a particular weak
order-preserving map ¢ from Tj, to T,f“ corresponding to some f, our construction

yields

fmin .
i pmn—1

distinct weak order-preserving maps from Ty+ to T+, This means that

3 m(HB(f) =pdi +dss and Y w(Ha(f)B() = diss,

feF feF

as in the proof of Theorem 8.6.

So, we apply Theorem 8.1, giving

o] S
IA
II. [
>
+
—

k+1

Finally, as before, we can apply Theorem 8.1 a final time, to the sequences
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(b /) and (dk/Z) to get

which by inspection of each sum, is identical to the inequality
AR mCE) (n) < CF () AP (n)

as required. N}

8.3 Related open problems

We finish this chapter by stating some open problems.

We have shown that Conjecture 4.4 does not hold for arbitrary trees, and we have
the result of Theorem 4.1 for binary trees. Does the inequality hold for other trees?
Our counterexamples in Section 6.4 show that we cannot allow arbitrary ternary
trees. However, all our counterexamples have the property that I(T1) = (T3) and
d(Th) = d(T3); recall that Corollary 6.5 implies that this is a necessary condition
for the pair of trees to be an asymptotic counterexample. Could it be that if either
(i) (Ty) < I(T3), or (ii) I(Ty) = [(Ty) and d(Ty) < d(T3), then the trees T3, T satisfy

the inequality?

Question 8.8. Is it the case that, for any n and any trees T1, Ty with Ty a subposet

of Ty and either

(Z) l(Tl) < l(Tz), or

(i4) U(T)) = I(Ty) and d(Ty) < d(Ts),

we have \ \
AR (n) _ AR,

CP(m) ~ CD(n)
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Alternatively, we could restrict to the case where 73 is obtained from T, by only
removing leaves. Again, this would exclude all of the counterexamples presented
earlier. From experience we believe that disallowing these pairs of trees, where the
extra element of T, is not a leaf, is enough to imply the inequality. Unfortunately,
when we remove the restriction on 77 and T; being binary, we are no longer able
to apply the FKG-inequality and we are back to looking for a brute-force counting
argument. We believe we have such an argument for ternary trees T3, T3, but this

method will not generalise to arbitrary trees.

Conjecture 8.9. For any n and any trees Ty, Ty such that an isomorphic copy of
Ty can be obtained by sequentially removing leaves from T5, we have

AR(n) _ AR (n)
Bn) = D)
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Chapter 9

FKG-type inequalities for product

lattices

In Chapter 8 we used the FKG-inequality to prove correlation inequalities for certain
maps of trees into complete trees. We were able to find a distributive lattice 7 with
a log-supermodular function p and increasing functions a and 3 on F, so that the
sums in the FKG-inequality (8.1) counted the specific mappings we were interested
in. What if we have F, u, a, B so that the sums are of interest, but we do not have
increasing functions o, 37 In this chapter we show that it is sometimes possible to

get a correlation inequality

Do w(HalH) Y wHBE) <Y uh) D u(falHB) (9.1)

fer feF ferF ferF

like the FKG-inequality, even if one of the functions o or g is not increasing.

To be precise, we consider the case when F is a product lattice 7 x U, and 8
is not increasing, but “tiered” on 7 X U, meaning that for all {; > ¢, in 7, the
minimum value of 8 on {t;} X U is greater than or equal to the maximum value
on {tz} x Y. This condition means that we can find closed intervals I, of R for each
t € T, such that: (a) B(t,u) € I, for all u € U, and (b) if t; > ¢, then the interval

I, lies entirely to the right of the interval I;, in R (allowing touching end-points).
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The general idea is to “average out” the deviations within I of (¢, u) over {t} x U
for each ¢ € T to obtain an increasing function on 7 x U, and to then apply the

FKG-inequality. We define B(t, u) to be the weighted average

Zueu u(t, u)B(t, u)
Eueu y’(t’ U)

which, by construction, is constant on {t} x U so that B(t,u) = B(t). Now, by

ﬁ(t’ u) =

(a), B(t) is some real in the interval I, and, by (b), we have B(t;) > B(t,) for all

ti >t €T, s0 ,B is increasing on 7 x Y.

