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1 Introduction

1.1. Revenue Management

Companies selling perishable goods or services often face the problem of selling a
fixed capacity of a product over a finite horizon. If the market is characterized by
customers willing to pay different prices for the product, it is often possible to target
different customer segments by the use of product differentiation. This creates the
opportunity to sell the product to different customer segments for different prices, e.g.
charging different prices at different points in time or offering a higher service level
for a higher price. In order to do so, decisions will have to be made about the prices to
charge and the number of products to reserve for each customer segment. Making this
kind of decisions is the topic of revenue management.

Revenue management can be defined as the art of maximizing profit generated
from a limited capacity of a product over a finite horizon by selling each product to
the right customer at the right time for the right price. It encompasses practices such
as price-discrimination and turning down customers in anticipation of other, more
profitable customers. Revenue management originates from the airline industry,
where deregulation of the fares in the 1970's led to heavy competition and the
opportunities for revenue management schemes were acknowledged in an early stage.
The airline revenue management problem has received a lot of attention throughout
the years and continues to be of interest to this day. Other applications of revenue
management can be found in the hotel, car rental, railway and cruise-line industries
among others. The possible applications of revenue management go beyond the
tourist industries, though. The energy and television broadcast industries have been
mentioned as possible applications and it has been argued that the concept of revenue

management can even be applied to fast moving consumer goods in supermarkets.

1.2.  Airline Revenue Management

An airline, typicaly, offers tickets for many origin-destination itineraries in various

fare classes. These fare classes not only include business and economy class, which



are settled in separate parts of the plane, but also include fare classes for which the
difference in fares is explained by different conditions for e.g. cancellation options or
overnight stay arrangements. Therefore the seats on a flight are products which can be
offered to different customer segments for different prices. Since the tickets for a
flight have to be sold before the plane takes off, the product is perishable and revenue
management can be applied.

At the heart of airline revenue management lies the seat inventory control
problem. This problem concerns the allocation of the finite seat inventory to the
demand that occurs over time before the flight is scheduled to depart. The objective is
to find the right combination of passengers on the flights such that revenues are
maximized. The optimal allocation of the seat inventory then has to be trandated into
a booking control policy, which determines whether or not to accept a booking
request when it arrives. It is possible that at a certain point in time it is more profitable
to reject a booking request in order to be able to accept a booking request of another
passenger at alater point in time.

Other important topics that have received attention in the revenue management
literature are demand forecasting, overbooking and pricing. Demand forecasting is of
critical importance in airline revenue management because booking control policies
make use of demand forecasts to determine the optimal booking control strategy. If an
airline uses poor demand estimates, this will result in a booking control strategy
which performs badly. Airlines often have to cope with no-shows, cancellations and
denied boardings. Therefore, in order to prevent a flight from taking off with vacant
seats, airlines tend to overbook a flight. This means that the airline books more
passengers on a flight than the capacity of the plane alows. The level of overbooking
for each type of passenger has been the topic of research for many years. Pricing is
obvioudly very important for the revenues of an airline company. In fact, price
differentiation is the starting point of the revenue management concept. Demand
forecasting, overbooking and pricing are, however, topics beyond the scope of this
paper. For an overview of the literature on these three topics we refer to McGill and
Van Ryzin (1999).



2. Seat Inventory Control

The seat inventory control problem in airline revenue management concerns the
allocation of the finite seat inventory to the demand that occurs over time. In order to
decide whether or not to accept a booking request, the opportunity costs of losing the
seats taken up by the booking have to be evaluated and compared to the revenue
generated by accepting the booking request. Solution methods for the seat inventory
control problem are concerned with approximating these opportunity costs and
incorporating them in a booking control policy such that expected future revenues are
maximized.

Solution methods for the seat inventory control problem should account for a
number of things. The stochastic nature of demand is one of them. Also, a booking
request that creates the highest possible revenue for the airline should never be
rejected whenever a seat is available, not even when the number of seats appointed to
this type of passenger by the booking control policy has been reached. In fact, any
passenger should be allowed to tap into the capacity reserved for any other lower
valued type of passenger. This is the concept of nesting and should be incorporated
into the booking control policy. Further, we make the distinction between single leg
and network seat inventory control and static and dynamic solution methods.

