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instead consider the use of convertible seats. A row of these seats can be converted 

from business class seats to economy class seats and vice versa. This offers an airline 

company the possibility to adjust the capacity configuration of the plane to the 

demand pattern at hand. We show how to incorporate the shifting capacity 

opportunity into a dynamic, network-based revenue management model. We also 

extend the model to include cancellations and overbooking. With a small test case we 

show that incorporating the shifting capacity opportunity into the revenue 

management decision indeed provides a means to improve revenues. 
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1 Introduction 
 

Airline companies are confronted with passengers that generate different revenues 

although they are on the same flight. This comes forth from the fact that the airline 

companies offer different fare classes and because passengers with different 

destinations can make use of the same flights. If capacity is scarce, it will therefore be 

profitable to apply a selection procedure for accepting passengers on the flights. 

Finding the right mix of passengers on the flights such that revenues are maximized is 

called revenue management. Revenue management has received a lot of attention 

throughout the years and has seen applications in a number of industries such as the 

hotel (see: Baker and Collier (1999), Bitran and Gilbert (1996), Bitran and Monschein 

(1995), Goldman et al. (2002) and Weatherford (1995)), railroad (see: Ciancimino et 

al. (1999) and Kraft et al. (2000)) and car rental (see: Geraghty and Johnson (1997)) 

industries. The main focus of revenue management research, however, remains the 

airline industry. 

In the traditional airline revenue management problem, the capacities of a 

plane and its different sections, i.e. business and economy class, are fixed. Despite of 

this, airline companies are not unfamiliar with the practice of shifting capacity from 

the business to the economy class. This is done by �upgrading� individual passengers 

from economy to business or by �moving the curtain� between the two sections. A 

drawback of these procedures is that passengers that pay for the economy class get the 

luxury of the business class (or at least a business class seat) for free. An airline 

company should prevent this from happening on a large scale because of the danger 

that people will anticipate on this and start booking economy class with the 

probability to be given a business class seat instead of booking business class in the 

first place. Therefore, upgrading and moving the curtain are not desirable tactics to 

apply on a large scale. 

Another way for shifting business and economy class capacities is provided by 

so-called convertible seats. By a simple procedure, a row of these seats can be 

converted from economy class to business class seats and vice versa. When a row is 

converted from business to economy class, the number of seats in the row is increased 

and the width of each seat is decreased. The distances between the rows, however, 

remain the same. An example of this is given in Figure 1. In this figure, taken from 
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the Swiss Air Lines 2002 Timetable, an Airbus 321 plane is shown equipped with 

convertible seats. Each row of seats can be used as either six economy class seats or 

five business class seats. The table included in Figure 1 gives a number of possible 

configurations of the plane varying from no business class seats in configuration A to 

76 business class seats in configuration Q. 

 

 
 
Figure 1: Airbus 321 with convertible seats 

 

Because a passenger that has booked for the economy class indeed gets an economy 

class seat, the drawback previously mentioned for upgrading and moving the curtain 

does not apply when the convertible seats are used. Moreover, extra seats become 

available whenever a business class row is converted into an economy class row. The 

convertible seats can be used without any serious consequences, which makes the 

plane very flexible in coping with different demand patterns. These different demand 

patterns can occur among flights that are flown on different days of the week or on 

different times of the day. Also seasonal differences can be encountered, as can 
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differences caused by unforeseen events such as a decline in demand during an 

economic regression. 

In this paper, we provide a model to incorporate the shifting capacity 

opportunity offered by the convertible seats into the traditional revenue management 

problem. The booking control policy we use to extend for the shifting capacity 

decision is a dynamic one, which is re-optimized for every new booking request. The 

underlying model is the standard deterministic programming model for network 

revenue management. However, as Talluri and van Ryzin (1999), we extend the 

model to account for the stochastic nature of demand by ways of simulation. Further, 

we allow for cancellations and overbooking much in the same way as Bertsimas and 

Popescu (2003) do. Overbooking is not always incorporated in revenue management 

research, but it is important to do so in combination with the shifting capacity 

decision. When determining an overbooking policy, one should take into account the 

fact that one booking can block an entire row of seats from becoming available for the 

other section of the plane. Also, it is interesting to see if in some cases it is profitable 

to deny one or two accepted bookings to board on the flight such that the row 

becomes available for the other section, even though there are costs involved by doing 

so. For illustration, we describe a test case in which one plane is used for a series of 

flights and compare the results obtained in a simulated environment when the shifting 

capacity decision is made (i) beforehand and is kept fixed over all flights, (ii) before 

each flight, and (iii) dynamically during the booking process of each flight. 