So, if we also have the usual conditions that p is log-supermodular on 7 x U
and o« is increasing on 7 x U, then we can apply the FKG-inequality to the lattice
T x U and functions p, o and 3. By construction of the “average” function 8,

we have that the sums 3, - w(£)B(f) and > ser M(f)B(f) are equal, and with the

extra condition that « is constant on {¢t} x U, for all £ € 7, we have that the

sums Efefu(f)a(f)ﬁ(f) and 3 ..z u(fla(f)B(f) are also equal and we get the

correlation inequality (9.1) for a and 3.

In fact, we can give a more general result, where F is a sublattice of a product
lattice 7 x U x V, and for each v € V the function 3 is tiered on 7 x U x {v}.
In this situation, extra conditions are required to ensure that the method described
above of “averaging out” g still yields an increasing function B. Tt should also be
pointed out that the condition on « is crucial; we have no other way of ensuring

that Zfe}-u(f)oz(f)[?(f) = 2 rer (f)a(f)B(f). Before stating the result we give

the following definition.

Definition 9.1. For F a sublattice of 7 XU x V let Fli, = {u € U : (t,u,v) € F},

foreacht € T,v € V.

Lemma 9.2. Suppose F is a sublattice of some product lattice T x U X V and
i, a, B are non-negative functions defined on F, with p log-supermodular on F and

a increasing on F. If we have the further conditions,
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(1) for allt; > t, € T, v €V with Flyy o # 0 and Fl, 0 # 0,

min t V) > max to, u,v
uefltluﬁ( bt ) uGFItzuﬂ( 2 )

(2) Flowy = Fliw, for allt € T, v1,v2 € V with Fliw, # 0 and Flio, £ 0,
(3) #f (t,u,v1) 2 (t,u,v2) € F then (t, u,v1) > B(t,u,va),
(4) p(t u,v) = p(t, w)pa(t, v) for some py, pa,

(5) @ is constant on {t} X Fliw x {v} for allt € T,v €V,

then the FKG-inequality holds. That is,

S (el ) S wHBE) <3 wlf) D ulhalH)BE).

feF fer ferF fer

Let us informally discuss these conditions. As described earlier, the idea is to
“average out” the deviations of § over the U-coordinate. Note that conditions (1)
and (3) imply that 3 is increasing in the 7- and V-coordinates, so we just need to
perform the average in a way that preserves this monotonicity. Condition (1) means
that for each t € 7, v € V with F|;, non-empty we can find a closed interval I,
of R such that §(t,u,v) € I, for all u € F|;, and the interval I, , is entirely to
the right of the interval I, , in R if {; > t5 in 7. (Note that we assume nothing on
the ordering of intervals I, ,, and I, ,, for v; # v;.) So, for each t € T,v € V with
F|t,» non-empty, we can average 3 over {t} x Fl;, x {v} to obtain a new function

3 defined as a weighted average

Zue}'h,v ’\(t7 u, ’U)ﬁ(t, u, U)
> ueFl, AE U, v)

Blt,u,v) =

and condition (1) ensures that this 3 is increasing in the 7-coordinate. By con-
struction, 3 is constant on F ltn for all t € T,v € V, so we just need to ensure B
is increasing in the V-coordinate. One way of achieving this is to take the same

weights A for different v € V, that is, to assume ) is just a function of ¢ and u, and
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to assume conditions (2) and (3). Then the function

Zue.ﬂt,v )‘(t> U)ﬂ(t, u, U)
Eueflt,v ’\(ta u)

will be increasing in the V-coordinate. Finally, we assume condition (4) on u so that

B(t, u,v) =

we can find an appropriate weight A(f,u) that ensures that the sums .. » u(f) B(f)
and > .. pu(f)B(f) are equal. (We will see that this weight A(t, u) should be the

factor py(t,u).) We assume condition (5) which, with condition (4), ensures that

the sums 3 u()a(£)B(f) and 5 ez () £)B(S) ave equal.