With single leg seat inventory control, every flight leg is optimized separately.
Network seat inventory control is aimed at optimizing the complete network of flight
legs offered by the airline ssmultaneously. Consider a passenger travelling from A to
C through B. That is, travelling from A to C using flight legs from A to B and from B
to C. If the single leg approach is used, this passenger can be rejected on one of the
flight legs because another passenger is willing to pay a higher fare on this flight leg.
But by regjecting this demand, the airline loses an opportunity to create revenue for the
combination of the two flight legs. If the other flight leg does not get full, it could
have been more profitable to accept the passenger to create revenue for both flight
legs. Hence, only the network approach takes into account the overall revenue that the
passenger creates from its origin to its final destination.

The distinction between static and dynamic solution methods is a second
partitioning that can be considered. Static solution methods generate an optimal
allocation of the seats at a certain point in time, typically the beginning of the booking
period, based on a demand forecast at that point in time. The actual booking requests



do, however, not arrive at one point in time but occur gradually over the booking
period. Therefore, a better solution method would be one that monitors the actual
demand and adjusts the booking control policy to it. This would be a dynamic
solution method.

In Section 3 we discus the single leg solution methods and in section 4 the
network solution methods to the seat inventory control problem. The solution methods
may vary with the set of assumptions made in each research, e.g. taking nesting or
network-effects into account or not. However, there are also some assumptions that all
of the researches discussed in this paper make use of. These assumptions are:

no cancellations or no-shows

independent demand between the booking classes

no demand recapturing

no batch booking

The first assumption simply states that no attention will go out to overbooking.
Usually the seat inventory control problem and overbooking are considered
separately, although integration of the two problems would be preferred and has been
given attention also. A consequence of the second assumption is that no information
on the actua demand process of one fare can be derived from the actual demand
process of another fare. We speak of demand recapturing when a low fare booking
request is turned into a higher fare booking request when the low fare class is not
available. This can occur when the products are not sufficiently differentiated. The
assumption that there is no demand recapturing implies that every customer has got a
strict preference for a certain fare class and that a denied request is lost forever. The
last assumption is that there are no batch bookings, which justifies looking at one
booking request at a time. Relaxation of these assumptions has been given attention.
However, in order to give a good impression of what is considered as the general seat
inventory control problem and its basic solution methods, we will not discuss this
here.

Finally, we would like to mention that the seat inventory control problem can
also be seen as a pricing problem. When the fare classes are well differentiated, they
are separate products. A pricing scheme can then be constructed for each fare class
and closing a fare class for future booking requests can be done artificialy by setting
the price sufficiently high. In our opinion, however, the decision whether to close a

fare class or not, can be represented by more straightforward formulations than that of



a pricing problem. Whenever the fare classes are not sufficiently differentiated, the
fare classes can be seen as different prices for the same product. Then a formulation
of the problem as a pricing problem is evident. In this paper, we will, however, not
consider this situation. Applications of pricing techniques to airline revenue
management can be found in Chatwin (2000), Feng and Gallego (1995, 2000), Feng
and Xiao (2000a, 2000b), Gallego and van Ryzin (1994, 1997), Kleywegt (2001),
You (1999) and Zhao and Zheng (2000) among others.

3. Single Leg Seat Inventory Control

In single leg seat inventory control, booking control policies for the various flight legs
are made independent of one another. There are two categories of single leg solution
methods; static and dynamic solution methods. In addition to the assumptions given in
the previous section, static single leg solution methods make use of the extra
assumption that booking requests come in sequentialy in order of increasing fare
level, i.e. low fare booking requests come in before high fare booking requests. This
means that the booking period can be divided into time-periods for which al booking
requests belong to the same fare class. In this case, booking control policies can be
based on the total demand for each fare class and do not explicitly have to consider
the actual arrival process. Brumelle and McGill (1993) show that under this
assumption a static solution method that limits the number of booking requests to
accept for each fare class is optima as long as no change in the probability
distributions of demand is foreseen. Dynamic solution methods do not assume a
specific arrival order of the booking requests. In this case, a booking control policy
based on the total demand for each fare class is no longer optimal, and dynamic
programming techniques are needed. In Section 3.1 we discuss the static solution

methods and in Section 3.2 the dynamic solution methods.



