299 research outputs found

    Dominating sets in projective planes

    Get PDF
    We describe small dominating sets of the incidence graphs of finite projective planes by establishing a stability result which shows that dominating sets are strongly related to blocking and covering sets. Our main result states that if a dominating set in a projective plane of order q>81q>81 is smaller than 2q+2[q]+22q+2[\sqrt{q}]+2 (i.e., twice the size of a Baer subplane), then it contains either all but possibly one points of a line or all but possibly one lines through a point. Furthermore, we completely characterize dominating sets of size at most 2q+q+12q+\sqrt{q}+1. In Desarguesian planes, we could rely on strong stability results on blocking sets to show that if a dominating set is sufficiently smaller than 3q, then it consists of the union of a blocking set and a covering set apart from a few points and lines.Comment: 19 page

    The tangent splash in \PG(6,q)

    Full text link
    Let B be a subplane of PG(2,q^3) of order q that is tangent to ℓ∞\ell_\infty. Then the tangent splash of B is defined to be the set of q^2+1 points of ℓ∞\ell_\infty that lie on a line of B. In the Bruck-Bose representation of PG(2,q^3) in PG(6,q), we investigate the interaction between the ruled surface corresponding to B and the planes corresponding to the tangent splash of B. We then give a geometric construction of the unique order-qq-subplane determined by a given tangent splash and a fixed order-qq-subline.Comment: arXiv admin note: substantial text overlap with arXiv:1303.550

    Non-intersecting Ryser hypergraphs

    Full text link
    A famous conjecture of Ryser states that every rr-partite hypergraph has vertex cover number at most r−1r - 1 times the matching number. In recent years, hypergraphs meeting this conjectured bound, known as rr-Ryser hypergraphs, have been studied extensively. It was recently proved by Haxell, Narins and Szab\'{o} that all 33-Ryser hypergraphs with matching number ν>1\nu > 1 are essentially obtained by taking ν\nu disjoint copies of intersecting 33-Ryser hypergraphs. Abu-Khazneh showed that such a characterisation is false for r=4r = 4 by giving a computer generated example of a 44-Ryser hypergraph with ν=2\nu = 2 whose vertex set cannot be partitioned into two sets such that we have an intersecting 44-Ryser hypergraph on each of these parts. Here we construct new infinite families of rr-Ryser hypergraphs, for any given matching number ν>1\nu > 1, that do not contain two vertex disjoint intersecting rr-Ryser subhypergraphs.Comment: 8 pages, some corrections in the proof of Lemma 3.6, added more explanation in the appendix, and other minor change

    The Class of Non-Desarguesian Projective Planes is Borel Complete

    Get PDF
    For every infinite graph Γ\Gamma we construct a non-Desarguesian projective plane PΓ∗P^*_{\Gamma} of the same size as Γ\Gamma such that Aut(Γ)≅Aut(PΓ∗)Aut(\Gamma) \cong Aut(P^*_{\Gamma}) and Γ1≅Γ2\Gamma_1 \cong \Gamma_2 iff PΓ1∗≅PΓ2∗P^*_{\Gamma_1} \cong P^*_{\Gamma_2}. Furthermore, restricted to structures with domain ω\omega, the map Γ↦PΓ∗\Gamma \mapsto P^*_{\Gamma} is Borel. On one side, this shows that the class of countable non-Desarguesian projective planes is Borel complete, and thus not admitting a Ulm type system of invariants. On the other side, we rediscover the main result of [15] on the realizability of every group as the group of collineations of some projective plane. Finally, we use classical results of projective geometry to prove that the class of countable Pappian projective planes is Borel complete
    • …
    corecore