 The shifting capacity opportunity that we discuss in this paper, is a way to 

allocate capacity where it is needed. In this respect this paper is the first step towards 

the integration of revenue management and dynamic capacity management. In the 

airline industry dynamic capacity management is generally associated with the fleet 

assignment problem, which is aimed at assigning the different types of planes to the 

different flights such that revenues are maximized. When this is done dynamically, 

i.e. when the fleet assignment is changed to match the actual demand when departure 

time closes, this is also known as demand-driven dispatch (D3). By using planes 

equipped with convertible seats, airline companies will be able to fine tune the 

capacity allocation started with the fleet assignment and will be able to match 

capacity and demand even better. 
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2 Problem formulation 
 

The essential decision to be made in airline revenue management is whether or 

not to accept a booking request when it arrives. In order to make this decision, the 

direct revenue gained by accepting the request has to be compared to the revenue that 

can be expected to be gained from the seats if the request is not accepted, i.e. the 

opportunity costs of the seats. For determining the opportunity costs of the seats, it is 

important to have a good estimation of the future demand for the various routes and 

price classes. Further, it should be taken into account that a route requested by a 

customer can consist of multiple flights. This means that different routes can make 

use of the same flights. Therefore, in order to get a good approximation of the 

opportunity costs, the combinatorial effects of the whole network of flights have to be 

considered. 

 We formulate the problem under the standard assumptions that the demand is 

independent over the various routes and price classes and that a rejected booking 

request is lost forever. The second assumption indicates that the routes and price 

classes are well differentiated and that a customer will not divert to another route or 

price class whenever his request is denied. In Section 2.1 we give the traditional 

formulation for the network revenue management problem. In sections 2.2 and 2.3 we 

extend the model for the shifting capacity decision and cancellations and overbooking 

respectively. 

 

 

2.1 Traditional problem formulation 
 

We assume that the route and price class combinations are well differentiated and can 

therefore be seen as different products. Then the seat capacities of the flights can be 

seen as the resources needed for these products. Moreover, when the seat capacities 

for different sections of the planes are considered to be fixed, the different sections 

can be considered to be different resources. We model demand as a sequence of 

booking requests over time and we measure time in discrete intervals counting 

backwards, i.e. at time 0 the process ends. Define A = [aij] where aij = 1 if product j 

uses resource i, and 0 otherwise, for i = 1, 2, ..., m and j = 1, 2, ..., n. Then, the jth 
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column of A, aj, denotes the resources used by one unit of product j. Further, let c = 

(c1, c2, ..., cm)T denote the capacity of each resource, r = (r1, r2, ..., rn)T the revenues 

associated with the products, ut = (u1,t, u2,t, ..., un,t)T the number of products already 

sold at time t, and Vt(ut) the optimal expected revenue that can be generated with t 

time units to go and ut products already sold. Then, at time t, a booking request for k 

seats on route and price class combination j will be accepted if and only if: 

 

)()( 1111 jttttj kauVuVkr ���
����

.       (1) 

 

The left hand side of equation (1) denotes the direct revenue associated with the 

booking request, whereas the right hand side denotes the estimated opportunity costs 

of the seats taken up by the request. 

The decision rule given in (1) has been derived in some form or another for 

both discrete as well as continuous time by a number of people, including Bertsimas 

and Popescu (2003), Chen et al. (1998), Lautenbacher and Stidham (1999), Lee and 

Hersh (1993), Liang (1999), Subramanian et al. (1999), Talluri and Van Ryzin (1998, 

1999) and Van Slyke and Young (2000). The difficulty, however, is to approximate 

Vt(ut). Let dt = (dt,1, dt,2, ..., dt,n)T be the remaining demand with t time units to go. 

Then if dt is known, Vt(ut) can be defined as follows: 

 

Vt(ut) =          (2) xrT

x
max

cAx �  

ttt duxu ���  integer, 

 

where x = (x1, x2, ..., xn)T determines the number of requests accepted for each route 

and price class combination. Model (2) provides a linear system of equations that can 

be solved by standard IP optimization techniques such as branch and bound. 

However, dt will not be known. One way to obtain an approximation for Vt(ut) 

is to replace dt with its expected value. This does, however, not take into account the 

stochastic nature of demand. A stochastic model has been proposed by Wollmer 

(1986). But this model is computationally intractable because of the large number of 

decision variables. A reduced version of Wollmer�s model, which considers only a 

limited number of possible outcomes for the demand, is proposed by De Boer et al. 
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(2002). The simplest method to incorporate the stochastic nature of demand is 

probably proposed by Talluri and Van Ryzin (1999). They simulate a sequence of 

realizations of dt and compute Vt(ut) for each of these realizations by applying the 

model given in (2). Then they approximate Vt(ut) by averaging the outcomes. 