3.1. Static Solution Methods

Littlewood (1972) was the first to propose a solution method for the seat inventory
control problem for a single leg flight with two fare classes. The idea of his schemeis
to equate the marginal revenues in each of the two fare classes. He suggests closing
down the low fare class when the certain revenue from selling another low fare seat is
exceeded by the expected revenue of selling the same seat at the higher fare. That is,
low fare booking requests should be accepted as long as

f, 2 f,Pr(Dy > py) (CXY

where f1 and f, are the high and low fare levels respectively, D; denotes the demand
for the high fare class, p; is the number of seats to protect for the high fare class and
Pr(D1 > py) is the probability of selling al protected seats to high fare passengers. The
smallest value of p; that satisfies the above condition is the number of seats to protect
for the high fare class, and is known as the protection level of the high fare class. The
concept of determining a protection level for the high fare class can aso be seen as
setting a booking limit, a maximum number of bookings, for the lower fare class.
Both concepts restrict the number of bookings for the low fare class in order to accept
bookings for the high fare class.

Belobaba (1987) extends Littlewood's rule to multiple nested fare classes and
introduces the term expected margina seat revenue (EMSR) for the general approach.
His method is known as the EMSRa method and produces nested protection levels,
i.e. they are defined as the number of seats protected for the fare class and all higher
classes. The EMSRa method does, however, not yield optima booking limits when
more than two fare classes are considered.

Optimal policies for more than two classes have been presented independently
by Curry (1990), Brumelle and McGill (1993) and Wollmer (1992). Curry uses
continuous demand distributions and Wollmer uses discrete demand distributions. The
approach Brumelle and McGill propose, is based on subdifferential optimization and
admits either discrete or continuous demand distributions. They show that an optimal
set of nested protection levels, p1, p2, ..., Pk-1, Where the fare classes are indexed from

high to low, must satisfy the conditions:



d,ER(p) £ f., £d_ER(p) foreachi=1,2, ..., k-1 (3.2)

where ER(p;) is the expected revenue from the i highest fare classes when p; seats are
protected for those classes and d+ and d. are the right and left derivatives with respect
to pi respectively. These conditions express that a change in p; away from the optimal
level in either direction will produce a smaller increase in the expected revenue than
an immediate increase of fi+1. The same conditions apply for discrete and continuous
demand distributions. Notice, that it is only necessary to set k-1 protection levels
when there are k fare classes on the flight leg, because no seats will have to be
protected for the lowest fare class. Brumelle and McGill show that under certain
continuity conditions the conditions for the optimal nested protection levels reduce to
the following set of probability statements:

f,=1,Pr(D;>p) (33
f=f,P(D,>p, CD, +D, > p,)

—h
x~
1]

f,Pr(D,>p, €D, +D,>p, C...C D, +D, +...+ D, > py)

These statements have a ssimple and intuitive interpretation, much like Littlewood's
rule. Just like Littlewood's rule and the EM SRa method, this method is based on the
idea of equating the margina revenues in the various fare classes and therefore
belongs to the class of EMSR methods. The method is called the EMSRb method.
Robinson (1995) finds the optimality conditions when the assumption of a sequential
arrival order with monotonically increasing fares is relaxed into a sequential arrival
order with an arbitrary fare order. Furthermore, Curry (1990) provides an approach to
apply his method to origin-destination itineraries instead of single flight legs, when
the capacities are not shared among different origin-destinations.

Van Ryzin and McGill (2000) introduce a simple adaptive approach for
finding protection levels for multiple nested fare classes, which has the distinctive
advantage that it does not need any demand forecasting. Instead, the method uses
historical observations to guide adjustments of the protection levels. They suggest
adjusting the protection level p; upwards after each flight if al the fare classes i and



higher reached their protection levels, and downwards if this has not occurred. They
prove that under reasonable regularity conditions, the algorithm converges to the
optimal nested protection levels. This scheme of continuously adjusting the protection
levels has the advantage that it does not need any demand forecasting and therefore is
away to get around all the difficulties involving this practice. However the updating
scheme does need a sufficiently large sequence of flights to converge to a good set of
protection levels. In practice, such a start-up period can not always be granted when
there are profits to be made.