These conditions may seem rather arbitrary, and it is reasonable to ask whether
we can find examples of lattices and functions satisfying them. We will show later
in this chapter, that the lattice of level functions studied in the previous chapter,
with some familiar functions, do satisfy the conditions of Lemma 9.2 and this will

enable us to give an alternative proof of one of the cases of Theorem 8.4.

Before proving Lemma 9.2, we state some corollaries, which are special cases
of the lemma and follow immediately by interpreting conditions (1)—(5) for the
particular case. If F is the whole lattice 7 x U x V, then we have the following,

since Flyy =U forallt e T,v € V.

Corollary 9.3. Suppose F is a product lattice F =T XU x V and p, o, 3 are non-
negative functions defined on F, with p log-supermodular on F and o increasing on

F. If we have the further conditions,

(1) forallty >t, € T,vEY,
min §(t1,u,v) 2 max f(tz, u, v),
(2) if (t,u,v1) > (t,u,v2) € F then B(t,u,v1) = B(t, u,v2),

(3) u(t,u,v) = pa(t, w)pa(t, v) for some pi, pa,

(4) « is constant on {t} x U x {v} for alit€ T,v €V,
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then the FKG-inequality holds. That is,

Do wHalH) D wHBE) <3 ulf) Y u(Ha(H)B). O

JeF feF feF feF

Also as a corollary to Lemma 9.2 is the case where V is a single element, so that
T XU x V can be thought of as the product T x U. For F a sublattice of T x U,
write F|; for the set {u € U : (t,u) € F}.

Corollary 9.4. Suppose F is a sublattice of some product lattice T x U and p, o, 8
are non-negative functions defined on F, with p log-supermodular on F and o in-

creasing on F. If we have the further conditions,

(1) for allty >ty € T with Fl;, # @ and Fly, # 0,

min G(t1,u) > max B(tz, u),
u€F |ty u€Fley

(2) o is constant on {t} x F|; for allt € T,

then the FKG-inequality holds. That is,

ST uBaH) Y wHBE) < S u(h) Y ulf)al)B). O

feF fer feF feF

Note that the case of F being the whole lattice 7 x is the special case informally
described at the beginning of the chapter. For completeness, we state the formal

result here.

Corollary 9.5. Suppose F is a product lattice F = T x U and p,c, 3 are non-
negative functions defined on F, with u log-supermodular on F and o increasing on

F. If we have the further conditions,

(1) fO’I" allty >ty € T,

i > ta,u),
min B(t1, u) > max f(t, u)

(2) a is constant on {t} xU for allt € T,
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then the FKG-inequality holds. That is,

ST w8 < S S w(Ha(f)B(). 0

ferF JeF feF feF

We now give the proof of Lemma 9.2.

Proof. Define
Bt = Y meastun) [ Y it 02)
UEFls 0 UEF s,
for all t € T,v € V with F|,, # 0. We can think of 3 as a function on F, by
defining B(t, u, v) = B(t,v) for all (t,u,v) € F. We have that 3 is increasing on F,
as follows. For (t1,u,v) > (t2,u,v) € F, so that Fls, , # 0 and F|,,, # 0, we have

tla Z H1 tl’ tlyu)v)/ Z :ul(tlau)

’Uaej'.ltl v UG-Flt]_,v
> min t1,u,v) > max [(fz,u,v 1
UE}_Itl v ,8( ! ) ’U;E}.Itz v IB( 2 ) by ( )

> Z l»"l(t%u)ﬁ(t%u)v)/ Z M1(t2,’t&)’—=3(t2,’v).

uEFlty0 uEF|ty,v
For (t,u,v1) > (t,u,v2) € F,sothat Fli, 7 0and Fl,, # 0, we have Fl; o, = Fliu
by (2). So,

Beod = ¥ mwdu) /[ ¥ e

uEFt, vy ue}-lt.ul

= Z Mltu)ﬂtuvl/ Z Nl(t,u)

uEF|t,ug uEF |ty

> 3 et [ Y ) = A

uef't,uz uej:lt,‘vz

where the inequality follows from (3). Since 8 is, by definition, independent of the

U-coordinate, and increasing in the 7- and V-coordinates it is increasing on F.