 In practice, airline companies do not optimize a model every time a new 

booking request is made. Instead, they re-optimize the model a number of times 

during the booking process and use heuristics based on the solution of the model in 

between optimizations. There are two widely used methods to do this. The first is 

called the nested booking limit policy. This method uses the solution of the model as 

the number of seats available for each route and price class combination. Because it is 

not profitable to reject a request when seats are still available for less desirable route 

and price class combinations, nested booking limits are defined that allow each route 

and price class combination to make use of the seats of all the route and price class 

combinations that are valued lower than itself. The second booking control policy is 

the bid price policy. For this policy, the opportunity costs of a seat on a flight is 

approximated by the shadow price of the corresponding capacity constraint. A 

booking request is only accepted when its revenue is more than the opportunity costs 

of the seats it uses. These methods are well known both in research as in practice. In 

this paper we do not use such heuristic policies in between optimizations, but re-

optimize the model for every booking request. This gives us the opportunity to focus 

on the shifting capacity opportunity without any influences of the chosen heuristic. 

 

 

2.2 Problem formulation with shifting capacity 
 

In this section we extend the standard airline revenue management problem with the 

shifting capacity decision. We use the same notation as in the previous section with 

the difference that the capacity c is no longer a constant, but is now dependent on the 

shifting capacity decision. Assume that each plane has got a limited number of 

possible capacity configurations collected in the state space Y. Let l be the number of 

flights and y = (y1, y2, ..., yl)T � Y be the shifting capacity vector which denotes the 

chosen capacity configuration for each plane. Further, let the capacities be defined as 

a function of y, c(y). Then, for a given demand vector dt, Vt(ut) can be obtained by: 

 6



 

Vt(ut) =          (3) xrT

yx,
max

)(ycAx �  

ttt duxu ���  integer 

Yy� , 

 

where x determines the number of requests accepted for each route and price class 

combination and y determines the configurations of the planes. 

 Unless c(y) and Y are of a very specific form, the model provided by (3) will 

not be a system of linear equations. Therefore, it can be very hard to optimize the 

model. However, we show that the specifications of c(y) and Y that can be 

encountered in practice, are such that model (3) reduces to a system of linear 

equations. In order to see this, we describe the situation of a plane that has got two 

sections; a business and an economy class section. Then a plane which is equipped 

with convertible seats usually has a number of seats which are fixed for both sections 

along with a number of rows which can be used as either business or economy class 

rows. Assume that the fixed seat capacity for the business class is given by cb and for 

the economy class by ce. Further, let there be R rows of convertible seats which can 

each be used for either bb business class seats or be economy class seats. Then we can 

define: 

 

��
�

�
��
�

�

��	

�	



)(
)(

yRbc
ybc

yc
ee

bb ,  with Y � . � �Ryy ��� 0:N

 

In this case, y denotes the number of convertible rows appointed to the business class 

section. 

 In order to present the model presented in (3) with this specific formulation of 

c(y), we let cb, ce, bb, be and R be vectors of dimension l�1, such that they contain the 

shifting capacity information for all flights in the network. Further we also partition r, 

x, A, ut and dt into a part that contains the information concerning the business class 

and a part that contains the information concerning the economy class. Then we can 

define: 
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Vt(ut) =         (4) e
T
eb

T
byxx

xrxr
eb

�
,,

max

b
T
bbb cybxA ��  

e
T
eee cyRbxA ��� )(  

tbtbbtb duxu ,,, ���   integer 

teteete duxu ,,, ���   integer 

Ry ��0    integer, 

 

where xb and xe determine the number of requests accepted for each route and price 

class combination in the business and economy class and y determines the 

configurations of the planes. Model (4) consists of a linear system of equations and 

can therefore be optimized by the same procedures as the model presented in (2). 

Furthermore, the model has the same number of capacity constraints as the model in 

(2) and has got only l more decision variables, where l is the number of flights in the 

flight network. Note that, although model (4) provides a configuration of the planes 

for every time it is optimized, only at the end of the booking period, at time 0, the 

planes will be physically converted into the desirable configuration. 

 

 

2.3 Problem formulation with cancellations and overbooking 
 

In the airline industry, a large amount of bookings typically get cancelled before 

departure. Therefore, in order to prevent the planes from taking off with empty seats, 

airline companies overbook the flights. Whenever overbooking is applied, there is a 

probability that not all bookings can get on the plane. This can happen intentionally 

when a low fare booking is denied boarding in favor of a high fare booking, or 

accidentally when the number of cancellations is overestimated. However, there will 

be a penalty cost involved with denying an accepted booking to board. These can 

consist of all kinds of costs such as accommodation costs or loss of goodwill. The 

penalty costs normally prevent airline companies from taking too much risk with 

overbooking. It is interesting to see, however, if it is worthwhile to take more risk of 

 8



bearing the costs of a denied boarding if this means that the entire row becomes 

available for the other section of the plane. 

