54,233 research outputs found

    Exotic Compact Objects and How to Quench their Ergoregion Instability

    Full text link
    Gravitational-wave astronomy can give us access to the structure of black holes, potentially probing microscopic or even Planckian corrections at the horizon scale, as those predicted by some quantum-gravity models of exotic compact objects. A generic feature of these models is the replacement of the horizon by a reflective surface. Objects with these properties are prone to the so-called ergoregion instability when they spin sufficiently fast. We investigate in detail a simple model consisting of scalar perturbations of a Kerr geometry with a reflective surface near the horizon. The instability depends on the spin, on the compactness, and on the reflectivity at the surface. The instability time scale increases only logarithmically in the black-hole limit and, for a perfectly reflecting object, this is not enough to prevent the instability from occurring on dynamical time scales. However, we find that an absorption rate at the surface as small as 0.4% (reflectivity coefficient as large as ∣R∣2=0.996|{\cal R}|^2=0.996) is sufficient to quench the instability completely. Our results suggest that exotic compact objects are not necessarily ruled out by the ergoregion instability.Comment: v3: 14 pages, 9 figures; further clarifications added, new appendix on the superspinar case, results unchanged. Accepted in Phys. Rev.

    An instability of unitary quantum dynamics

    Get PDF
    Instabilities of equilibrium quantum mechanics are common and well-understood. They are manifested for example in phase transitions, where a quantum system becomes so sensitive to perturbations that a symmetry can be spontaneously broken. Here, we consider the possibility that the time evolution governing quantum dynamics may be similarly subject to an instability, at which its unitarity spontaneously breaks down owing to an extreme sensitivity towards perturbations. We find that indeed such an instability exists, and we explore its immediate consequences. Interpretations of the results both in terms of extreme sensitivity to the influence of environmental degrees of freedom, and in terms of a possible fundamental violation of unitarity are discussed.Comment: 11 pages, 2 figures; Conference proceedings DICE 201

    Casimir repulsion between metallic objects in vacuum

    Full text link
    We give an example of a geometry in which two metallic objects in vacuum experience a repulsive Casimir force. The geometry consists of an elongated metal particle centered above a metal plate with a hole. We prove that this geometry has a repulsive regime using a symmetry argument and confirm it with numerical calculations for both perfect and realistic metals. The system does not support stable levitation, as the particle is unstable to displacements away from the symmetry axis.Comment: 4 pages, 4 figures; added references, replaced Fig.

    The Lagrangian description of aperiodic flows: a case study of the Kuroshio Current

    Get PDF
    This article reviews several recently developed Lagrangian tools and shows how their combined use succeeds in obtaining a detailed description of purely advective transport events in general aperiodic flows. In particular, because of the climate impact of ocean transport processes, we illustrate a 2D application on altimeter data sets over the area of the Kuroshio Current, although the proposed techniques are general and applicable to arbitrary time dependent aperiodic flows. The first challenge for describing transport in aperiodical time dependent flows is obtaining a representation of the phase portrait where the most relevant dynamical features may be identified. This representation is accomplished by using global Lagrangian descriptors that when applied for instance to the altimeter data sets retrieve over the ocean surface a phase portrait where the geometry of interconnected dynamical systems is visible. The phase portrait picture is essential because it evinces which transport routes are acting on the whole flow. Once these routes are roughly recognised it is possible to complete a detailed description by the direct computation of the finite time stable and unstable manifolds of special hyperbolic trajectories that act as organising centres of the flow.Comment: 40 pages, 24 figure

    Dynamics of the Innermost Accretion Flows Around Compact Objects: Magnetosphere-Disc Interface, Global Oscillations and Instabilities

    Full text link
    We study global non-axisymmetric oscillation modes and instabilities in magnetosphere- disc systems, as expected in neutron star X-ray binaries and possibly also in accreting black hole systems. Our two-dimensional magnetosphere-disc model consists of a Keplerian disc in contact with an uniformly rotating magnetosphere with low plasma density. Two types of global overstable modes exist in such systems, the interface modes and the disc inertial-acoustic modes. We examine various physical effects and parameters that influence the properties of these oscillation modes, particularly their growth rates, including the magnetosphere field configuration, the velocity and density contrasts across the magnetosphere-disc interface, the rotation profile (with Newtonian or General Relativistic potential), the sound speed and magnetic field of the disc. The interface modes are driven unstable by Rayleigh-Taylor and Kelvin-Helmholtz in- stabilities, but can be stabilized by the toroidal field (through magnetic tension) and disc differential rotation (through finite vorticity). General relativity increases their growth rates by modifying the disc vorticity outside the magnetosphere boundary. The interface modes may also be affected by wave absorption associated with corotation resonance in the disc. In the presence of a magnetosphere, the inertial-acoustic modes are effectively trapped at the innermost region of the relativistic disc just outside the interface. They are driven unstable by wave absorption at the corotation resonance, but can be stabilized by modest disc magnetic fields. The overstable oscillation modes studied in this paper have characteristic properties that make them possible candidates for the quasi-periodic oscillations observed in X-ray binaries.Comment: 18 pages, 9 figures, MNRAS accepte