So, o and 3 are increasing on F and p is log-supermodular and we can apply

the FKG-inequality, giving

S uNelh) S wHBE) < SN Y wHe(HB)

ferF feF feF feF
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It just remains to show that the sums 3. - u(£)B(f) and Yo feF u(Ha(f)B(f) are
equal to the sums 3. - u(f)B(f) and Zfefu(f)a(f)ﬂ(f).

We have

Z U(tvu”u):é(t’v)= Z Z l"l(tau)“2(t>v)5(tav) by (4)

(t,u,w)eEF (tW)ET XV ueFlt,y
}-It,v#@

= Z pa(t, v) ﬂtv)z,ultu)

(t;l)e'];;av UE.'Flt v
tv

= > m(tv) Y mtwbtuv) by (9.2)

(tw)eT xV UEF |t v
-7'-|t v?é

= Z M(t, u, 'U)ﬁ(t’ u, /U)'

(tyu,v)EF
By (5), we can view « as a function a(t,v) of just the 7- and V-coordinates, so we
have
Z p(t, u, v)alt, v)B(t, v) Z Z pia (8, w) pa(t, v)a(t, v) B(t, )

(tuw)eF (t,v)€T XV u€F|t,v
f'tnﬁéw

= Y mtvatv) [Atv) Y mtu)
#v)ET XY wEF|t,v
flt,u#@

= Z uz(t,v)a(t,v) Z /J‘l(t7u):6(tauav)
(tV)ET XV u€F|t,u
flt,v’)ém

St uv)aft v)8(Ew,v)

(tiuv)eF

which completes the proof. 0

We finish by using the above results to give an alternative proof to Theorem 8.4
in the case where the trees 77 and T differ by one element m, a leaf of 75, and the
upper cover of m is not a leaf in 77. Recall in the earlier proof, that in this case we

did not use the FKG-inequality to show that the sequence dy/cy is increasing.

Alternative proof of a case of Theorem 8.4. Let T} and T3 be binary trees
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with Tp = Ty \ {m} for some leaf m of T;. We will show that

AR ()  A®(n)
CP(n) ~ CP(n)

As in chapter 8 we work with a lattice of level functions. Let ! be the upper
cover of m and let m; be the lower cover of [ that is different from m. Recall that
D(my) is the set of all elements in 77 that are below m;. We work with the lattice
of level functions F(n; Ty \ D(m,)). Let h be the height of D[m,] = D(my) U {m;},
and let F' be the sublattice 7' = {f € F(n;T1 \ D(my)) : f(my) > h}. As before,
we have a log-supermodular function u on F’ defined as

z>y, an edge yeTI\D(m,),
in Th\D(m1) y has 2 lower
covers, 21,22

Let a(f) = I{f(lr,) = n} and let B(f) = 211 (0 — 1)/(p - 1).

Note that, since h is the height of D[m,}, any embedding 9 of T; into T} must
map m; into level A or higher. This means that the level function g corresponding
to ¥ has g(my) = h, so g restricted to the set 71 \ D(my) is in F’. That is, the
restriction of any embedding of T} into T} to the set 77 \ D(m,) yields an embedding

of Ty \ D(m,) into T} that corresponds to some level function in F'.