A deviation from the formulation before, is that we define tx , tu  and td  as the 

net values of xt, ut and dt, where we define the net value as the number of booking 

requests corrected for the number of cancellations. So if at time t, 30 booking requests 

have been accepted for route and price class combination j, of which 6 will be 

cancelled in the future, then ut = 30 but tu  = 24. Obviously it is not known in advance 

which bookings will be cancelled. However, we can substitute tu  and td  by expected 

or simulated values. Finally we let qb and qe denote the penalty costs of each route and 

price class combination in the business and economy class, such that we can define: 

 

Vt(ut) = e
T
eb

T
be

T
eb

T
bzzyxx

zqzqxrxr
ebeb

���
,,,,

max       (5) 

b
T
bbbb cybzxA ��� )(  

e
T
eeee cyRbzxA ���� )()(  

tbtbbtb duxu ,,, ���   integer 

teteete duxu ,,, ���   integer 

Ry ��0    integer 

bz�0    integer 

ez�0    integer, 

 

where zb and ze determine which bookings in the business and economy class are 

denied boarding when the plane takes off. 

 

 

3 Test Case 
 

In this section we present a test case in order to show how the models described in the 

previous section can be used and what the added value can be of using a revenue 

management policy that exploits the shifting capacity opportunity offered by the 

convertible seats. We do this by comparing the performances of three different 

revenue management policies. One that does not make use of the fact that the capacity 
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can be shifted between the business and economy class, a second that does, but only 

before the start of the booking period, and a third that fully integrates the revenue 

management and shifting capacity decisions. We test the different revenue 

management policies by ways of simulation. The test case that we construct is chosen 

to reflect insights obtained from professionals in the airline industry. This means that 

the results that we obtain in this specific setting give an indication of what one can 

expect to find in practice. In Section 3.1 we describe the setting of the test case, after 

which we present the performances of the different booking control strategies without 

and with cancellations and overbooking in Sections 3.2 and 3.3 respectively. 

 

 

3.1 Description of the test case 
 

The test case consists of a single flight-leg that is flown three times by the same plane. 

Each flight is characterized by its own typical demand pattern. These three flights can 

be interpreted to be the same flight in different seasons, on different days of the week, 

or on different times of the day. Specifically, we model one base flight together with 

one flight that has more business class and less economy class passengers, and one 

flight that has less business and more economy class passengers. The plane that is 

used for this test case has a total of 35 rows of passenger seats that can all be used for 

either five business class seats or six economy class seats. This resembles the Airbus 

321 depicted in Table 1 very much. We consider two price classes in the business 

class and four in the economy class. The prices are given in Table 1. Also given in 

Table 1 is the average demand of each price class for all three flights. Flight 2 is the 

base flight. For the first flight, the average business class demand is defined as 30% 

above the business class demand on the base flight, and the average economy class 

demand is defined as 30% below the average economy class demand on the base 

flight. For the third flight this is the other way around. 
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    Average Demand 

Class Class Type Price ($)  Flight 1 Flight 2 Flight 3 

1 Business 400  14.3 11 7.7 

2 Business 350  36.4 28 19.6 

3 Economy 250  22.4 32 41.6 

4 Economy 200  30.8 44 57.2 

5 Economy 150  51.1 73 94.9 

6 Economy 100  43.4 62 80.6 
 

Table 1: Price classes 

 

 Next to the fact that the six price classes differ in price and demand level, they 

also have a specific booking pattern. The arriving booking requests are modeled by a 

non-homogeneous Poisson process. This is done by partitioning the booking period 

into ten smaller time periods each with a constant arrival rate. Demand for the two 

business classes is assumed to realize at the end of the booking period, whereas 

demand for the two cheapest price classes is modeled to occur at the beginning of the 

booking period. Graphical presentations of the arrival patterns of the price classes for 

the base flight are included in Figure 2. For the other two flights, the booking patterns 

are the same only with different demand levels. For sake of simplicity, we will not 

model booking requests for multiple seats, but only consider single seat bookings. 