The solution methods in this paragraph are all static. This class of solution
methods is optimal under the sequential arrival assumption as long as no change in the
probability distributions of the demand is foreseen. However, information on the
actual demand process can reduce the uncertainty associated with the estimates of
demand. Hence, repetitive use of a static method over the booking period based on the

most recent demand and capacity information, is the general way to proceed.

3.2.  Dynamic Solution Methods

Dynamic solution methods for the seat inventory control problem do not determine a
booking control policy at the start of the booking period as the static solution methods
do. Instead, they monitor the state of the booking process over time and decide on
acceptance of a particular booking request when it arrives, based on the state of the
booking process at that point in time.

Lee and Hersh (1993) consider a discrete-time dynamic programming model,
where demand for each fare class is modeled by a nonhomogeneous Poisson process.
Using a Poisson process gives rise to the use of a Markov decision model in such a
way that, at any given time t, the booking requests before time t do not affect the
decision to be made at time t except in the form of less available capacity. The states
of the Markov decision model are only dependent on the time until the departure of
the flight and on the remaining capacity. The booking period is divided into a number
of decision periods. These decision periods are sufficiently small such that not more
than one booking request arrives within such a period. The state of the process
changes every time a decision period elapses or the available capacity changes. If
U(c,t) is the optimal total expected revenue that can be generated given a remaining



capacity of ¢ seats and with t remaining decision periods before the departure of the

flight, then abooking request of classi is accepted if, and only if:

f,2U(Ct-1)-U(c-1t-13 foreachi=1, 2, ..., k, (3.4
c=CC1,..,1,t=T,T-1, .., 1

where C is the total seat capacity and T is the total number of decision periods. This
decison rule says that a booking request is only accepted if its fare exceeds the
opportunity costs of the seat, defined here by the expected marginal value of the seat
a time t. Lee and Hersh provide a recursive function for the total expected revenue
and show that solving the model under the decision rule given by (3.4) results into a
booking policy that can be expressed as a set of critical values for either the remaining
capacity or the time until departure. For each fare class the critical values provide
either an optimal capacity level for which booking requests are no longer accepted in
a given decision period, or an optimal decision period after which booking requests
are no longer accepted for a given capacity level. The critica vaues are monotone
over the fare classes. Lee and Hersh also provide an extension to their model to
incorporate batch arrivals.

Kleywegt and Papastavrou (1998) demonstrate that the problem can also be
formulated as a dynamic and stochastic knapsack problem (DSKP). Their work is
aimed at a broader class of problems than only the single leg seat inventory control
problem considered here, and includes the possibility of stopping the process before
time O with a given termina value for the remaining capacity, waiting costs for
capacity unused and a penalty for rejecting an item. Their model is a continuous-time
model, but they do, however, only consider homogeneous arrival processes for the
booking requests. In a recent paper Kleywegt and Papastavrou (2001) extend their
model to alow for batch arrivals.

Subramanian et al. (1999) extend the model proposed by Lee and Hersh to
incorporate cancellations, no-shows and overbooking. They also consider a
continuous-time arrival process as a limit to the discrete-time model by increasing the
number of decision periods. Liang (1999) reformulates and solves the Lee and Hersh
model in continuous-time. Van Slyke and Y oung (2000) also obtain continuous-time
versions of Lee and Hersh’ results. They do this by simplifying the DSKP modédl to



the more standard single leg seat inventory control problem and extending it for
nonhomogeneous arrival processes. They also allow for batch arrivals. Lautenbacher
and Stidham (1999) link the dynamic and static approaches. They demonstrate that a
common Markov decision process underlies both approaches and formulate an

omnibus model which encompasses the static and dynamic models as special cases.

