55 research outputs found

    Image sets of perfectly nonlinear maps

    Get PDF
    We present a lower bound on the image size of a dd-uniform map, d1d\geq 1, of finite fields, by extending the methods used for planar maps. In the particularly interesting case of APN maps on binary fields, our bound coincides with the one obtained by Ingo Czerwinski, using a linear programming method. We study properties of APN maps of F2n\mathbb{F}_{2^n} with minimal image set. In particular, we observe that for even nn, a Dembowski-Ostrom polynomial of form f(x)=f(x3)f(x) =f'(x^3) is APN if and only if ff is almost-3-to-1, that is when its image set is minimal. We show that any almost-3-to-1 quadratic map is APN, if nn is even. For nn odd, we present APN Dembowski-Ostrom polynomials on F2n\mathbb{F}_{2^n} with image sizes 2n1 2^{n-1} and 52n35\cdot 2^{n-3}. We present several results connecting the image sets of special APN maps with their Walsh spectrum. Especially, we show that a large class of APN maps has the classical Walsh spectrum. Finally, we prove that the image size of a non-bijective almost bent map contains at most 2n2(n1)/22^n-2^{(n-1)/2} elements.Comment: Minor revision with new references; Theorems 18, 19 are adde

    Triplicate functions

    Get PDF
    We define the class of triplicate functions as a generalization of 3-to-1 functions over F2n\mathbb {F}_{2^{n}} for even values of n. We investigate the properties and behavior of triplicate functions, and of 3-to-1 among triplicate functions, with particular attention to the conditions under which such functions can be APN. We compute the exact number of distinct differential sets of power APN functions and quadratic 3-to-1 functions; we show that, in this sense, quadratic 3-to-1 functions are a generalization of quadratic power APN functions for even dimensions, in the same way that quadratic APN permutations are generalizations of quadratic power APN functions for odd dimensions. We show that quadratic 3-to-1 APN functions cannot be CCZ-equivalent to permutations in the case of doubly-even dimensions. We compute a lower bound on the Hamming distance between any two quadratic 3-to-1 APN functions, and give an upper bound on the number of such functions over F2n\mathbb {F}_{2^{n}} for any even n. We survey all known infinite families of APN functions with respect to the presence of 3-to-1 functions among them, and conclude that for even n almost all of the known infinite families contain functions that are quadratic 3-to-1 or are EA-equivalent to quadratic 3-to-1 functions. We also give a simpler univariate representation in the case of singly-even dimensions of the family recently introduced by Göloglu than the ones currently available in the literature. We conduct a computational search for quadratic 3-to-1 functions in even dimensions n ≤ 12. We find six new APN instances for n = 10, and the first sporadic APN instance for n = 12 since 2006. We provide a list of all known 3-to-1 APN functions for n ≤ 12.publishedVersio

    Towards a deeper understanding of APN functions and related longstanding problems

    Get PDF
    This dissertation is dedicated to the properties, construction and analysis of APN and AB functions. Being cryptographically optimal, these functions lack any general structure or patterns, which makes their study very challenging. Despite intense work since at least the early 90's, many important questions and conjectures in the area remain open. We present several new results, many of which are directly related to important longstanding open problems; we resolve some of these problems, and make significant progress towards the resolution of others. More concretely, our research concerns the following open problems: i) the maximum algebraic degree of an APN function, and the Hamming distance between APN functions (open since 1998); ii) the classification of APN and AB functions up to CCZ-equivalence (an ongoing problem since the introduction of APN functions, and one of the main directions of research in the area); iii) the extension of the APN binomial x3+βx36x^3 + \beta x^{36} over F210F_{2^{10}} into an infinite family (open since 2006); iv) the Walsh spectrum of the Dobbertin function (open since 2001); v) the existence of monomial APN functions CCZ-inequivalent to ones from the known families (open since 2001); vi) the problem of efficiently and reliably testing EA- and CCZ-equivalence (ongoing, and open since the introduction of APN functions). In the course of investigating these problems, we obtain i.a. the following results: 1) a new infinite family of APN quadrinomials (which includes the binomial x3+βx36x^3 + \beta x^{36} over F210F_{2^{10}}); 2) two new invariants, one under EA-equivalence, and one under CCZ-equivalence; 3) an efficient and easily parallelizable algorithm for computationally testing EA-equivalence; 4) an efficiently computable lower bound on the Hamming distance between a given APN function and any other APN function; 5) a classification of all quadratic APN polynomials with binary coefficients over F2nF_{2^n} for n9n \le 9; 6) a construction allowing the CCZ-equivalence class of one monomial APN function to be obtained from that of another; 7) a conjecture giving the exact form of the Walsh spectrum of the Dobbertin power functions; 8) a generalization of an infinite family of APN functions to a family of functions with a two-valued differential spectrum, and an example showing that this Gold-like behavior does not occur for infinite families of quadratic APN functions in general; 9) a new class of functions (the so-called partially APN functions) defined by relaxing the definition of the APN property, and several constructions and non-existence results related to them.Doktorgradsavhandlin