Conversely, for each embedding ¢ of T1 \ D(m;) into T that corresponds to
f € F', we can construct A = A(D”[)ml](f(mﬂ) embeddings ¢; fori=1,...,Aof T}
into T}, as follows. Write 6;,7=1,..., A for the distinct embeddings of D{m,] into
7] (1) that map m; to 1 fmy)- Since ¢(my) is an element in level f(m,) of Ty, the
down-set of ¢(m,) is a copy of T So, for z € Ty \ D(my), define ¢;(z) = ¢(z),
and for r € D(m;) define ¢;(z) to be the element in this copy of 7™ that
corresponds the the element 6;(z). We have that ¢; is an embedding of T into T},
and the 1; are all distinct. Since there are p(f) embeddings of 77 \ D(m;) into T
that correspond to f we have a total of u( f)Ag?ml]( f(my)) distinct embeddings of
T; into T} for each f € F. Therefore, C'Q(fl’) (n) = X ser B( f)Ag?m,]( f(my)).
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Notice that, since {f,9} = {f A g,f V g} for all f,g € F, we have

AR (Fm) AR (9(my)) = AB)(f A g)(ma)AZY, ((F V 9)(mn))

s0 that the function p/(f) = p(f)A%) Dimy) (f (M1)) is also log-supermodular on ', and

we have

=S W), AP =Y Kl

feF feF
We now show

COm) =" W(HB(),  ADm) =" w(HalH)B),

feF feF

as follows.

As before, the restriction of any embedding of T; into T} to the set Ty \ D(m;)
yields an embedding of T3 \ D(m;) that corresponds to some level function in F. We
show that for each f € F’, we can construct u'(f)G(f) embeddings of T into T;;'. For
each f € F’ we can construct 4'(f) embeddings of 7) into T using the construction
described above. Let ¢ be such an embedding. We construct an embedding v of T5
into T by setting ¥(x) = ¢(x) for all z € Tj, and choosing an element of T for
¥(m). We require 1(m) to be below 9(l) but incomparable with 1(m;) and since
P(l) = ¢() is in level f(I) of T} and ¢(m1) = ¢(my) is in level f(m;) we have
a choice of ng}('"lll)(p“' —1)/(p — 1) = B(f) elements for ¥(m). Note that by the
regularity of 7' the number of places only depends on the level function and not
the exact positions of ¢(l) and ¢(m;). See Figure 9.1, for an example where p = 2,

f() = 5 and f(m;) = 2. Clearly each choice defines a different embedding of T3
into T3, so the total number of embeddings of T3 into T is > rer W(FB(f).

Furthermore, if we have f € F’ with f(17,\p(m;)) = 7, the construction yields an

embedding that maps the root 1, = 11\ p(m,) of T2 to the root 1, of 17 Therefore,
we have A (n) = 5= e ' (£)a(£)B(S), as claimed.

It remains to show the inequality (9.1). We would like to apply the FKG-

inequality, but the function § is not increasing. However, we see that the dominant
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Figure 9.1: The number of places to map m is 8(f) = Z{S}("nlu)(p" ~-1)/(p—-1)

term in the sum Z{f}(_,il)(pi —1)/(p — 1) is the last term; moreover, it is larger

than the sum of all the previous terms. This means that if we have f,g € F' with
f(1) > g(1) then B(f) = B(g) whatever the values of f(m1) and g(m,). This appears
very similar to condition (1) of Lemma 9.2 and we now show that we can apply the

lemma.

Suppose ! is not the root of 7. Let 7 X U X V be the product lattice [n] X [n] x
F(n;Ty \ D[I]). So an element (Z,u,v) is a triple whose first two coordinates are
elements in [n], and the third is a level function of T; \ Dl]. Let k be the upper
cover of I, and recall that h is the height of D{m,]. Consider the following sublattice
{(t,u,v) €T xU xV:v(k) >t>u>h}of T xU x V. For each element (¢, u,v)
in this sublattice we can define a function f : Ty \ D(m,;) — R as

(v(:x;) for x € T1 \ D[l},

f(x)-_—ﬁt for x =1,

ku for x = m;y.

and since v(k) > t > u > h we have f(k) > f(I) > f(m1) > h which means

that f is in F’. Conversely, for each level function f € F’ we can define a triple



CHAPTER 9. FKG-TYPE INEQUALITIES FOR PRODUCT LATTICES 178

(t,u,v) T xU XV by

t= f(I),
U= f(ml)a
v = flr\op,

and since v(k) >t > u > h, by definition, we have that (t,u,v) is in the sublattice

{t,u,v) €T xUXV :v(k)>t>u>h}.