4. Network Seat Inventory Control

In network seat inventory control, the complete network of flights offered by the
airline is optimized simultaneously. One way to do this, is to distribute the revenue of
an origin-destination itinerary over its legs, which is called prorating, and apply single
leg seat inventory control to the individual legs. Williamson (1992) investigates
different prorating strategies, such as prorating based on mileage and on the ratio of
the local fare levels. This approach provides a heuristic to extend the existing single
leg solution methods to a network setting. However, only a mathematical
programming formulation of the problem can be capable of fully capturing the
combinatorial aspects of the network. In order to obtain the mathematica
programming formulation for capturing these combinatorial aspects, denote an origin-
destination and fare class combination by ODF. Let Xopr denote the number of seats
reserved for an ODF, Dopr the demand for an ODF, and fope the fare level for an
ODF. Further, let | denote a single flight leg, C, the seat capacity for aleg, and S the
set of al ODF combinations available on a leg. The problem can then be formulated

as follows:
maximze  E(§ ., foor MM Xopr: Dope}) 4.1)
subjectto  § o Xoor £C for eachl

Xopr 2 0 integer for each ODF

The objective is to find the seat allocation that maximizes the total expected revenue
of the network and satisfies the capacity constraints on the various flight legs. The

objective function depends on the distributions of demand and generally is not linear,

10



continuous or in any other way regular. Therefore, relaxations of this formulation

have been suggested for use in practice.

4.1  Mathematical Programming

The first full network formulation of the seat inventory control problem is proposed
by Glover et ad. (1982). They formulate the problem as a minimum cost network flow
problem with one set of arcs corresponding to the flight legs and another set
corresponding to the ODF combinations. The method is aimed at finding the flow on
each arc in the network that maximizes revenue, without violating the capacity
constraints on the legs and upperbounds posed by the demand forecasts for the ODF
combinations. A drawback of the network flow formulation is that it can not always
discriminate between the routes chosen from an origin to a destination. Therefore, this
formulation only holds when passengers are path-indifferent. The advantage of the
formulation is that is it easy to solve and can be re-optimized very fast.

A formulation of the problem that is able to distinguish between the different
routes from an origin to a destination, is given by the integer programming model

underlying the network flow formulation:

maximize g ___ fopr Xoor (4.2)
subjectto  J . o Xoor £C for each |

Xoor £ EDgpre for each ODF

Xope 2 0 integer for each ODF

In this model EDopr denotes the expected demand for an ODF. It is easy to see that
this is the model obtained from model (4.1) if the stochastic demand for each ODF is
replaced by its expected value. The demand for an ODF is treated as if it takes on a
known value, eg. as if it is deterministic, and no information on the demand
distributions is taken into account. Accordingly, the model produces the optimal seat
alocation if the expected demands correspond perfectly with the actual demands. It is

common practice to solve the LP relaxation of the model rather than the integer

1



programming problem, since an integer programming problem is usually very hard to
solve. The LP relaxation of the model is known as the deterministic linear
programming (DLP) model. A booking control policy based on the DLP model can be
constructed by setting booking limits for each ODF equa to the number of seats
reserved for the ODF in the optima solution of the model. Such a booking control
policy is a static method and, just as with the single leg methods discussed in the
previous section, the general way to proceed is to use the model repeatedly over the
booking period based on the most recent demand and capacity information.

The DLP method is a deterministic method and will never reserve more seats
for a higher fare class than the airline expects to sell on average. In order to determine
whether reserving more seats for more profitable ODF combinations can be
rewarding, it is necessary to incorporate the stochastic nature of demand in the model.
Wollmer (1986) develops a model which incorporates probabilistic demand into a
network setting.

maximize g . &, foor P(Dope 2 1) Xope i) (4.3)
subject to éODFTs A Xope () EC, for each |
Xooe )1 {03 for each ODF,

i=1,2, .., max{C:ODFI S}

In this mode the decision variables Xopre(i) take on the value 1 when i seats or more
are reserved for the ODF, and O otherwise. The coefficient of each Xopr(i) in the
objective function represents the expected margina revenue of allocating an
additional i"" seat to the ODF. The model is called the expected marginal revenue
(EMR) model. A drawback of this model is the large amount of decision variables,
which makes the model impractical in use.