    Dynamics of a linear magnetic "microswimmer molecule"

    Full text link
    In analogy to nanoscopic molecules that are composed of individual atoms, we consider an active "microswimmer molecule". It is built up from three individual magnetic colloidal microswimmers that are connected by harmonic springs and hydrodynamically interact with each other. In the ground state, they form a linear straight molecule. We analyze the relaxation dynamics for perturbations of this straight configuration. As a central result, with increasing self-propulsion, we observe an oscillatory instability in accord with a subcritical Hopf bifurcation scenario. It is accompanied by a corkscrew-like swimming trajectory of increasing radius. Our results can be tested experimentally, using for instance magnetic self-propelled Janus particles, supposably linked by DNA molecules.Comment: 6 pages, 8 figure

    Observable Properties of Orbits in Exact Bumpy Spacetimes

    Get PDF
    We explore the properties of test-particle orbits in "bumpy" spacetimes - stationary, reflection-symmetric, asymptotically flat solutions of Einstein equations that have a non-Kerr (anomalous) higher-order multipole-moment structure but can be tuned arbitrarily close to the Kerr metric. Future detectors should observe gravitational waves generated during inspirals of compact objects into supermassive central bodies. If the central body deviates from the Kerr metric, this will manifest itself in the emitted waves. Here, we explore some of the features of orbits in non-Kerr spacetimes that might lead to observable signatures. As a basis for this analysis, we use a family of exact solutions proposed by Manko & Novikov which deviate from the Kerr metric in the quadrupole and higher moments, but we also compare our results to other work in the literature. We examine isolating integrals of the orbits and find that the majority of geodesic orbits have an approximate fourth constant of the motion (in addition to the energy, angular momentum and rest mass) and the resulting orbits are tri-periodic to high precision. We also find that this fourth integral can be lost for certain orbits in some oblately deformed Manko-Novikov spacetimes. However, compact objects will probably not end up on these chaotic orbits in nature. We compute the location of the innermost stable circular orbit (ISCO) and find that the behavior of orbtis near the ISCO can be qualitatively different depending on whether the ISCO is determined by the onset of an instability in the radial or vertical direction. Finally, we compute periapsis and orbital-plane precessions for nearly circular and nearly equatorial orbits in both the strong and weak field, and discuss weak-field precessions for eccentric equatorial orbits.Comment: 42 pages, 20 figures, accepted by Phys. Rev. D, v2 has minor changes to make it consistent with published versio

    Anisotropic stars as ultracompact objects in General Relativity

    Full text link
    Anisotropic stresses are ubiquitous in nature, but their modeling in General Relativity is poorly understood and frame dependent. We introduce the first study on the dynamical properties of anisotropic self-gravitating fluids in a covariant framework. Our description is particularly useful in the context of tests of the black hole paradigm, wherein ultracompact objects are used as black hole mimickers but otherwise lack a proper theoretical framework. We show that: (i) anisotropic stars can be as compact and as massive as black holes, even for very small anisotropy parameters; (ii) the nonlinear dynamics of the 1+1 system is in good agreement with linearized calculations, and shows that configurations below the maximum mass are nonlinearly stable; (iii) strongly anisotropic stars have vanishing tidal Love numbers in the black-hole limit; (iv) their formation will usually be accompanied by gravitational-wave echoes at late times.Comment: 7+2 pages, 6 figures; v2: include extra material (general covariant framework for anisotropic fluids in General Relativity without symmetries and code validation); to appear in PR

    Deterministic Chaos in Quantum Field Theory

    Full text link
    We discuss the necessity and demonstrate the validity of introduction the notion of deterministic chaos in quantum field theory. Brief review of the existing approaches to this problem is given. We compare proposed chaos criterion for quantum fields with existing ones. Its consequences in particle physics are also discussed
    • …
    corecore