So, we can think of F' as a sublattice of product lattice 7 x U X V by considering
f as the triple (f(!), f(m1), flm\pp;). The functions ', @ and B are non-negative
functions of F’, and p/' is log-supermodular on F’, and « is increasing on F’, so we

need to check that conditions (1)-(5) hold in order to apply Lemma 9.2.

For t € T and v € V, the set F'|;, is non-empty when v(k) > ¢t > h and in this
case we have F'|;, = {h,h+1,...,t—1}. We have 3(t,u,v) = ' (o' —1)/(p—1).

Suppose t1 > t2 € [n], v € F(n; 71 \ D[I]) with v(k) > t; > h and v(k) > t2 > h.

Then, since ¢t; —1 > ¢ and p > 2, we have
t1—1 t1—-1

e Do -D/p-1)= 3 &' -1/p-1)

=" -1)/(p-1)

> (p” - 1)/(p- 1)’

t2—1 t2-1
=Y v/p-1)2 P -
2 P12 ) 2 - D/

which means that condition (1) holds. Suppose we have t € [n], v1,v2 € F(n; T1 \
D[l]) with v1(k) >t > h and va(k) >t > h. Then F'|s0, = {h,...,t — 1} = F'|1,
so condition (2) holds. Since (¢, u, v) is not dependent on v we have condition (3).

Using the definition of u(f) on F’, we have

>y, an edge yeN\D(m1),
in T1\D(m1) y has 2 lower
Covers, 21,22

Consider the contribution of the element m; in the above expression. There is a

factor of pfW=f(m1) which appears in the first product because of the edge [ > m;.
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There is no contribution to the second product since m, is not the lower cover of an
element that has two lower covers (that is, [ does not have two lower covers). So,
we can write the above as

p(f) = pf(l)—f(ml)pn—-f(lrl) H pf(z)—f(y) H (1- pmaX{f(21),f(zz)}—f(y))

z>y, an edge y€T\D[m,],
in T3\D[m1] y has 2 lower
covers, 21, 22

= pim) [pf(l)pn—f(lrl) [[ po® [ @-pe=tes-w))

x>y, an edge yeh \D[ml],
in T1\D{ma] ¢ has 2 lower
covers, 21, 22

Note the change in the subscript in the products to Ty \ D[m;]. So, writing ¢t = (1),
u = f(mi), v = fln\p, we have u(t,u,v) = p~™ua(t, v) since the term in square
brackets depends only on ¢ and v. Since p/(t,u,v) = /,L(t,u,v)A(gEml](u), we have
Wt u,v) = pa(t, w)pe(t,v), where p;(t,u) = p‘“A%’fml](u) is a function just of u.
Therefore condition (4) holds. Finally, we note that a(t,u,v) = I{v(ly,) = n} is

not dependent on u, and so condition (5) holds, and applying Lemma 9.2 gives the

result.

Recall that we assumed that [ was not the root of T;. In the case where it
is, then things simplify greatly, and the product lattice 7 x U x V reduces to
the product 7 x U = [n] x [n]. The tree T3 \ D(m,) is simply the 2-element
chain | > m;. We can think of the lattice of level functions F' as the sublattice
{(t,u) € T xU :t > u > h} of T xU = [n] x [n] by considering a function
f € F' as the pair (f(1), f(m1)). We want to apply Corollary 9.4 so we need to
check conditions (1) and (2) hold. Since F'); is equal to {h,h+1,...,t=1}ift > h

and empty otherwise, and B(t,u) = Y_;_,(¢' — 1)/(p — 1) we have that if ¢, > &,
then
ti-l ta—1
I f—1 -1 > ‘1 -1
A CEDEN. FOBLELIEES

exactly as before, so condition (1) holds. Also, the function a(t,u) = I{t = n} is
independent of u so condition (2) holds, and we can apply Corollary 9.4 which gives

the result. O
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