De Boer et a. (1999) introduce a model which is an extension of the EMR
model. It incorporates the stochastic nature of demand when demand for each ODF

can take on only a limited number of discrete values {dopr(1) < dopr(2) < ... <
dobr(Nopr)} -



o o

maximize oor A ; Foor Pi(Dope 2 dope (1)) Xope (1) (4.4)
subjectto @ orr A, Xoor )V EC, for each |
Xopr ) £ dope (D) for each ODF

Xope (1) £ dopp () - dope (i - 1) foreach ODF,i=2, 3, ..., Nopr
Xope (i) 2 O integer foreach ODF,i=1, 2, ..., Nopr

The decision variables Xopg(i) each accommodate for the part of the demand Dopr
thet falls in the interval (dopr(i-1), dopr(i)]. Summing the decision variables Xopr(i)
over dl i for an ODF, gives the total number of seats reserved for the ODF which can
be interpreted as a booking limit. The LP relaxation of this model is called the
stochastic linear programming (SLP) model. The EMR modd is a special case of the
SLP model that can be obtained by letting dopr(1) = 1 and dopr(i)-dopr(i-1) = 1 for
dli=2 3, .. max{C:ODFI S}. But the SLP formulation of the problem is more
flexible because it allows a reduction of the number of decision variables by choosing
alimited amount of demand scenarios. If only the expected demand is considered as a
possible scenario, the SLP model reduces to the DLP model. In fact, the DLP and
EMR models can be seen as the two extremes that can be obtained from the SLP
model. The first by considering only one demand scenario, the latter by considering
all possible scenarios.

The mathematical programming models discussed in this section are very well
capable of capturing the combinatorial aspects of the problem. The booking control
policies derived from the models are, however, static and non-nested. In the following
sections we will discuss techniques to augment the mathematical programming

models for nesting. Dynamic solution methods are discussed in Section 4.2.

4.1.1. Nesting

Nesting is an important aspect of the seat allocation problem and should be taken into
account. How to determine a nesting order of the ODF combinations is not trivia in a
network setting. The nesting order should be based on the contribution of the ODF

combinations to the network revenue. Ordering by fare class does not take into

13



account the level of the fare, and ordering by fare level does not account for the load
factors of the flight legs. Williamson (1992) suggests nesting the ODF combinations
by the incremental revenue that is generated if an additional seat is made available for
the ODF while everything else remains unchanged. For the DLP model, she
approximates this by the dua price of the corresponding demand constraint. In this
particular model, this corresponds to the incremental revenue obtained from
increasing the mean demand for the ODF by one. A stochastic model typicaly does
not have demand constraints, but the incremental revenue obtained from increasing
the mean demand can still be used. An approximation can be obtained by re-
optimizing the model with the mean demand increased by one and comparing the new
objective value with the origina objective value. This does, however, require a re-
optimization of the model.

After determining a nesting order on each flight leg, a nested booking control
policy can be constructed. Let Hopr, be the set of ODF combinations that have higher
rank than ODF on flight leg I. Then nested booking limits for an ODF on aflight leg |
are given by:

[o]

bODF,I = CI - aODFq Hoor 1 XODF* (4-5)

This illustrates that nested booking limits are obtained from non-nested booking limits
by allowing ODF combinations to make use of all seats on the flight leg except for the
seats reserved for higher ranked ODF combinations.

De Boer et a. (1999) stick to Williamson's idea of using the net contribution
to network revenue of the ODF combinations to determine a nesting. However, they
use a different approach to approximate this. They approximate the opportunity costs
of an ODF combination by the sum of the dual prices of the capacity constraints of the
legs the ODF uses. An approximation of the net contribution to network revenue is
then obtained by subtracting this from the fare level. Thus, a nesting order is based

on:

re [¢}

fODF = fODF - aODFTS P (4-6)

14



where p; denotes the dual price of the capacity constraint for flight leg |. For the DLP
method this nesting method is equivalent to Williamson's approach. The advantage of
this method over Williamson's, is that it can be applied for a stochastic model without
re-optimizing the model.