    Class of Quadratic Almost Bent Functions That Is EA-Inequivalent to Permutations

    Get PDF
    The permutation relationship for the almost bent (AB) functions in the finite field is a significant issue. Li and Wang proved that a class of AB functions with algebraic degree 3 is extended affine- (EA-) inequivalent to any permutation. This study proves that another class of AB functions, which was developed in 2009, is EA-inequivalent to any permutation. This particular AB function is the first known quadratic class EA-inequivalent to permutation

    The crooked property

    Get PDF
    International audienceCrooked permutations were introduced twenty years ago to cons- truct interesting objects in graph theory. These functions, over F2n with odd nn, are such that their derivatives have as image set a com- plement of a hyperplane. The field of applications was extended later, in particular to cryptography. However binary crooked functions are rare. It is still unknown if non quadratic crooked functions do ex- ist. We extend the concept and propose to study the crooked property for any characteristic. A function FF, from Fpn to itself, satisfies this property if all its derivatives have as image set an a ne subspace. We show that the partially-bent vectorial functions and the functions satisfying the crooked property are strongly related. We later focus on the components of these functions, establishing that the existence of linear structures is here decisive. We then propose a symbolic ap- proach to identify the linear structures. We claim that this problem consists in solving a system of linear equations, and can often be seen as a combinatorial problem

    Autocorrelations of Vectorial Boolean Functions

    Get PDF
    International audienceRecently, BarOn et al. introduced at Eurocrypt'19 a new tool, called the differential-linear connectivity table (DLCT), which allows for taking into account the dependency between the two subciphers E0 and E1 involved in differential-linear attacks. This paper presents a theoretical characterization of the DLCT, which corresponds to an autocorrelation table (ACT) of a vectorial Boolean function. We further provide some new theoretical results on ACTs of vectorial Boolean functions

    Analysis, classification and construction of optimal cryptographic Boolean functions

    Get PDF
    Modern cryptography is deeply founded on mathematical theory and vectorial Boolean functions play an important role in it. In this context, some cryptographic properties of Boolean functions are defined. In simple terms, these properties evaluate the quality of the cryptographic algorithm in which the functions are implemented. One cryptographic property is the differential uniformity, introduced by Nyberg in 1993. This property is related to the differential attack, introduced by Biham and Shamir in 1990. The corresponding optimal functions are called Almost Perfect Nonlinear functions, shortly APN. APN functions have been constructed, studied and classified up to equivalence relations. Very important is their classification in infinite families, i.e. constructing APN functions that are defined for infinitely many dimensions. In spite of an intensive study of these maps, many fundamental problems related to APN functions are still open and relatively few infinite families are known so far. In this thesis we present some constructions of APN functions and study some of their properties. Specifically, we consider a known construction, L1(x^3)+L2(x^9) with L1 and L2 linear maps, and we introduce two new constructions, the isotopic shift and the generalised isotopic shift. In particular, using the two isotopic shift constructing techniques, in dimensions 8 and 9 we obtain new APN functions and we cover many unclassified cases of APN maps. Here new stands for inequivalent (in respect to the so-called CCZ-equivalence) to already known ones. Afterwards, we study two infinite families of APN functions and their generalisations. We show that all these families are equivalent to each other and they are included in another known family. For many years it was not known whether all the constructed infinite families of APN maps were pairwise inequivalent. With our work, we reduce the list to those inequivalent to each other. Furthermore, we consider optimal functions with respect to the differential uniformity in fields of odd characteristic. These functions, called planar, have been valuable for the construction of new commutative semifields. Planar functions present often a close connection with APN maps. Indeed, the idea behind the isotopic shift construction comes from the study of isotopic equivalence, which is defined for quadratic planar functions. We completely characterise the mentioned equivalence by means of the isotopic shift and the extended affine equivalence. We show that the isotopic shift construction leads also to inequivalent planar functions and we analyse some particular cases of this construction. Finally, we study another cryptographic property, the boomerang uniformity, introduced by Cid et al. in 2018. This property is related to the boomerang attack, presented by Wagner in 1999. Here, we study the boomerang uniformity for some known classes of permutation polynomials.Doktorgradsavhandlin
    corecore