Cancellations and overbooking will be incorporated into the test case in Section 3.3. 
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Figure 2: Arrival patterns of the demand for the 6 price classes 

 

 

 

 

 

 

 12



3.2 Results without cancellations and overbooking 
 

We compare the performances of three different revenue management policies that 

differ in the manner in which they deal with the shifting capacity opportunity. All 

three policies are dynamic policies in the sense that the opportunity costs are 

estimated anew for every booking request that comes in. The first policy does not 

incorporate the shifting capacity decision into the revenue management policy. For 

this policy, the capacity remains fixed over all three flights and the traditional model 

presented in (2) is used to estimate the opportunity costs. The capacity configuration 

of the plane is fixed at the configuration obtained when model (4) is used to optimize 

all three flights at once based on their expected demand. This is done before the 

booking period, and thus the revenue management process, starts. We will call this 

policy the Fixed Capacity (FC) policy. The second policy does make use of the 

shifting capacity opportunity. For each flight, which has it�s own specific demand 

pattern, a new capacity configuration is determined for the plane. This configuration 

is however not changed during the booking period. Before the booking period starts, 

model (4) is used to determine the capacity configuration based on the expected 

demand and during the booking period, model (2) is used to estimate the opportunity 

costs. The third policy makes use of the shifting capacity opportunity dynamically. It 

fully integrates the shifting capacity and revenue management problems and 

continually uses model (4) to estimate the opportunity costs. This means that the 

actual configuration of the plane will be known only at the end of the booking period. 

We will refer to the second policy as the Shifting Capacity (SC) policy and the third 

policy as the Dynamic Shifting Capacity (DSC) policy. 

All three policies will be applied in both a deterministic and a stochastic 

manner. This way we obtain six different policies: three deterministic and three 

stochastic policies. The deterministic policies base their estimation of the opportunity 

costs on the expected future demand. That is, in the underlying model, either model 

(2) or model (4), the demand vector is replaced by its expectation. For the stochastic 

policies ten realizations for the future demand are simulated. For all ten simulations 

the opportunity costs are determined and the estimation of the opportunity costs that 

will be used, is defined as the average over the ten cases. 
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 In order to test the booking control policies, we simulate 100 complete 

booking processes for all three flights. In Table 2 we report the overall performances 

of the six booking control policies when they are applied to the 100 simulated 

booking processes. We also give the optimal results that can be determined ex-post 

for each booking process. The results are generated on a Pentium III 550 MHz 

personal computer (256 MB RAM), using CPlex 7.1 to optimize the mathematical 

programming models. The computation time is measured in seconds. 

 

Policy Revenue Standard 
Deviation Minimum Maximum % Optimal % Best Comp. 

Time 

FC_det 121470 3422 113050 129950 94.78 0 3.85 

FC_stoch 121688 3479 113150 130100 94.95 1 37.24 

SC_det 124957 2873 118550 130200 97.49 5.5 3.75 

SC_stoch 125197 3037 118500 131100 97.67 22.5 34.82 

DSC_det 125114 2976 118250 130800 97.60 5.5 6.58 

DSC_stoch 126032 3048 118500 131700 98.30 65.5 62.50 

OPTIMAL 128258 3444 120050 136250 100   
 

Table 2: Average performances of the booking control policies 

 

In Table 2 we see that the stochastic DSC policy, which is the most 

sophisticated policy, performs best. On average it reaches up to 98.3% of the optimal 

revenue that can be obtained and it performs better than all five other policies in 

65.5% of the times. The other three policies that make use of the shifting capacity 

opportunity all obtain revenues that are within 1% of the DSC policy. When the 

capacity is kept fixed, the revenues that are obtained are clearly less. The extra 

revenues generated by the shifting capacity opportunity are 2.71% and 2.82% for the 

deterministic SC and DSC policies respectively, and 2.72% and 3.35% for the 

stochastic SC and DSC policies respectively. In our small test case this is somewhere 

between $1162 and $1448 per flight. As these flights can be flown one or even 

multiple times a day, and seeing that the extra revenues can be even more for bigger 

planes, this can lead to a substantial gain in revenues for the airline company. Table 2 

also shows that the differences between the SC and DSC policies are not very large: 

0.11% and 0.63% for the deterministic and stochastic policies respectively. This 

indicates that making the shifting capacity decision before the booking period starts 
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can be a good alternative to making the shifting capacity decision dynamically. 

Further we see that treating future demand in a stochastic manner leads to an 

improvement of the DSC policy of 0.7%. For the FC and SC policies, however, the 

improvement is much smaller; 0.17% and 0.18% respectively. These improvements 

seem hardly worthwhile if we consider the additional computation time needed for the 

stochastic policies. In this case the computation times of the stochastic policies are 

about 10 times as large as for the deterministic policies, which reflects the fact that we 

apply the model 10 times to obtain one approximation of the opportunity costs as 

opposed to one time for the deterministic policies. 