4.1.2. Bid-Prices

A booking control policy that incorporates nesting in a natural way, is setting bid-
prices. In this procedure, a bid-price is set for each leg in the network reflecting the
opportunity costs of reducing the capacity of the leg with one seat. A booking request
is accepted only if its fare exceeds the sum of the bid-prices of the legs it uses. The
opportunity costs of selling a seat on a leg can be approximated by the dual price of
the capacity condgtraint of the leg in a mathematical programming model. After
obtaining the dual prices of the capacity constraints by the use of such a model, the

rule is to accept a booking request for an ODF if:
foor > @ opri 5 P (4.7)

Notice that this measure is equivaent to the approximation de Boer et a. (1999) use
for the opportunity costs of an ODF and directly links the revenue gain from
accepting a booking request to the opportunity costs of the ODF. A disadvantage of
bid-price control is that there is no limit to the number of bookings for an ODF once it
is open for bookings, i.e. once its fare exceeds the opportunity costs. This can lead to
flights filling up with passengers that only marginally contribute to network revenue.
Frequently adjusting the bid-prices based on the most recent demand and capacity
information is necessary to prevent this from happening.

Williamson (1992) investigates using the DLP model for constructing bid-
prices. This method to construct bid-prices does not take into account the stochastic
nature of demand. Talluri and van Ryzin (1999) analyze a randomized version of the
DLP method for computing bid-prices. The idea is to incorporate more stochastic
information by replacing the expected demand by the random vector itself. They

simulate a sequence of n demand realizations and for each realization determine the
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optimal seat alocation. This can be done by applying the DLP model with the
realization of the demand taking the place of the expected demand as the upperbound
for the number of bookings for each ODF. The n optimal seat allocations provide n
sets of dual prices. The bid-price for aleg is smply defined as the average over the n
dua prices for the flight leg. This method is known as the randomized linear
programming (RLP) method. De Boer et al. (1999) construct bid-prices on their SLP
modd.

It should be noted that both the nested booking limits and the bid-price
procedures are heuristics to convert a non-nested solution from one of the
mathematical programming models into a nested booking control policy by allowing
ODF combinations to make use of al seats reserved for the lower valued ODF
combinations. Allowing this, reduces the necessity to reserve seats for the ODF in the
model. Therefore, the solution of the model is no longer optimal. To obtain an optimal
booking control strategy that accounts for nesting, the nesting and allocation decisions
should be integrated. No mathematical programming model is capable of doing this.
A heuristic that does integrate the nesting and allocation decisions is discussed in the
next section.

4.2.  Simulation Approach

In a recent study, Bertssmas and de Boer (2000) introduce a ssmulation based solution
method for the network seat inventory control problem. They define the expected
revenue function as a function of the booking limits and their aim is to find those
booking limits that optimize the function. The DLP modd is used to generate an
initial solution which takes the combinatorial aspects of the network into account and
by which a nesting order can be determined. After that, the solution is gradually
improved to make up for factors such as the stochastic nature of demand and nesting.
The search direction is determined by the gradient of the expected revenue function.
Because the expected revenue function is not known, it is approximated by means of
simulation. The expected revenue generated by a set of booking limits is
approximated by the average of the revenues generated by the booking limits when
they are applied over a sequence of simulated demand realizations. The gradient of
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the function is approximated by the change in expected revenue caused by a small
deviation in the booking limits.

Bertsimas and de Boer reduce a great deal of the computation time of their
method by linking it to ideas from the field of approximate dynamic programming.
They devide the booking-period into smaller time-periods and define future revenue
as afunction of the remaining capacity. A booking control policy for the current time-
period can then be obtained by simulating the booking process of the present time-
period only. The revenue of each simulation run is defined as the revenue within the
present time-period plus the estimated future revenue which depends on the remaining
capacity. In order to estimate the future revenue function an Orthogonal
Array/Multiple Adaptive Regression Splines method is used as in Chen et a. (1998),
which we will discuss in the next section when we present the dynamic solution
methods for network seat inventory control.

Bertsimas and de Boer aso provide a method to derive bid-prices from their
booking limits by use of simulation. The bid-price for each leg is set equal to an
approximation of the opportunity costs of reducing the capacity on the leg. They
simulate a sequence of demand realizations and for each ssimulation calculate the
revenue resulting from using the booking limits. To obtain an approximation of the
opportunity costs, they subtract from this revenue the revenue generated by the same
booking limits if the capacity on the leg would have been decreased by one seat. The
bid-price is defined as the average of the approximated opportunity costs over the

simulations.

