40,349 research outputs found

    On Policies for Single-leg Revenue Management with Limited Demand Information

    Full text link
    In this paper we study the single-item revenue management problem, with no information given about the demand trajectory over time. When the item is sold through accepting/rejecting different fare classes, Ball and Queyranne (2009) have established the tight competitive ratio for this problem using booking limit policies, which raise the acceptance threshold as the remaining inventory dwindles. However, when the item is sold through dynamic pricing instead, there is the additional challenge that offering a low price may entice high-paying customers to substitute down. We show that despite this challenge, the same competitive ratio can still be achieved using a randomized dynamic pricing policy. Our policy incorporates the price-skimming technique from Eren and Maglaras (2010), but importantly we show how the randomized price distribution should be stochastically-increased as the remaining inventory dwindles. A key technical ingredient in our policy is a new "valuation tracking" subroutine, which tracks the possible values for the optimum, and follows the most "inventory-conservative" control which maintains the desired competitive ratio. Finally, we demonstrate the empirical effectiveness of our policy in simulations, where its average-case performance surpasses all naive modifications of the existing policies

    airline revenue management

    Get PDF
    With the increasing interest in decision support systems and the continuous advance of computer science, revenue management is a discipline which has received a great deal of interest in recent years. Although revenue management has seen many new applications throughout the years, the main focus of research continues to be the airline industry. Ever since Littlewood (1972) first proposed a solution method for the airline revenue management problem, a variety of solution methods have been introduced. In this paper we will give an overview of the solution methods presented throughout the literature.revenue management;seat inventory control;OR techniques;mathematical programming

    An enhanced concave program relaxation for choice network revenue management

    Get PDF
    The network choice revenue management problem models customers as choosing from an offer set, and the firm decides the best subset to offer at any given moment to maximize expected revenue. The resulting dynamic program for the firm is intractable and approximated by a deterministic linear program called the CDLP which has an exponential number of columns. However, under the choice-set paradigm when the segment consideration sets overlap, the CDLP is difficult to solve. Column generation has been proposed but finding an entering column has been shown to be NP-hard. In this paper, starting with a concave program formulation called SDCP that is based on segment-level consideration sets, we add a class of constraints called product constraints (σPC), that project onto subsets of intersections. In addition we propose a natural direct tightening of the SDCP called ESDCPκ, and compare the performance of both methods on the benchmark data sets in the literature. In our computational testing on the benchmark data sets in the literature, 2PC achieves the CDLP value at a fraction of the CPU time taken by column generation. For a large network our 2PC procedure runs under 70 seconds to come within 0.02% of the CDLP value, while column generation takes around 1 hour; for an even larger network with 68 legs, column generation does not converge even in 10 hours for most of the scenarios while 2PC runs under 9 minutes. Thus we believe our approach is very promising for quickly approximating CDLP when segment consideration sets overlap and the consideration sets themselves are relatively small

    Stochastic programming for multiple-leg network revenue management

    Get PDF
    Airline seat inventory control is a very profitable tool in the airline industry. Mathematical programming models provide booking limits or bid-prices for all itineraries and fare classes based on demand forecasts. But the actual revenue generated in the booking process fails to meet expectations. Simple deterministic models based on expected demand generate better revenue than more advanced probabilistic models. Recently suggested models put even more effort into demand forecasting. We will show that the dynamic booking process rather than the demand forecasts needs to be addressed. In particular the nesting strategies applied in booking control will counter-effect the profitability of advanced estimation of booking limits and bid-prices.simulation;revenue management;mathematical programming

    Airline Revenue Management with Shifting Capacity

    Get PDF
    Airline revenue management is the practice of controlling the booking requests such that the planes are filled with the most profitable passengers. In revenue management the capacities of the business and economy class sections of the plane are traditionally considered to be fixed and distinct capacities. In this paper, we give up this notion and instead consider the use of convertible seats. A row of these seats can be converted from business class seats to economy class seats and vice versa. This offers an airline company the possibility to adjust the capacity configuration of the plane to the demand pattern at hand. We show how to incorporate the shifting capacity opportunity into a dynamic, network-based revenue management model. We also extend the model to include cancellations and overbooking. With a small test case we show that incorporating the shifting capacity opportunity into the revenue management decision indeed provides a means to improve revenues.convertible seats;dynamic capacity management;revenue management;seat inventory control;shifting capacity

    A Stochastic Dynamic Programming Approach to Revenue Management in a Make-to-Stock Production System

    Get PDF
    In this paper, we consider a make-to-stock production system with known exogenous replenishments and multiple customer classes. The objective is to maximize profit over the planning horizon by deciding whether to accept or reject a given order, in anticipation of more profitable future orders. What distinguishes this setup from classical airline revenue management problems is the explicit consideration of past and future replenishments and the integration of inventory holding and backlogging costs. If stock is on-hand, orders can be fulfilled immediately, backlogged or rejected. In shortage situations, orders can be either rejected or backlogged to be fulfilled from future arriving supply. The described decision problem occurs in many practical settings, notably in make-to-stock production systems, in which production planning is performed on a mid-term level, based on aggregated demand forecasts. In the short term, acceptance decisions about incoming orders are then made according to stock on-hand and scheduled production quantities. We model this problem as a stochastic dynamic program and characterize its optimal policy. It turns out that the optimal fulfillment policy has a relatively simple structure and is easy to implement. We evaluate this policy numerically and find that it systematically outperforms common current fulfillment policies, such as first-come-first-served and deterministic optimization.revenue management;advanced planning systems;make-to-stock production;order fulfillment

    airline revenue management

    Get PDF
    With the increasing interest in decision support systems and the continuous advance of computer science, revenue management is a discipline which has received a great deal of interest in recent years. Although revenue management has seen many new applications throughout the years, the main focus of research continues to be the airline industry. Ever since Littlewood (1972) first proposed a solution method for the airline revenue management problem, a variety of solution methods have been introduced. In this paper we will give an overview of the solution methods presented throughout the literature

    Changes to the Tax Exclusion of Employer-Sponsored Health Insurance Premiums: A Potential Source of Financing for Health Reform

    Get PDF
    Examines eight options for limiting the tax exclusion of employer-sponsored health insurance premiums. Compares, by income level, estimated effects of various caps and indices on tax revenues and after-tax incomes in the first year and over ten years

    An enhanced concave program relaxation for choice network revenue management

    Get PDF
    The network choice revenue management problem models customers as choosing from an offer-set, and the firm decides the best subset to offer at any given moment to maximize expected revenue. The resulting dynamic program for the firm is intractable and approximated by a deterministic linear program called the CDLP which has an exponential number of columns. However, under the choice-set paradigm when the segment consideration sets overlap, the CDLP is difficult to solve. Column generation has been proposed but finding an entering column has been shown to be NP-hard. In this paper, starting with a concave program formulation based on segment-level consideration sets called SDCP, we add a class of constraints called product constraints, that project onto subsets of intersections. In addition we propose a natural direct tightening of the SDCP called ?SDCP, and compare the performance of both methods on the benchmark data sets in the literature. Both the product constraints and the ?SDCP method are very simple and easy to implement and are applicable to the case of overlapping segment consideration sets. In our computational testing on the benchmark data sets in the literature, SDCP with product constraints achieves the CDLP value at a fraction of the CPU time taken by column generation and we believe is a very promising approach for quickly approximating CDLP when segment consideration sets overlap and the consideration sets themselves are relatively small.discrete-choice models, network revenue management, optimization
    corecore