In order to see where the differences in the performances come from, we 

include the average capacity configurations and load factors of the flights for the 

different booking policies in Table 3. Both for the business and the economy class, 

this table reports the average number of rows appointed to it, the average number of 

passengers and the average load factor defined as the number of passengers as a 

percentage of the total capacity of the plane. We note that for the DSC policy the 

average number of business and economy rows does not necessarily sum to the total 

number of rows on the plane because a row which remains empty is not appointed to 

any of the two sections for this policy. For the FC and SC policies the number of rows 

appointed to the business and economy classes is known before the booking process 

starts and is kept fixed no matter whether they are filled or not. 

 
Panel A: Flight 1 

 Business  Economy  Total 

Policy Rows Pass. Load  Rows Pass. Load  Load 

FC_det 10 46.59 0.266  25 143.11 0.681  0.948 

FC_stoch 10 46.62 0.266  25 143.05 0.681  0.948 

SC_det 10 46.59 0.266  25 143.11 0.681  0.948 

SC_stoch 10 46.61 0.266  25 143.03 0.681  0.947 

DSC_det 11.06 47.86 0.273  23.94 142.06 0.676  0.950 

DSC_stoch 11.17 48.57 0.278  23.83 141.46 0.674  0.951 

OPTIMAL 11.15 49.42 0.282  23.85 141.96 0.676  0.958 
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Panel B: Flight 2 

 Business  Economy  Total 

Policy Rows Pass. Load  Rows Pass. Load  Load 

FC_det 10 39.70 0.227  25 149.10 0.710  0.937 

FC_stoch 10 39.69 0.227  25 148.73 0.708  0.935 

SC_det 8 37.65 0.215  27 161.09 0.767  0.982 

SC_stoch 8 37.69 0.215  27 160.52 0.764  0.980 

DSC_det 7.97 37.18 0.212  27.21 162.00 0.771  0.984 

DSC_stoch 8.01 38.23 0.218  26.99 160.92 0.766  0.985 

OPTIMAL 8.13 39.55 0.226  26.87 161.22 0.768  0.994 

 
Panel C: Flight 3 

 Business  Economy  Total 

Policy Rows Pass. Load  Rows Pass. Load  Load 

FC_det 10 28.71 0.164  25 149.59 0.712  0.876 

FC_stoch 10 28.71 0.164  25 149.41 0.711  0.876 

SC_det 5 24.41 0.139  30 179.43 0.854  0.994 

SC_stoch 5 24.43 0.140  30 179.30 0.854  0.993 

DSC_det 5.24 25.17 0.144  29.76 177.42 0.845  0.989 

DSC_stoch 5.56 26.79 0.153  29.44 175.62 0.836  0.989 

OPTIMAL 5.76 28.15 0.161  29.24 175.44 0.835  0.996 

 
Panel D: Total 

 Business  Economy  Total 

Policy Rows Pass. Load  Rows Pass. Load  Load 

FC_det 10 38.33 0.219  25 147.27 0.701  0.920 

FC_stoch 10 38.34 0.219  25 147.06 0.700  0.919 

SC_det 7.67 36.22 0.207  27.33 161.21 0.768  0.975 

SC_stoch 7.67 36.24 0.207  27.33 160.95 0.766  0.974 

DSC_det 8.03 36.73 0.210  26.97 160.49 0.764  0.974 

DSC_stoch 8.25 37.86 0.216  26.75 159.33 0.759  0.975 

OPTIMAL 8.35 39.04 0.223  26.65 159.54 0.760  0.983 

 
Table 3: Average capacity configurations, number of passengers and load factors 
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Table 3 shows that when the shifting capacity opportunity is exploited, the 

average number of business class rows ranges from 5 on the third flight with a low 

business class demand to 10 on the first flight with a high business class demand. The 

FC policy fixes the number of business class rows at 10 and economy class rows at 

25, which is a good configuration when the business class demand is high, but results 

in empty business class seats when the business class demand is low. This is reflected 

in the average load factors of the flights. For the first flight, the load factors of the FC 

policies are the same as those for the SC policies and only a little less than those of 

the DSC policies. For the third flight, however, the total load factors of the FC 

policies are more than 11% under those for the SC and DSC policies. Combined over 

the three flights the load factors of the FC policies are at least 5% less than for the SC 

and DSC policies. 

 

 

3.3 Results with cancellations and overbooking 
 

In this section we extend the test case to include cancellations and overbooking. For 

this we model each booking request to have a probability that it will be cancelled. 

This cancellation probability is dependent on the price class of the booking request 

and is the overall probability that the request is cancelled at some time during the time 

of booking and the end of the booking period. We assume the cancellation probability 

to be homogeneous over time, such that a booking request that is made t time periods 

before the end of the booking period and that has cancellation probability p, has a 

cancellation probability per time unit of p/t. This way we are able to model the 

cancellations by a homogeneous Poisson process. We model the two business classes 

to have a cancellation probability of 10%, the first two economy classes of 12.5% and 

the two cheapest price classes of 15%. The simulated demand is increased 

proportionally to these percentages in order to keep the net demand on the same level 

as in the previous section. 