4.3.  Dynamic Solution Methods

For the simulation based solution method discussed in the previous section, Bertsimas
and de Boer (2000) make use of approximate dynamic programming. They devide the
booking period into smaller time-periods for which booking control policies are
determined. A solution is constructed in each period taking into account the
realizations in the previous time-periods and the expectations about the future time-
periods. All other network solution methods discussed thus far, are static methods.
These methods produce a solution at a given point in time for the complete booking

period. This solution is usually adjusted a multitude of times during the booking

17



period by re-optimizing the underlying models. A fully dynamic solution method,
however, would be one that adjusts the booking control policy continuously.

Chen et a. (1998) are the first to provide a fully dynamic solution method for
the network seat inventory control problem. They formulate a Markov decision model
that uses mathematical programming in a dynamic setting. As with the single leg
dynamic solution methods, the state space of the Markov decision model is defined by
the time until departure and the remaining capacities of the flights. The decision
periods are chosen sufficiently small such that not more than one booking request
arrives within such a period. Let V(c,t) be the optimal total expected revenue that can
be generated when c is the vector of remaining capacities on the flight legsand t is the
number of decision periods left before departure. Further, let aopr be the vector that
denotes whether a flight leg is used by an ODF or not; i.e. 1 if the ODF traverses the
flight leg and O otherwise. Then a booking request for an ODF is accepted if, and only
if:

foor 2 V(Ct-1)-V(C- ape,t- 1) for each ODF, ¢, (48)
t=T,T-1,..,1

where T is the total number of decison periods. The right-hand side of (4.8)
corresponds to the opportunity costs of the seats taken up by the booking request. A
booking request is accepted only if its fare exceeds the opportunity costs.

To approximate the opportunity costs, the objective value for a mathematical
programming model can be evaluated when the booking request is accepted as well as
when the booking request is rejected. Subtracting these objective values gives the
opportunity costs based on that particular model. Chen et al. (1998) argue that the
opportunity costs are overestimated by the DLP model and underestimated by a non-
nested stochastic model they formulate. Based on this idea, they formulate the
following algorithm to accept or reject a booking request for an ODF:

1. reject if fODF £ OCsrocH , otherwise

2. accept if fopr 3 OCpp , Otherwise

3. accept if fopr > X, with X random from the interval [OCsroch, OCpLp].
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where OCsrocq and OCp_p denote the opportunity costs of the ODF as approximated
by the stochastic and the DLP model. Evaluating the two models in two different
states every time a booking request comes in, obviously requires a lot of computation
time. Therefore, Chen et a. propose a method to estimate the value function of a
model for each possible state beforehand. They evaluate the model on a carefully
selected limited number of points in the state space and use these observations to
estimate the value function of the model over the entire state space. The selection of
the points is based on an Orthogona Array method, and Multivariate Adaptive
Regression Splines are used to estimate the value function of the model. With an
approximation of the value function of each model available at any time, the Markov
decison model can be used in a dynamic way.

In a recent paper Bertsmas and Popescu (2001) use the network flow
formulation of the problem, proposed by Glover et a. (1982), to approximate the
opportunity costs. Because this formulation can be re-optimized very efficiently, a
new solution can be constructed every time a booking request comes in. Bertsimas
and Popescu overcome the fact that the network flow formulation does not account
for the stochastic nature of demand by means of simulation. They simulate a sequence
of demand realizations and approximate the opportunity costs by the average of the
opportunity costs obtained from the simulations. A drawback of the network flow

formulation remains that it only holds when passengers are path-indifferent.

4, Conclusion

In this paper, we make a distinction between single leg and network solution methods
for the seat inventory control problem in airline revenue management. Apart from the
distinction between static and dynamic solution methods, literature on the single leg
approach to the problem is rather harmonious. For both the static and the dynamic
approach, a certain amount of consensus has been reached about the general way to
proceed. In recent years, literature on single leg solution methods has been aimed
mainly at extending the existing models to account for aspects such as overbooking,
batch arrivals, less dependence on demand forecasts etc. Literature on the network

solution methods is less harmonious. How to account for the combinatoria effects of
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the network, the stochastic nature of demand and nesting simultaneoudly, is not
trivial. Moreover, the size of the problem prescribes the use of heuristics as opposed
to optimal policies, especidly if a policy is to be used in a dynamic way.
Nevertheless, we think that it is essential to account for the network effects.
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