 As discussed in Section 2.3, the penalty costs of denying an accepted booking 

to board have to be taken into account when overbooking is allowed. We set the 

penalty costs at $500 for all price classes. This is more than the maximum revenue 

that can be obtained from any price class, which means that it is never profitable to 
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accept an extra high price booking if this means that another booking has to be denied 

boarding. With the shifting capacity opportunity, however, it can be profitable to deny 

one or two bookings to board if this makes the entire row available for the other 

section of the plane. We simulate 100 booking processes on which we apply the same 

six booking control policies as in Section 3.2. The overall performances of the six 

policies are reported in Table 4 together with the optimal results that can be 

determined ex-post. 

 

Policy Revenue Standard 
Deviation Minimum Maximum % Optimal % Best Comp. 

Time 

FC_det 120656 3607 110150 129600 94.20 0 5.65 

FC_stoch 120829 3669 110050 129750 94.36 4 52.05 

SC_det 123663 2850 116050 128700 96.56 5.5 5.33 

SC_stoch 123848 2844 115800 129300 96.70 14.5 49.11 

DSC_det 124260 2805 117150 130600 97.02 12 9.86 

DSC_stoch 125154 2801 117600 130000 97.71 64 84.41 

OPTIMAL 128172 3630 119900 135850 100   
 

Table 4: Average performances of the booking control policies with cancellations and 

overbooking 

 

 The results presented in Table 4, show that the booking control policies 

perform less when we consider cancellations and overbooking. This is not because 

less revenue is available, which is contradicted by the very small differences between 

the optimal revenues of both cases, but because the cancellations make the problem 

more difficult. The differences of the performances of the policies with and without 

cancellations and overbooking can mount up to nearly 1% of the optimal revenue. 

Apart from this, the differences between the performances of the various policies 

show very much the same patterns as without cancellations and overbooking. The 

stochastic DSC policy performs best and the other policies that make use of the 

shifting capacity opportunity do not stay behind far. The deterministic FC policy 

performs 2.36% and 2.82% less than the deterministic SC and DSC policies 

respectively. And the stochastic FC policy performs 2.34% and 3.35% less than the 

stochastic SC and DSC policies respectively. This means that the extra revenue that 
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can be obtained by exploiting the shifting capacity opportunity does not change much 

when cancellations and overbooking are taken into account. 

The average number of denied boardings per flight are presented in Table 5. 

With an average number of denied boardings of 0.537, as opposed to 0.187 to 0.32 for 

the other policies, the stochastic DSC policy is clearly the least careful policy with 

regard to overbooking. This is conform our idea that the shifting capacity opportunity 

can make it profitable in some cases to bear the costs of a denied boarding if this 

means that the row of seats can be used for the other section of the plane. Note 

however, that in spite of the penalty costs it endures, the DSC policy is still the most 

profitable policy with the highest load factors. 

 

Policy Flight 1 Flight 2 Flight 3  Total 

FC_det 0.300 0.320 0.220  0.280 

FC_stoch 0.350 0.250 0.150  0.250 

SC_det 0.300 0.440 0.220  0.320 

SC_stoch 0.330 0.260 0.310  0.300 

DSC_det 0.180 0.210 0.170  0.187 

DSC_stoch 0.540 0.520 0.550  0.537 

OPTIMAL 0 0 0  0 
 

Table 5: Average number of denied boardings per flight 

 

 Finally, in Table 6 we present the average capacity configurations and load 

factors of the flights for the different booking control policies. The capacity 

configurations and load factors of the flights show no large deviations from those 

obtained for the case without cancellations and overbooking, except for the fact that 

the DSC policies tend to appoint some more seats for the business class. This can be 

seen most clearly for the first flight, where the DSC policies appoint more than a 

complete row extra to the business class. 
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Panel A: Flight 1 

 Business  Economy  Total 

Policy Rows Pass. Load  Rows Pass. Load  Load 

FC_det 10 47.48 0.271  25 142.41 0.678  0.949 

FC_stoch 10 47.61 0.272  25 142.25 0.677  0.949 

SC_det 10 47.48 0.271  25 142.41 0.678  0.949 

SC_stoch 10 47.60 0.272  25 142.24 0.677  0.949 

DSC_det 11.03 48.91 0.279  23.97 142.08 0.677  0.956 

DSC_stoch 11.13 49.76 0.284  23.87 141.77 0.675  0.959 

OPTIMAL 11.38 50.89 0.291  23.62 140.52 0.669  0.960 

 
Panel B: Flight 2 

 Business  Economy  Total 

Policy Rows Pass. Load  Rows Pass. Load  Load 

FC_det 10 39.97 0.228  25 148.82 0.709  0.937 

FC_stoch 10 40.00 0.229  25 148.25 0.706  0.935 

SC_det 8 37.40 0.214  27 160.88 0.766  0.980 

SC_stoch 8 37.44 0.214  27 159.93 0.762  0.976 

DSC_det 7.88 37.03 0.212  27.12 161.41 0.769  0.980 

DSC_stoch 8.04 37.96 0.217  26.96 160.94 0.766  0.983 

OPTIMAL 8.22 39.95 0.228  26.78 160.68 0.765  0.993 

 
Panel C: Flight 3 

 Business  Economy  Total 

Policy Rows Pass. Load  Rows Pass. Load  Load 

FC_det 10 28.85 0.165  25 148.91 0.709  0.874 

FC_stoch 10 28.85 0.165  25 148.52 0.707  0.872 

SC_det 5 23.95 0.137  30 178.62 0.851  0.987 

SC_stoch 5 24.18 0.138  30 178.24 0.849  0.987 

DSC_det 5.30 24.94 0.143  29.70 176.83 0.842  0.985 

DSC_stoch 5.51 26.60 0.152  29.49 175.99 0.838  0.990 

OPTIMAL 5.82 28.39 0.162  29.18 175.08 0.834  0.996 
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Panel D: Total 

 Business  Economy  Total 

Policy Rows Pass. Load  Rows Pass. Load  Load 

FC_det 10 38.77 0.222  25 146.72 0.699  0.920 

FC_stoch 10 38.82 0.222  25 146.34 0.697  0.919 

SC_det 7.67 36.28 0.207  27.33 160.64 0.765  0.972 

SC_stoch 7.67 36.41 0.208  27.33 160.14 0.763  0.971 

DSC_det 8.07 36.96 0.211  26.93 160.11 0.762  0.974 

DSC_stoch 8.23 38.11 0.218  26.77 159.57 0.760  0.978 

OPTIMAL 8..47 39.74 0.227  26.53 158.76 0.756  0.983 

 
Table 6: Average capacity configurations, number of passengers and load factors with 

cancellations and overbooking 

 

 

4 Conclusion and prospects for future research 
 

In this paper we introduced convertible seats into the airline revenue management 

problem. These seats create the opportunity to shift capacity between the business and 

economy class sections of a plane. We formulated a mathematical programming 

model to account for the shifting capacity opportunity which can be used both in a 

deterministic and in a stochastic manner. This model is not much harder than 

traditional network revenue management models and is also extended to incorporate 

cancellations and overbooking. 

We constructed a test case where a single plane is used for multiple flights 

with different demand patterns. The test case shows that the shifting capacity 

opportunity gives a rise in revenues of more than 3.3% of the optimal revenue that can 

be obtained. When the shifting capacity decision is made only once before each flight, 

the extra revenues are still more than 2.8% of the optimal revenue. The shifting 

capacity opportunity also increases the load factor of the plane from 92% to more than 

97%. When cancellations and overbooking are taken into account these results remain 

the same. We also observe that taking the shifting capacity opportunity into account 

can result in a policy that is less careful with respect to overbooking. This is because 

the opportunity costs of a booking can become very large whenever the booking is 
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blocking an entire row from becoming available for the other section of the plane. 

Therefore, in some cases it can be worthwhile to take the risk of a denied boarding. 

Further we see that a stochastic use of the model increases the performance of the 

booking control policy over a deterministic use of the model, but never more than 

0.7% of the optimal revenue that can be obtained. The computation time of a 

stochastic policy will however be considerably larger then for a deterministic policy. 

 This paper provides a way to model the shifting capacity decision and an 

indication of the added value of doing so. The booking control policies that we 

construct in this paper are computationally very cumbersome and will not always be 

applicable in practice in this exact way. Therefore, a study on computationally less 

demanding booking control policies could prove useful. For this, one can think of bid-

prices that serve as approximations of the opportunity costs for a longer period of time 

or nested booking limits that determine the number of booking requests to accept for 

each price class. Both can be based on the models introduced in this paper. Further, 

we acknowledge that our test case is but an initial one and many more can be 

constructed to obtain further insights. For example, our test case consists of a single 

flight, which gives us the opportunity to illustrate things more clearly, and does not 

include multiple seat booking requests. Finally, we would like to mention that most 

extensions to the standard airline network revenue management problem that are 

suggested throughout the literature can be applied to the model that we provide in this 

paper as well. This comes forth from the fact that our model still resembles the 

standard models very much. 
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